Synthesis, isolation, and X-ray structural characterization of trifluoromethylated C_{78} fullerenes: $C_{78}(2)(CF_3)_{10/12}$ and $C_{78}(3)(CF_3)_{12/14}$

N. B. Tamm, M. P. Kosaya, M. A. Fritz, S. I. Troyanov

Department of Chemistry, Moscow State University, Moscow, Russia tamm@thermo.chem.msu.ru, stroyano@thermo.chem.msu.ru

PACS 61.48.-c

DOI 10.17586/2220-8054-2016-7-1-111-117

Four CF₃ derivatives of C₇₈, C₇₈(2)(CF₃)_{10/12} and C₇₈(3)(CF₃)_{12/14}, have been isolated via HPLC from the products of high-temperature trifluoromethylation of a C₇₆–C₉₆ fullerene mixture or a C₇₈ fraction. Their molecular structures were determined by single crystal X-ray crystallography using synchrotron radiation. The addition patterns of the new compounds are compared with each other and with the previously known C₇₈(2)(CF₃)₁₀ and C₇₈(3)(CF₃)₁₂.

Keywords: higher fullerenes, C₇₈, trifluoromethylation, HPLC, structure elucidation.

Received: 20 November 2015

1. Introduction

Higher fullerenes are characterized by the existence of multiple cage isomers and relatively lower abundance compared to those of C_{60} and C_{70} , and thus their isolation and further study of their structure and properties are much more difficult. Among the family of higher fullerenes, C₇₈ is present in moderate abundance in fullerene mixtures because it, along with C_{84} , C_{90} , and C_{96} , belongs to the group of C_{6n} fullerenes, which have richer isomeric distribution and have been more comprehensively investigated [1]. The C₇₈ fullerene possesses five topologically-distinct isolated pentagon rule (IPR) isomers, D_3 -C₇₈(1), C_{2v} -C₇₈(2), C_{2v} -C₇₈(3), D_{3h} -C₇₈(4), and D_{3h} -C₇₈(5) [2]. The C₇₈(2) – C₇₈(5) isomers can be converted into each other by Stone – Wales rearrangements (SWR) of the pyracylene type, whereas $C_{78}(1)$ cannot be transformed into other isomers of C_{78} by SWRs. The abundances of $C_{78}(1) - C_{78}(3)$ isomers in the fullerene soot are comparable, being dependent on the method of fullerene synthesis [3,4]. The D_3 - $C_{78}(1)$ and C_{2v} - $C_{78}(2)$ isomers were isolated chromatographically and their cage structures were confirmed by ¹³C NMR spectroscopy [3]. At the same time, isomer D_{3h} -C₇₈(5) is elusive because of a small band gap resulting in a very low solubility; its presence in the fullerene soot could be unambiguously confirmed by the structural study of a CF₃ derivative, $C_{78}(5)(CF_3)_{12}$ [5]. The D_{3h} - $C_{78}(4)$ isomer possesses the lowest stability; it has never been found in the fullerene soot. These differences are satisfactorily explained by the differences in the relative formation energies of the $C_{78}(1) - C_{78}(5)$ isomers [3].

The chemical reactivity of C_{78} fullerene was studied in cyclopropanation, halogenations, trifluoromethylation, and other reactions [6–14]. Structural characterization of the derivatives was carried out by ¹H, ¹³C, and ¹⁹F spectroscopy as well as by X-ray crystallography. Among the most structurally investigated compounds are the bromides, $C_{78}(2,3)Br_{18}$ [8], chlorides, $C_{78}(2,3,5)Cl_{18}$ [9–11] and $C_{78}(1,2)Cl_{30}$ [12, 13], and several trifluoromethylated derivatives, $C_{78}(CF_3)_{2n}$ [14]. For the latter group, structural data obtained by ¹⁹F NMR spectroscopy and/or X-ray studies are available for compositions $C_{78}(3)(CF_3)_8$, $C_{78}(1,2)(CF_3)_{10}$, and $C_{78}(3,5)(CF_3)_{12}$. The only structural X-ray study of a pentafluoroethyl derivative concerns the compound $C_{78}(2)(C_2F_5)_{10}$ [15]. Investigations of the structural chemistry of CF₃ derivatives have been restricted to only several examples, which hampers a comprehensive comparison, even within the derivatives of a distinct isomer of C_{78} . The aim of the present study is to expand the chemistry of trifluoromethylated C_{78} derivatives for different isomers. The synthesis, HPLC isolation, and X-ray crystallographic study was performed for several CF₃ derivatives of $C_{78}(2)$ and $C_{78}(3)$ with 10 – 14 CF₃ groups, which enables comparison with previously known $C_{78}(2,3)(CF_3)_n$ isomers. Addition patterns are discussed in terms of the partial of full occupation of 12 pentagons and formation of aromatic substructures and isolated double C=C bonds on the fullerene cage.

