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We review the main results of our recent work on singular perturbations supported on bounded hypersurfaces. Our

approach consists in using the theory of self-adjoint extensions of restrictions to build self-adjoint realizations of the

n-dimensional Laplacian with linear boundary conditions on (a relatively open part of) a compact hypersurface. This

allows one to obtain Krĕın-like resolvent formulae where the reference operator coincides with the free selfadjoint

Laplacian in Rn, providing in this way with an useful tool for the scattering problem from a hypersurface. As

examples of this construction, we consider the cases of Dirichlet and Neumann boundary conditions assigned on

an unclosed hypersurface.
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1. Introduction

In a recent paper [1], the complete family of self-adjoint elliptic operators with interface
conditions assigned on a hypersurface in Rn was realized. Derived from the abstract theory
of selfadjoint extensions of restrictions developed in [2–5], our approach leads to Krĕın type
formulae for the resolvent difference between the perturbed operator and the corresponding free
selfadjoint model with domain H2(Rn). This is a relevant point for the interface perspective of
studying the scattering problem. Moreover, while some sub-families of extensions (mainly those
concerned with the δ or δ′ interface conditions) have been largely investigated by using quadratic
form or quasi-boundary triple techniques (see [6–25]), for others models presented in [1], and
in particular those concerned with local interface conditions of Dirichlet and Neumann type, a
rigorous analysis was not previously given.

The aim of this report is to provide a shortened introduction to this analysis, giving the
essential information about the construction of our models in the case of singular perturbations
of the n-dimensional Laplacian with interface conditions. In this framework, we recall the basic
results needed to construct the whole family of singular perturbations and then focus on the
explicit examples of ”global” and ”local” Dirichlet- and Neumann-type boundary conditions.
For the detailed proofs, we refer to [1].

After recalling in Section 1 the main properties of the trace maps and the layer operators
related to the surface Γ, we introduce our model in Section 2 through the symmetric operator:

∆◦ = ∆ �
{
u ∈ H2(Rn) : u|Γ = (ν · ∇)u|Γ = 0

}
, (1)

where ν denotes the exterior unit normal on Γ. The self-adjoint realizations of the Laplacian with
boundary conditions involving linear relations between lateral traces on Γ, or on a relatively open
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part Σ ⊂ Γ, are defined as selfadjoint extensions of ∆◦. The general construction provided in
[2–5] allows us to define these extensions as singular perturbations of the free Laplacian operator
defined by dom (∆) = H2(Rn). In this framework, the perturbed operators are parametrized
through couples (Π,Θ), where Π is an orthogonal projector on the Hilbert trace space H3/2(Γ)⊕
H1/2(Γ) and Θ is a self-adjoint operator in the Hilbert space given by the range of Π. In
Theorem 3.1 and Corollary 3.5, we define this family of extensions in terms (Π,Θ) and give the
corresponding Krĕın-like resolvent formulae, while their spectral properties and the conditions
for the wave operators existence and completeness are given in Theorem 3.3. The connection
between this abstract parametrization and explicit boundary (or interface) conditions is the main
issue concerned with this approach. In Section 3 we consider this point in the particular cases
of the Dirichlet and Neumann conditions on Γ and on Σ ⊂ Γ.

2. Preliminaries

Let Ω ⊂ Rn be open and suppose its boundary Γ = ∂Ω is a smooth (n− 1)-dimensional
compact manifold. In this case, Hs (Ω), s ∈ R, is defined by Hs (Ω) := {u|Ω : u ∈ Hs (Rn)},
u|Ω denoting the restriction of u to Ω and Hs(Rn) denoting the usual scale of Hilbert-Sobolev
spaces on Rn defined by Fourier transform. The Sobolev spaces of L2-functions on Γ, next
denoted with Hs (Γ), are defined by using an atlas of Γ and the Sobolev space on flat, open,
bounded, (n − 1)-dimensional domains (see e.g. [26, Chapter 1], [27, Chapter 3]); H−s (Γ)
identifies with the dual space of Hs (Γ); 〈·, ·〉−s,s denotes the H−s-Hs duality. Considering the
Riemannian structure inherited from Rn, the space Hs(Γ) identifies with dom((−∆Γ)s/2) with
respect to the scalar product:

〈φ, ϕ〉Hs(Γ) := 〈Λsφ,Λsϕ〉L2(Γ) , Λ := (−∆Γ + 1)1/2 , (2)

being ∆Γ the self-adjoint operator in L2(Γ) corresponding to the Laplace-Beltrami operator on
the complete Riemannian manifold Γ (see e.g. [26, Remark 7.6, Chapter 1]). According to
this definition, Λr is self-adjoint in Hs(Γ) with domain Hs+r(Γ) and acts as a unitary map
Λr : Hs (Γ)→ Hs−r (Γ).

