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Electromagnetic radiation by electrons
in the corrugated graphene
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The electromagnetic radiation of electrons in the corrugated graphene has been studied in the presence of a trans-

port electric current in the ballistic regime. We considered here the impact of ripples in monolayer graphene on

its electromagnetic properties. Electromagnetic radiation was actually calculated with a use of the standard elec-

tromagnetic theory. Two cases: those of regular and random structures were analyzed. The nonlinear relationship

between the random height function h(x, y) and the gauge field is shown to create a central radiation frequency

distribution peak.
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1. Introduction

A recent experimental study has shown that the flat geometry of graphene is unstable,
leading to the formation of a corrugated structure: topological defects and ripples [1]. Electron
motion through the rippled graphene sheet induces electromagnetic radiation. The mechanism
for the formation of bremsstrahlung radiation in graphene is similar to that in an undulator or
wiggler [2]. While an electron’s trajectory in an undulator and wiggler deviates from a direct
line due to a periodic system of dipole magnets, the electron’s trajectory in graphene becomes
curved due to ripples present on the material’s surface. The spatial periodicity of the ripples
in graphene could reach several hundreds of nanometers [3], which makes the semiclassical
approach feasible. Despite the “quasi-relativistic” character of the spectrum, the ratio of Fermi
velocity to the speed of light is much smaller, than unity and we can neglect the retardation of
electromagnetic radiation. All these points give us a reason to consider the motion of electrons
in graphene within the classical approach. The most important mechanisms are bremsstrahlung,
cyclotron, and undulator radiation [4]. The emission mechanism under consideration resembles
one in the undulator [5] but practically without retardation. We analyzed radiation using a few
distinct models. In the first model, we consider a geometric mechanism, directly connected with
the presence of undulations, in the second – the pseudo gauge field effect makes the trajectory
become curved in the base plane. Both regular and random ripple structures are considered.
In the following sections, we will consider various models of electrons motion in corrugated
graphene and will derive a formula for the radiation intensity.

2. Geometric mechanism

Anomalously high electrons mobility in graphene [4] leads to the mean free path of
micron value [6]. For the mean ripples period of 50 nanometers, the ratio of the free path
to period of the structure is about 20, which leads to the 10 % spectral line broadening. The
ballistic regime is implemented for the graphene sample of about several microns. Electrons



52 S. A. Ktitorov, R. I. Mukhamadiarov

motion through the rippled graphene sheet induces an electromagnetic radiation in the terahertz
range [4, 7, 8]. The mechanism of formation of the bremsstrahlung radiation in graphene is
similar to one in the undulator or wiggler [3]. While the electron trajectory in an undulator
and wiggler deviates from the direct line due to the periodic system of the dipole magnets,
electron trajectory in graphene is getting curved due to the ripples. A spatial period of ripples
in graphene could reach several hundreds of nanometers [1]. This makes the semiclassical
approach feasible.

The Fermi velocity vector in the vicinity of the Dirac points in graphene has a constant
absolute value of 108 cm/s. However, its orientation changes over time, leading to a time
dependence of the vector components which is responsible for the emission of electromagnetic
waves.

The ripple average amplitude is about 1 nm [9], whereas the period L ∼ 50 nm. Taking
this into account, we could assume that velocity preserves a constant value in the direction of the
applied field. In other words, electrons in graphene could be considered as an oscillator having
the Fermi velocity. The real graphene sample has a random corrugations period that deviates
a little from the mean value. The chaotic surface could be considered as a superposition of
sinusoids with their own period and height. This approach is widely used for wave analysis
in radiophysics. In order to describe the random process of electromagnetic radiation within a
limited spectrum, we introduce the random function h(x) that plays a role of the ripples height
relative to the base plane. Assuming the inhomogeneities to be one-dimensional and taking into

account small ratio of
hm
L
� 1 we can write the following equation for the velocity:

vx = vF , vz = vF
d

dx
h (x (t)) . (1)

That means electromagnetic radiation spreads in a normal direction and infinitesimal changes
in the in-plane velocity components are higher order effects [10] and can be neglected. We
calculate the magnetic field induced by a moving charge at the deliberately chosen point with
use of retarded potentials. The Fourier transform of the vector potential reads:

Aω =
eeikr

cr

∞∫
0

v (t) ei(ωt−kr0)dt, (2)

where c is the speed of light, e is the electrons charge, r is the radius vector, r0 is the moving
charge radius vector.