2. Results

Two different starting higher fullerene mixtures were used for trifluoromethylation with gaseous CF_3I in quartz ampules following a previously described procedure [16–18]. The mixture of higher fullerenes C₇₆ - C₉₆ (45 mg; MER Corp.) was trifluoromethylated at 560 °C for 1 h, whereas a C₇₈ fraction (60 mg) obtained by HPLC from the C₇₆ - C₉₀ mixture (Suzhou Dade Carbon Nanotechnology Co.) was reacted at 450 °C for 1.5 h. In both cases, the trifluoromethylation products were sublimed into the colder parts of the ampoules and were collected from there. The products obtained from the C_{76} – C_{96} mixture contained a complex mixture of fullerene(CF₃)_{2n} compounds with 2n in the range of 12 - 20 according to MALDI TOF mass spectrometric analyses, whereas CF₃ derivatives of C₇₈ were represented by $C_{78}(CF_3)_{10-16}$ with the maximum abundance of $C_{78}(CF_3)_{12}$ species. Thifluoromethylation of the C_{78} fraction gave a mixture of $C_{78}(CF_3)_{12-18}$ with the highest abundance of $C_{78}(CF_3)_{14}$ and $C_{78}(CF_3)_{16}$. It can be concluded that the lower reaction temperature (450 vs. 560 °C) somewhat shifts the composition in the mixture to the compounds with a large number of CF_3 groups. This effect can be explained by the increase of the compound volatility with the increasing number of CF_3 groups which influences the kinetics of sublimation in the reaction ampoule [19].

Both products were dissolved in toluene and subjected to HPLC separation in toluene (Buckyprep column, 10 mm i.d. × 250 mm, Nacalai Tesque Corp.) with a flow rate of 4.6 mL·min⁻¹ monitored at 290 nm. A typical HPLC trace for the $C_{76-96}(CF_3)_n$ product is shown in Fig. 1a. The fractions obtained were further separated by HPLC using toluene/*n*-hexane mixtures or pure *n*-hexane. The second-step separation of the toluene fraction, which eluted at 6.4 min, was carried out in a toluene/hexane mixture with v/v = 1/1 and a subfraction eluted at 20.2 min gave a compositionally pure $C_{78}(CF_3)_{10}$ compound. Recrystallization from *o*-dichlorobenzene and *p*-xylene afforded small crystals which were then investigated by X-ray diffraction with the use of synchrotron radiation, thus revealing molecular structures of $C_{78}(2)(CF_3)_{10}$ in the form of solvates with *o*-dichlorobenzene and *p*-xylene, respectively. HPLC separation of the toluene fraction eluted at 23.1 min afforded a compositionally pure $C_{78}(CF_3)_{12}$ compound. Slow evaporation of solvent gave small crystals which were studied by X-ray crystallography revealing the molecular structure of $C_{78}(2)(CF_3)_{12}$.