For a bounded open domain Ω, we set: Ω− = Ω and Ω+ = Rn\Ω, while ν denotes the
outward normal vector on Γ = ∂Ω. The domain of the maximal Laplacian in L2(Ω±) is next
denoted by:

L2
∆ (Ω±) :=

{
u ∈ L2 (Ω) : ∆u ∈ L2 (Ω±)

}
(3)

and we define:
L2

∆ (Rn\Γ) := L2
∆ (Ω−)⊕ L2

∆ (Ω+) . (4)

We also pose:
Hs (Rn\Γ) := Hs (Ω−)⊕Hs (Ω+) . (5)

The one-sided, zero-order, trace operators γ±0 act on a smooth function u ∈ C∞
(
Ω±
)

as
γ±0 u = u|Γ, where ϕ|Γ is the restriction to Γ. These maps uniquely extend to bounded linear
operators (see e.g. [27, Theorem 3.37]):

γ±0 ∈ B(Hs (Ω±) , Hs−1/2 (Γ)) , s >
1

2
. (6)

The one-sided first-order trace operators are given by γ±1 u := ν · γ±0 (∇u); from (6) there
follows:

γ±1 ∈ B(Hs (Ω±) , Hs− 3
2 (Γ)) , s >

3

2
. (7)
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Using these maps, the two-sided bounded trace operators are defined according to:

γ0 : Hs (Rn\Γ)→ Hs− 1
2 (Γ) , γ0(u− ⊕ u+) :=

1

2
(γ+

0 u+ + γ−0 u−) , (8)

γ1 : Hs (Rn\Γ)→ Hs− 3
2 (Γ) , γ1(u− ⊕ u+) :=

1

2
(γ+

1 u+ + γ−1 u−) , (9)

while the corresponding jumps are:

[γ0] : Hs (Rn\Γ)→ Hs− 1
2 (Γ) , [γ0](u− ⊕ u+) := γ+

0 u+ − γ−0 u− , (10)

[γ1] : Hs (Rn\Γ)→ Hs− 3
2 (Γ) , [γ1](u− ⊕ u+) := γ+

1 u+ − γ−1 u− . (11)

By [26, Theorem 6.5, Section 6, Chapter 2], the maps γ±0 and γ±1 can be further extended to:

γ̂±0 ∈ B(L2
∆ (Ω±) , H−1/2 (Γ)), (12)

and
γ̂±1 ∈ B(L2

∆ (Ω±) , H−
3
2 (Γ)) , (13)

thus producing the extended jumps maps:

[γ̂0] : L2
∆ (Rn\Γ)→ H−

1
2 (Γ) , [γ̂0](u− ⊕ u+) := γ̂+

0 u+ − γ̂−0 u− , (14)

[γ̂1] : L2
∆ (Rn\Γ)→ H−

3
2 (Γ) , [γ̂1](u− ⊕ u+) := γ̂+

1 u+ − γ̂−1 u− . (15)

In what follows, the n-dimensional free Laplacian is defined by dom(∆) = H2 (Rn). This is
a selfadjoint and negatively-defined operator with: σ (∆) = σac (∆) = (−∞, 0], and for all
z ∈ C\R− it follows that:

(−∆ + z)−1 ∈ B
(
Hs (Rn) , Hs+2 (Rn)

)
(16)

Given an open and bounded smooth domain Ω, the single and double-layer operators related to
(−∆ + z)−1 and to the surface Γ = ∂Ω are defined for any z ∈ C\R− by:

〈SLzφ, u〉L2(Rn) := 〈φ, γ0 (−∆ + z̄)−1 u〉−3/2,3/2 , (17)

〈DLzϕ, u〉L2(Rn) := 〈ϕ, γ1 (−∆ + z̄)−1 u〉−1/2,1/2 . (18)