Taking (1) into account and excluding the retardation effect, we have:

Az =
e eikr

cr
vF

∞∫
0

d

dx
h (x (t)) eitωdt. (3)

The other two components will either be constant or zero and do not contribute to the
generation of electromagnetic waves. The Fourier component of the magnetic field becomes:

By = −ikx
e eikr

cr
vF

∞∫
0

d

dx
h (x (t)) eitωdt. (4)

The magnetic field enters the intensity formula in squared form:

|By|2 =
(
kx
e

cr
vF

)2
eikre−ikr

∞∫
0

dt
d

dx
h (x (t)) eiωt ·

∞∫
0

dt′
d

dx′
h (x′ (t′)) e−iωt

′
. (5)
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In the case of random surface of the graphene, the squared absolute value can be
represented as a multiplication of two equations where distribution of random function h(x)
could be considered as realizations, which could differ even in the same point [11]. Therefore,
while calculating the field intensity, the relationship between them could be represented in terms
of the correlation function. We introduce it by averaging (5) over the ripples’ configuration:

〈
|Bx|2

〉
= −k2y

e2v2F
c2r2

∞∫
0

dt

∞∫
0

dt′
d2

dx2
〈h (x (t))h (x′ (t′))〉 eiω(t−t′), (6)

〈
|By|2

〉
= −k2x

e2v2F
c2r2

∞∫
0

dt

∞∫
0

dt′
d2

dx2
〈h (x (t))h (x′ (t′))〉 eiω(t−t′), (7)

where the angle brackets stand for configuration averaging. The random process h (x) could be
considered as Gaussian and stationary with the correlator:

〈h (x)h (x′)〉 = K (x− x′) = K (ξ) . (8)

Here, the correlation function value depends on relative coordinate x − x′, which means that
statistical characteristics are invariant under a shift along the OX. Assuming this process to be
one with a narrow band spectrum, we write the correlator in the form:

K (ξ) =
〈
h2
〉
e−α|ξ| cos γξ, (9)

where
〈
h2
〉

is the dispersion, α is the inverse correlation radius and γ is the inverse mean period
and α � γ. Making the substitution ξ = x − x′, τ = t − t′, T = (t+ t′) /2, we can rewrite
formula (6) in the form:

〈
|Bx|2

〉
=

(
k2ye

2

r2

)
v2F
c2

1

α2

ω2

v2F

〈
h2
〉 ∞∫

0

dT

∞∫
0

dτe−αvF |τ | cos (γvF τ) eiωτeiT (ω−ω
′)eiτ(ω+ω

′)/2. (10)

Integration over the difference variable makes a Fourier transform, whereas integration
over sum variable is simply the time required for an electron to travel through graphene sample:〈

|Bx|2
〉

= −δ (ω − ω′)
k2ye

2 〈h2〉ω2

c2r2

(
αvF

α2v2F + (ω + γvF )2
+

αvF

α2v2F + (ω − γvF )2

)
. (11)

Spectral distribution of electromagnetic radiation

d2E

dωdo
=

c

4π2

〈
|Bx|2

〉
r2. (12)

Substituting (11) in (12) we obtain the formula for the spectral intensity of electromag-
netic radiation in rippled graphene:

d2E

dωdo
= δ (ω − ω′)

k2ye
2 〈h2〉ω2

4π2c

(
αvF

α2v2F + (ω + γvF )2
+

αvF

α2v2F + (ω − γvF )2

)
. (13)

Integrating (13) by frequencies and angle

P =
c

4π

∞∫
−∞

dω

2π∫
0

dΩ
〈
|Bx|2

〉
r2, (14)
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we obtain the relation for electromagnetic radiation power per one electron:

Pe =

∞∫
−∞

dω

2π∫
0

dΩ cos θ
e2ω4 〈h2〉

4πc3

(
αvF

α2v2F + (ω + γvF )2
+

αvF

α2v2F + (ω − γvF )2

)
. (15)

We see that the majority of the electromagnetic radiation comes with a frequency corre-
sponding to the mean period of the ripples structure with some broadening due to its random
character. The term in brackets yields the Lorentz distribution.