Trifluoromethylation products of the C₇₈ fraction were also separated by two-step HPLC using the same Buckyprep column. The second-step HPLC of the first toluene fraction in a toluene/hexane 15/85 v/v mixture (not shown) gave a compositionally pure C₇₈(CF₃)₁₂ fraction according to MALDI TOF mass-spectrometry. Recrystallization from toluene afforded small crystals of C₇₈(3)(CF₃)₁₂ · 1.5 (toluene). Finally, the second-step HPLC separation of the first toluene fraction in hexane at flow rate of 1.5 mL·min⁻¹ allowed the isolation of several C₇₈(CF₃)₁₂₋₁₈ compounds (Fig. 1b). A fraction eluted at 17.7 min (indicated by the arrow),

FIG. 1. HPLC trace of a fullerene(CF_3)_{2n} mixture in toluene (a) and of a $C_{78}(CF_3)_{2n}$ mixture in hexane (b). The collected $C_{78}(CF_3)_{2n}$ fractions are indicated by arrows. The compositions of $C_{78}(CF_3)_{2n}$ derivatives are given as 78(N)/2n, where N denotes the number of a C_{78} isomer according to the spiral algorithm

which contained predominantly $C_{78}(CF_3)_{14}$ admixed by small amount of $C_{78}(CF_3)_{16/18}$, afforded crystals after recrystallization from *p*-xylene. X-ray diffraction revealed the structure of a solvate, $C_{78}(3)(CF_3)_{14} \cdot 2.5$ (*p*-xylene). Most other peaks of this separation also gave crystals which were shown to be CF_3 derivatives of $C_{78}(1)$ with 12 - 18 attached groups. These data will be presented in a separate publication elsewhere later.

Synchrotron X-ray data for the obtained crystals were collected at 100 K at the BL14.2 at the BESSY storage ring (PSF at the Free University of Berlin, Germany) using a MAR225 CCD detector. Crystallographic data, along with some details of data collection and structure refinements, are presented in Table 1. The structures were solved with SHELXD and anisotropically refined with SHELXL [20]. All crystal structures except $C_{78}(2)(CF_3)_{12}$ show disordering phenomena, most of which concern disorder of solvent molecules and CF₃ groups. The latter was caused by the librational movement of CF_3 groups around the C-CF₃ bonds or due to statistical overlap of similar molecules in the same crystallographic site. In the crystal structure of $C_{78}(2)(CF_3)_{10} \cdot 0.5$ (o-dichlorobenzene), one CF_3 group and the solvated molecule of o-dichlorobenzene are disordered over two positions each. In the crystal structure of $C_{78}(2)(CF_3)_{10}$. p-xylene, the molecule of solvation is strongly disordered over several positions. In the crystal structure of $C_{78}(3)(CF_3)_{12} \cdot 1.5$ (toluene), there is a disorder of two CF₃ groups and one toluene molecule. In the crystal structure of $C_{78}(3)(CF_3)_{14}$ · p-xylene, there is an overlap of the main molecule with its enantiomer (ca. 16 %) and the molecule of an epoxide, $C_{78}(3)(CF_3)_{14}O$ (ca. 33 %), in the same crystallographic site, which is accompanied by a disorder of seven CF₃ groups. Crystallographic data are deposited under CCDC 1408116 - 1408120.

3. Discussion

Mass spectrometric MALDI TOF analyses of the raw trifluoromethylation products demonstrate the presence of $C_{78}(CF_3)_{2n}$ species with 2n ranging from 10 to 18, however, without information concerning C_{78} cage connectivity and CF_3 addition patterns. HPLC separation supported by subsequent MALDI MS analyses of separated fractions indicated the presence of several different $C_{78}(CF_3)_{2n}$ isomers of the same composition, whereas their assignment to specific C_{78} frameworks remained unknown. Crystal growth from separated fractions, followed by