Due to the mapping properties (6) – (7) and (16), these relation define bounded maps on
H−3/2 (Γ) and H−1/2 (Γ), provided that z ∈ C\R−; we have:

SLz ∈ B
(
H−3/2 (Γ) , L2 (Rn)

)
, DLz ∈ B

(
H−1/2 (Γ) , L2 (Rn)

)
. (19)

The integral kernel of (−∆ + z)−1, z ∈ C\R−, is given by:

Kz (x− y) =
1

2π

( √
z

2π ‖x− y‖

)n/2−1

Kn/2−1

(√
z ‖x− y‖

)
, Re

√
z > 0 ,

where Kα denotes the modified Bessel functions of second kind of order α. This is a smooth
function for x 6= y and the relations (17) and (18) give:

SLzφ(x) =

∫
Γ

Kz (x− y) φ(y) dσΓ(y) , x /∈ Γ and φ ∈ L2(Γ) , (20)

and

DLzϕ(x) =

∫
Γ

ν(y) · ∇Kz (x− y) ϕ(y) dσΓ(y) , x /∈ Γ and ϕ ∈ L2(Γ) , (21)

where σΓ denotes the surface measure. In particular, one has (see [27, eqs. (6.18) and (6.19)]):

∀x /∈ Γ , ∆SLzφ(x) = z SLzφ(x) , ∆DLzϕ(x) = z DLzϕ(x) , (22)



318 A. Mantile, A. Posilicano

from which, we obtain

SLz ∈ B
(
H−3/2 (Γ) , L2

∆ (Rn\Γ)
)
, DLz ∈ B

(
H−1/2 (Rn\Γ) , L2

∆ (Rn\Γ)
)

; (23)

in particular, the representation:

L2
∆ (Rn\Γ) =

{
u = u0 + SLzφ+DLzϕ , u0 ∈ H2 (Rn) , φ⊕ ϕ ∈ H−3/2 (Γ)⊕H−1/2 (Γ)

}
,

(24)
holds for any z ∈ C\R− (see [1, Lemma 4.2]). In the following, we choose z = 1 and set

SL := SL1 , DL := DL1 . (25)

3. Singular perturbations supported on hypersurfaces.

Let Ω ⊂ Rn, be open and bounded with smooth boundary Γ and denote:

γ : H2 (Rn)→ H3/2(Γ)⊕H1/2(Γ) , γu := γ0u⊕ γ1u . (26)

The singular perturbations of the free Laplacian supported on Γ are next defined as the selfad-
joint extensions of the closed symmetric operator:

∆◦ := ∆ � ker (γ) , (27)

where

ker (γ) = H2
0 (Ω+)⊕H2

0 (Ω−) , H2
0 (Ω±) :=

{
u± ∈ H2 (Ω±) : γ±0 u± = γ±1 u± = 0

}
. (28)

The corresponding adjoint coincides with the maximal Laplacian in Rn\Γ, i.e.

(∆◦)∗ = ∆ � L2
∆ (Ω+)⊕ L2

∆ (Ω−) . (29)

Using the alternative representation given in (24), we have:

(∆◦)∗u = ∆u0 + z (SLzφ+DLzϕ) . (30)

Moreover, (∆◦)∗ and the distributional Laplacian are related by the identity (see e.g. in [28,
Theorem 3.1]):

(∆◦)∗u = ∆u− [γ̂1]u δΓ − [γ̂0]u ∂νδΓ . (31)
Here, for f ∈ H−s (Γ), fδΓ and f∂νδΓ are the distributions supported on Γ defined by:

(f δΓ, χ) =
〈
f̄ , γ0χ

〉
−s,s , and (f ∂νδΓ, χ) = −

〈
f̄ , γ1χ

〉
−s,s . (32)

In particular, taking f = 1, for any χ ∈ C∞0 (Ω) one has:

(δΓ, χ) =

∫
Γ

χ (x) dσΓ (x) , (33)

and

(∂νδΓ, χ) = −
∫

Γ

∂νχ (x) dσΓ (x) . (34)

Let us recall that γ belongs to B
(
H2 (Rn) , H3/2(Γ)⊕H1/2(Γ)