In the limit of α → 0 the chaotic surface becomes a regular sine and we obtain the
formula:

Pe =

∞∫
−∞

dω

2π∫
0

dΩ cos θ
e2ω4h2m

4c3
δ (ω − γvF ) =

πe2 (γvF )4 h2m
c3

. (16)

The obtained formulae establish a relationship between the radiation spectral density
dP

dω
and the correlator of ripples. This can be used to investigate of the ripples’ morphologies.

For ripples period L = 50 nm, maximum amplitude hm = 1 nm and area of graphene
membrane S = 10−4 cm2, we obtain power of electromagnetic radiation of order several mW.

3. Gauge mechanism

In this part of our work, we consider the synthetic gauge field effect on electromagnetic
wave emission. The nature of these fields is following. Electronic states in flat graphene can
be written by means of the tight binding model equations, which due to linear spectra in Dirac
point vicinity take form of Dirac – Weyl equations. The graphene membrane bending modifies
the electronic states spectra. Moreover, this influence can be represented by introducing vector
potential, rotor of which people called synthetic magnetic field [1]. In fact, these “fields” create
new energy levels, similar to Landau levels, and mimics Ahoronov – Bohm effect [1]. The
elasticity theory gives the following relationships between the out-of-plane displacement h(y, z)
and the gauge field vector potential components [12]:

Ay = −β
a

dh

dx

dh

dy
, Ax =

1

2

β

a

((
dh

dx

)2

−
(
dh

dy

)2
)
, Hz =

∂Ay
∂x
− ∂Ax

∂y
. (17)

Here, a is the lattice constant and β is a dimensionless parameter. It now becomes apparent
that gauge fields in graphene occur only when the structure is inhomogeneous in both in-plane
directions. In other words, graphene sheet has to have “humps and hollows” in its structure.

Here, we consider the case of regular undulation in both directions:

h (x, y) = hm sin γx sin γy. (18)

Substitution of h (x, y) from (18) into (17) gives an expression for the synthetic magnetic
field:

Hz = H0 sin (2yγ) (−2 + cos (2xγ)) , (19)

where the amplitude is determined as follows:

H0 =
h2mγ

3

2a
. (20)

The synthetic field H can be expressed in terms of the “real” field H in the following
manner:

H =
ch̄

e
H. (21)
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After this link has been made, we can modify the equations from [11] and define the
undulator-like trajectory for “massless” electrons in graphene:

E
v2F

d2x

dt2
= −edy

dt
H cos γx,

E
v2F

d2y

dt2
= e

dx

dt
H cos γx,

(22)

where E is the electron energy. The solution reads:

cos γx = cosh γy − 1

k
sinh γy. (23)

The resulting trajectory differs slightly from a simple sine function. Assuming that
yγ � 1, we can simplify the last formula:

y = ym sin2 γx

2
, (24)

where the deviation amplitude is:

ym =
2k

γ
=

2vF h̄h
2
mγ

aE
. (25)

The estimations show the maximum amplitude of in-plane deviations to be much smaller
than the mean period for the ripples and have values similar to ripples’ amplitudes. This makes
us think that electrons actually move along complex, helix-like trajectory.

These formulae show that gauge fields in graphene have a real influence on an electron’s
trajectory and induce in-plane oscillations. The magnitude of the effect depends upon sample
parameters and free electron energy.