Compound	$C_{78}(2)(CF_3)_{10}$	$C_{78}(2)(CF_3)_{10}$	$C_{78}(2)(CF_3)_{12}$	C ₇₈ (3)(CF ₃) ₁₂	$C_{78}(3)(CF_3)_{14}^{1}$
Solvate	0.5 <i>o</i> -C ₆ H ₄ Cl ₂	$p-C_6H_4(CH_3)_2$		1.5 C ₆ H ₅ (CH ₃)	2.5 <i>p</i> - C ₆ H ₄ (CH ₃) ₂
Mr	1700.38	1733.04	1764.90	1903.10	2174.44
Crystal system	triclinic	orthorhombic	monoclinic	triclinic	monoclinic
Space group	P 1	$P2_{1}2_{1}2_{1}$	$P2_{1/n}$	$P \bar{1}$	C2/c
a [Å]	11.537(1)	11.218(1)	11.490(1)	11.878(1)	21.280(2)
b [Å]	14.421(1)	19.022(1)	26.243(1)	12.374(1)	17.637(1)
c [Å]	18.038(1)	28.842(2)	19.154(1)	24.267(2)	42.567(3)
α [°]	85.60(1)	90	90	89.485(9)	90
β [°]	84.155(9)	90	91.409(10)	86.869(8)	90.02(1)
γ [°]	73.83	90	90	66.236(8)	90
V [Å ³]	2863.7(4)	6174.6(8)	5773.8(6)	3259.1(5)	15976(2)
Z	2	4	4	2	8
$D_c \ [\mathrm{g} \cdot \mathrm{cm}^{-3}]$	1.972	1.870	2.030	1.939	1.807
Crystal	0.02×0.02	0.03×0.03	0.03×0.02	0.03×0.03	0.03×0.03
size [mm]	×0.01	×0.01	×0.01	×0.01	×0.01
λ [Å]	0.9050	0.8434	0.8434	0.8434	0.8551
Tempera- ture [K]	100	100	100	100	100
$\theta(\max)[\deg]$	36.66	33.70	34.21	34.74	34.75
Refls col- lected/R(int)	37547 / 0.064	87675 / 0.025	91568 / 0.028	51625 / 0.026	84029 / 0.073
Data / parameters	10391 / 11148	14259 / 1144	13460 / 1135	13634 / 1252	18585 / 1463
$\begin{array}{c c} R_1[I \ge 2\sigma(I)]/\\ wR_2 \text{ (all)} \end{array}$	0.087 / 0.233	0.048 / 0.114	0.054 / 0.135	0.077 / 0.174	0.116 / 0.290
$\frac{\overline{\Delta \rho(\text{max }/\text{min})[\text{e } \text{Å}^{-3}]}}{\text{min}[\text{e } \text{Å}^{-3}]}$	0.90 / -0.49	0.57 / -0.44	0.56 / -0.39	0.55 / -0.55	0.67 / -0.50

TABLE 1. Crystallographic data and details of data collection and refinement for $C_{78}(CF_3)_{2n}$ compounds

¹The crystal structure contains ca. 30 % admixture of an epoxide, $C_{78}(3)(CF_3)_{14}O$, localized in the same crystallographic site.

single crystal X-ray structure determination using synchrotron radiation was successful for only some cases of $C_{78}(CF_3)_{10-14}$, which are additional examples of unambiguous structural characterization of CF_3 derivatives for the most abundant isomers 1 - 3 of C_{78} fullerene (Fig. 2). CF_3 derivatives of the elusive $C_{78}(5)$ have not been detected, most probably, due to its very low content (or perhaps very low solubility), whereas the isolation of CF_3 derivatives of $C_{78}(4)$ was not even expected because of its obvious absence in the fullerene soot.

Two of the three CF₃ derivatives of $C_{78}(2)$ isolated and structurally characterized in this work contain the same C_s -C₇₈(2)(CF₃)₁₀ molecule, which is known from Ref. [14] and designated there as 78-10-2. The differences concern only the solvate molecules, *o*-dichlorobenzene,

FIG. 2. Projection of the C_s - $C_{78}(2)(CF_3)_{10}$ molecule parallel to the mirror plane; the C_{2v} - $C_{78}(2)(CF_3)_{12}$ molecule is shown along the C_2 axis, whereas the C_1 - $C_{78}(3)(CF_3)_{12}$ and C_1 - $C_{78}(3)(CF_3)_{14}$ molecules are presented along the C_2 axes of the $C_{78}(3)$ carbon cages

p-xylene, and toluene in [14]. The formation of a toluene solvate with similar unit cell parameters and the space group $P2_1/m$ was also observed in one of our crystallization experiments. The addition pattern of 10 CF₃ groups contains a single ribbon of *para* attachments in nine edge-sharing p-C₆(CF₃)₂ hexagons, which is designated as p^9 (Fig. 3). This addition pattern is additionally stabilized by the formation of two nearly isolated benzenoid substructures on the fullerene cage. An isomeric p^4 , p^4 structure of C_2 symmetry (78-10-3), which differs by the position of only one CF₃ group (in the same pentagon near the C_2 axis), has been proposed in [14] based on ¹⁹F NMR spectroscopy data. Note that the proposed 78-10-3 also contains two stabilizing nearly isolated benzenoid substructures. According to DFT calculations, C_s -C₇₈(2)(CF₃)₁₀ is 21.3 kJ·mol⁻¹ more stable than the isomer with C_2 symmetry.

FIG. 3. Schlegel diagrams of C_s - $C_{78}(2)(CF_3)_{10}$, C_{2v} - $C_{78}(2)(CF_3)_{12}$, C_1 - $C_{78}(3)(CF_3)_{12}$, and C_1 - $C_{78}(3)(CF_3)_{14}$ molecules. Cage pentagons are highlighted with gray. Black triangles denote the positions of attached CF₃ groups. The isolated C=C bonds are denoted by double lines. Aromatic nearly isolated and isolated benzenoid as well as triphenylene substructures are also indicated

The addition pattern of 12 CF₃ groups in the structure of C_{2v} -C₇₈(2)(CF₃)₁₂ is interesting in several aspects. Importantly, the structure of C_{2v} -C₇₈(2)(CF₃)₁₂ retains the symmetry of the pristine C_{2v} -C₇₈(2) cage (Fig. 3). Its addition pattern contains the addition patterns of both C_s -C₇₈(2)(CF₃)₁₀ and C_2 -C₇₈(2)(CF₃)₁₀ as substructures. Most probably, both molecules serve as precursors of C_{2v} -C₇₈(2)(CF₃)₁₂ in the course of trifluoromehylation. The attachment of two CF₃ groups transforms the p^9 ribbon into a p^{12} loop. At the same time, two nearly isolated benzenoid rings become fully isolated and one carbon-carbon bond becomes an isolated double C=C bond, both acting as additional stabilizing factors. It should be noted that the addition pattern of C_{2v} -C₇₈(2)(CF₃)₁₂ exhibits an extremely rare example of a fullerene(CF₃)₁₂ structure where not all pentagons are occupied by CF_3 groups. In fact, two pentagons remain unsubstituted in the experimentally determined structure. If the addition of two more groups occurs in these pentagons (for example, in the left-most and right-most positions of free pentagons), the hypothetical C_s - $C_{78}(2)(CF_3)_{12}$ molecule with all 12 pentagons occupied by CF_3 groups would contains two groups attached in isolated positions, which can be considered as a destabilizing feature. Indeed, DFT calculations of the formation energies of the hypothetical and the experimentally determined $C_{78}(2)(CF_3)_{12}$ molecules revealed that the former is 10.1 kJ·mol⁻¹ less stable than the latter.

Structural relations between $C_{78}(2)(CF_3)_{10}$ and $C_{78}(2)(CF_3)_{12}$ molecules are very similar to those reported for $C_{84}(18)(CF_3)_{10}$ and $C_{84}(18)(CF_3)_{12}$ [18]. The addition pattern of C_s - $C_{84}(18)(CF_3)_{10}$ contains a single p^9 ribbon which is very similar to that in C_s - $C_{78}(2)(CF_3)_{10}$. Though the experimentally determined structure of C_s - $C_{84}(18)(CF_3)_{12}$ is characterized by the attachment of twelve CF_3 groups in all pentagons (with two additional groups in a separate p- $C_6(CF_3)_2$ hexagon), a theoretically predicted structure with a $p^{12} \log (84(18)/12 - 3 \text{ in [18]})$, i.e., an analog of $C_{78}(2)(CF_3)_{12}$, is only 6 kJ·mol⁻¹ less stable so that its presence in the trifluoromethylation products of $C_{84}(18)$ cannot be excluded. In fact, the only example of addition-free pentagons in the molecule with more than 12 addends on a fullerene cage has been reported for $C_{88}(17)Cl_{16}$ containing two such pentagons [21]. The stabilizing factors of this structure include the formation of one isolated benzenoid ring and three isolated C=C bonds on the fullerene $C_{88}(17)$ cage.