Now, with (22), we are able to derive the formula for power. Substituting the expression
for an oscillating electron’s velocity vy = vF ẏ into (17), we obtain the formula for the radiation
vector potential:

Ay =
e eikr

cr

∫
(ymγ) vF sin (γvF t) e

iωt. (26)

Thus, we have the expression for the radiation power spectral density for the case of
harrmonic ripple structure:

P (ω, θ) =
1

4π

∫
dω

∫
dθ

e2v2Fω
2

2c3
(
y2m γ2

)
cos θ (δ (ω + γvF ) + δ (ω − γvF )) . (27)

Finally, integrating the expression and substituting for ym, we derive the formula for the
electromagnetic radiation power in terms of the sample parameters:

P = 2π2 e
2v4F
c3

h2m
L4

((
vF h̄/a

E

)
(hmγ)

)2

. (28)

To understand the role of gauge fields in whole picture of the radiation process, it will
be useful to compare power formula obtained in geometric model with (28)

Pgauge
Pgeom

=
1

8π3

(
vF h̄

aE
hm
L

)2

. (29)

This ratio would be of order of unity for the same parameters of graphene structure at
ε = 0.1 eV energies.

Calculations for the case of the random function h(x, y) are carried out similarly to the
case of the geometric mechanism but with one important distinction: a nonlinear relation (17)
between the narrow band spectrum random function h(x, y) and the gauge field A induces the
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appearance of a central radiation peak of. Really, let us determine the quadratic relation between
the random functions:

g(t) = (h(t)) . (30)
When g(h) = ah2, the correlator 〈g(t)g(0)〉 can be expressed as follows [11]:

〈g (t) g (0)〉 = a2σ4
[
1 + 2 〈h (t)h (0)〉2

]
, (31)

where σ is the h(t) process variance σ =
〈
h2
〉
.

We do not aware about existing experimental data or theoretical results regarding actual
correlation function’s 〈h (x)h (x′)〉 form. All we can do is estimate dispersion and correlation
radius. A reasonable choice would be the simplest form that does not lead to any disagreement.
We choose the exponential decay for geometry model, i.e. Lorentz-shaped energy spectra. In
case of gauge fields, the exponential correlator yields singularity: it corresponds to infinitely
large gradients of random function [14]. Thus, we choose the Gaussian correlator form:

K (x) =
〈h2〉α3

8π
√
π
e−x

2α2/4 cos (γx) . (32)

Substituting (32) in (31) we have

〈g (t) g (0)〉 = b2σ4

[
1 + 2

(
〈h2〉α3

8π
√
π

)2

e−2(vF t)
2α2/4 cos2 (γvF t)

]
. (33)

Taking into account formula (17), we obtain for the gauge field random process:

∞∫
−∞

dxeikxK2 (x) =

b2σ4

(
〈h2〉α3

8π
√
π

)2
∞∫
0

dxe−(α2x2/2) [cos (kx) + [cos (k + 2γ)x+ cos (k − 2γ)x]]. (34)

Carrying out the integration, we obtain the spectrum comprising the central and high-
frequency components:

P ∝ P0 + b2σ4 〈h2〉
2
α5k3

16π2
√
π

[
e−k

2/α2

+
[
e−(k+2γ)2/α2

+ e−(k−2γ)
2/α2
]]
. (35)

The pre-exponent term k3 in (35) accounts for differentiation in (17) formula. On the Fig. 1 we
presented the spectral distribution of a radiation power, divided by k3.

Thus, the quadratic relation between velocity and the Monge variable leads to a rise of
the electromagnetic radiation central peak.

4. Conclusion

We have considered here the impact of ripples in monolayer graphene on its electro-
magnetic properties. Two mechanisms of undulator-like radiation are considered: a geometric
mechanism, directly connected with the presence of undulations; and the pseudo gauge field
effect, which makes the trajectory become curved in the base plane. The electromagnetic radia-
tion was actually calculated using the standard retarded potential. For both of mechanisms, two
cases of regular and random structures are analyzed. The nonlinear relation between the random
height function h(x, y) and the gauge field A is shown to create a central radiation frequency
distribution peak. Our results can be used for study of ripples morphology and for generation
of terahertz radiation.
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FIG. 1. Central and side radiation peaks in gauge model
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