The crystal structure of $C_{78}(3)(CF_3)_{12} \cdot 1.5$ (toluene) contains the C_1 - $C_{78}(3)(CF_3)_{12}$ molecule, which is known from the previous structure determination for a solvate with bromobenzene (78-12-2) [14]. Its asymmetric addition pattern of 12 CF₃ groups occupying all 12 pentagons is characterized by the presence of a short p^3 ribbon and a longer p^5mp ribbon (*m* for a *meta*- $C_6(CF_3)_2$ hexagon) on the fullerene cage (Fig. 3). Thus, it differs considerably from the additions pattern of $C_{78}(2)(CF_3)_{12}$ which comprises a loop of exclusively *para* additions in $C_6(CF_3)_2$ hexagons (p^{12}) and containing two unoccupied pentagons. For comparison, the addition pattern of C_2 - $C_{78}(5)(CF_3)_{12}$ [5] contains a single p^{11} ribbon of 12 CF₃ groups on the $C_{78}(5)$ cage which differs from the $C_{78}(3)$ cage by the position of only one C–C bond.

The molecular structure of $C_{78}(3)(CF_3)_{14}$ was determined for the first time. Its addition pattern consists of a short *pmp* ribbon and a long p^{10} ribbon of edge-sharing $C_6(CF_3)_2$ hexagons (Fig. 3). There is an isolated double C=C bond and an isolated triphenylene-like substructure on the fullerene cage. 13 of 14 CF₃ groups are arranged mirror-symmetrically on the cage. This feature explains the existence of packing errors with a number of enantiomeric molecules located in the same crystallographic sites as the main molecules in the crystal structure. C_1 -C₇₈(3)(CF₃)₁₄ and C_1 -C₇₈(3)(CF₃)₁₂ possess only seven CF₃ groups attached in common positions. Therefore, the latter cannot be regarded as a precursor of the former.

4. Conclusions

Trifluoromethylation of a higher fullerenes mixture and a C_{78} fraction followed by HPLC separation, crystallization, and X-ray diffraction studies resulted in structure determination of several CF₃ derivatives, $C_{78}(2,3)(CF_3)_{10-14}$. Although the carbon cages of C_{2v} - $C_{78}(2)$ and C_{2v} - $C_{78}(3)$ differ by the position of only one C–C bond [2], the addition patterns of the derivatives with equal numbers of CF₃ groups, $C_{78}(2,3)(CF_3)_{12}$, differ significantly. A similar phenomenon has also been found for (CF₃)₁₂ derivatives of isomers $C_{84}(22)$ and $C_{84}(23)$, which also differ by the position of one bond on the carbon cages [16, 17]. In contrast, the addition patterns of $C_{78}X_{18}$ (X = Cl, Br) are the same for isomers $C_{78}(2)$, $C_{78}(3)$, and even $C_{78}(5)$ [8–11] which give rise to co-crystallization phenomena for these halides [8, 11] thus demonstrating the levelling effect for a large number of addends on the addition patterns of fullerene derivatives with similar carbon cages. The existence of similar effects for CF_3 derivatives of isomers of C_{78} could be clarified by structural study of compounds with 16 – 18 attached groups.

Acknowledgements

This work was supported in part by the Russian Foundation for Basic Research (grant 15-03-04464).

References

- Yoshida M., Aihara J. Validity of the weighted HOMO-LUMO energy separation as an index of kinetic stability for fullerenes with up to 120 carbon atoms. *Phys. Chem. Chem. Phys.*, 1999, 1, P. 227–230.
- [2] Fowler P.W., Manolopoulos D.E. An Atlas of Fullerenes. Clarendon, Oxford, 1995, 392 p.
- [3] Diederich F., Whetten R.L., et al. Fullerene Isomerism: Isolation of C_{2v} - C_{78} and D_3 - C_{78} . *Science*, 1991, **254**, P. 1768–1770.
- [4] Wakabayashi T., Kikuchi K., et al. Pressure-Controlled Selective Isomer Formation of Fullerene C₇₈. J. Phys. Chem., 1994, 98, P. 3090–3091.
- [5] Shustova N.B., Newell B.S., et al. Discovering and verifying elusive fullerene cage isomers: structures of $C_2-p^{11}-(C_{74}-D_{3h})(CF_3)_{12}$ and $C_2-p^{11}-(C_{78}-D_{3h}(5))(CF_3)_{12}$. Angew. Chem. Int. Ed., 2007, 46, P. 4111–4114.
- [6] Herrmann A., Diederich F. Synthesis, separation and characterisation of the first pure multiple adducts of C_{2v}- and D₃-C₇₈. J. Chem. Soc., Perkin Trans. 2, 1997, P. 1679–1684.
- [7] Han A.H., Wakahara T., et al. A new method for separating the D_3 and C_{2v} isomers of C_{78} . New J. Chem., 2009, **33**, P. 497–500.
- [8] Troyanov S.I., Kemnitz E. The first crystal structure of a halogenated higher fullerene, C₇₈Br₁₈, obtained by bromination of a fullerene mixture. *Eur. J. Org. Chem.*, 2003, P. 3916–3919.
- [9] Simeonov K.S., Amsharov K.Yu., Jansen M. Chlorinated derivatives of C₇₈-fullerene isomers with unusually short intermolecular halogen-halogen contacts. *Chem.-Eur. J.*, 2008, 14, P. 9585–9590.
- [10] Simeonov K.S., Amsharov K.Yu., Krokos E., Jansen M. An epilogue on the C₇₈-fullerene family: The discovery and characterization of an elusive isomer. *Angew. Chem. Int. Ed.*, 2008, 47, P. 6283–6285.
- [11] Burtsev A.V., Kemnitz E., Troyanov S.I. Synthesis and structure of fullerene halides C₇₀X₁₀(X= Br, Cl) and C₇₈Cl₁₈. *Crystallogr. Rep.*, 2008, **53**, P. 639–644.
- [12] Troyanov S.I., Tamm N.B., et al. Synthesis and structure of a highly chlorinated C₇₈: C₇₈(2)Cl₃₀. Z. Anorg. Allg. Chem., 2009, 635, P. 1783–1786.
- [13] Kemnitz E., Troyanov S.I. Chlorides of isomeric C₇₈ fullerenes: C₇₈(1)Cl₃₀, C₇₈(2)Cl₃₀, and C₇₈(2)Cl₁₈. *Mendeleev Commun.*, 2010, **20**, P. 74–76.
- [14] Kareev I.E., Popov A.A., et al. Synthesis and X-ray or NMR/DFT structure elucidation of twenty-one new trifluoromethyl derivatives of soluble cage isomers of C₇₆, C₇₈, C₈₄, and C₉₀. J. Am. Chem. Soc., 2008, 130, P. 13471–13489.
- [15] Tamm N.B., Troyanov S.I. Isomer C₇₈(2) captured as the perfluoroethyl derivative C₇₈(C₂F₅)₁₀. Mendeleev Commun., 2009, **19**, P. 198–199.
- [16] Chang K., Fritz M.A., et al. Synthesis, structure, and theoretical study of trifluoromethyl derivatives of C₈₄(22) fullerene. *Chem. -Eur. J.*, 2013, **19**, P. 578–587.
- [17] Romanova N.A., Fritz M.A., et al. Synthesis, structure, and theoretical study of trifluoromethyl derivatives of C₈₄(23) fullerene. *Chem. -Eur. J.*, 2013, **19**, P. 11707–11716.
- [18] Romanova N.A., Fritz M.A., et al. Synthesis and structure of trifluoromethyl derivatives of fullerenes C₈₄(16) and C₈₄(18). *Russ. Chem. Bull. Int. Ed.*, 2014, 63, P. 2657–2667.
- [19] Kareev I.E., Shustova N.B., et al. Thermally stable perfluoroalkylfullerenes with the skew-pentagonal-pyramid pattern: C₆₀(C₂F₅)₄O, C₆₀(CF₃)₄O, and C₆₀(CF₃)₆. J. Am. Chem. Soc., 2006, **128**, P. 12268–12280.
- [20] Sheldrick G.M. A short history of SHELX. Acta Crystallogr. A, 2008, 64, P. 112-122.
- [21] Yang S., Wei T., Kemnitz E., Troyanov S.I. The most stable isomer of C₈₈ fullerene, C_s-C₈₈(17), revealed by X-ray structures of C₈₈Cl₁₆ and C₈₈Cl₂₂. *Chem. Asian J.*, 2012, 7, P. 290–293.