)
, is surjective and has a kernel

dense in L2 (Rn) [1, Lemma 4.1]. Hence, the approach developed in [2–5] applies to our
framework and allows us to construct all self-adjoint extensions of ∆◦. For generic elliptic
selfadjoint operators with smooth coefficients, this strategy has been implemented in [1] to
which we refer for the detailed proofs. The auxiliary operators Gz are next defined by the
duality:

〈Gzξ, u〉L2(Rn) =
〈
ξ, γ (−∆ + z)−1 u

〉
Γ
, ξ ∈ H−3/2(Γ)⊕H−1/2(Γ) , u ∈ L2 (Rn) . (35)

for all z ∈ C\R−. From (17) – (18) it easily follows that:

Gz ∈ B
(
H−3/2 (Γ)⊕H−1/2 (Γ) , L2 (Rn)

)
, Gz (φ⊕ ϕ) = SLzφ+DLzϕ . (36)
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In what follows, we set:

G := G1 , G (φ⊕ ϕ) = SLφ+DLϕ . (37)

With this notation, the adjoint (∆◦)∗ is rephrased as:

dom ((∆◦)∗) =
{
u = u0 +G (φ⊕ ϕ) , u0 ∈ H2 (Rn) , φ⊕ ϕ ∈ H−3/2 (Γ)⊕H−1/2 (Γ)

}
,
(38)

(∆0)∗ = ∆u0 +G (φ⊕ ϕ) . (39)

We introduce the map: Mz = γ (G−Gz) whose action on H−3/2 (Γ)⊕H−1/2 (Γ) is explicitly
given by:

Mz :=

(
γ0 (SL− SLz) γ0 (DL−DLz)
γ1 (SL− SLz) γ1 (DL−DLz)

)
. (40)

From [1, eq. (2.6)], it results that:

Mz ∈ B
(
H−3/2 (Γ)⊕H−1/2 (Γ) , H3/2 (Γ)⊕H1/2 (Γ)

)
. (41)

In what follows,
Π : H3/2 (Γ)⊕H1/2 (Γ)→ H3/2 (Γ)⊕H1/2 (Γ) , (42)

denotes an orthogonal projector on the Hilbert space H3/2 (Γ)⊕H1/2 (Γ),

Π′ : H−3/2 (Γ)⊕H−1/2 (Γ)→ H−3/2 (Γ)⊕H−1/2 (Γ) , (43)

is the corresponding dual projector and

Θ : dom (Θ) ⊆ ran (Π)′ → ran (Π) , (44)

is selfadjoint in the sense of the duality, i.e.: Θ = Θ′. In this framework, the selfadjoint
extensions of ∆◦ are parametrized by the couples (Π,Θ). In particular, adapting [1, Theorem 2.1
and Lemma 4.9] to the present framework, there follows:

Theorem 3.1. Let Π : H3/2 (Γ)⊕H1/2 (Γ)→ H3/2 (Γ)⊕H1/2 (Γ) be an orthogonal projector
and Θ : dom (Θ) ⊆ ran (Π)′ → ran (Π) selfadjoint. Any self-adjoint extension of ∆0 is of the
kind ∆Π,Θ,

∆Π,Θ := (45)

(∆◦)∗ �
{
u = u0 + SLφ+DLϕ , u0 ∈ H2 (Rn) , φ⊕ ϕ ∈ dom (Θ) : Πγu0 = Θ (φ⊕ ϕ)

}
.

The set:
ZΠ,Θ := {z ∈ C\R− : Θ + ΠMzΠ

′ has a bounded inverse}, (46)

is not void; in particular, C\R ⊆ ZΠ,Θ ⊆ res(∆Π,Θ) and for any z ∈ ZΠ,Θ the resolvent of
∆Π,Θ is given by the Krĕin type formula:

(−∆Π,Θ + z)−1 u = (−∆ + z)−1 u+GzΠ
′ (Θ + ΠMzΠ

′)
−1

Πγ (−∆ + z)−1 u , (47)

where Gz and Mz are defined in (36) and (40) respectively.

Remark 3.2. Let us notice that the Π′ appearing in (47) act as the inclusion map Π′ : ran (Π)′ →
H−3/2(Γ)⊕H−1/2(Γ). This means that one does not need to know Π′ explicitly: it suffices to
know the subspace ran (Π′) = ran (Π)′.

The next result gives information on the spectrum and scattering of ∆Π,Θ. For the proof
of such results, we refer to [1, Lemma 4.9, Corollary 4.12 and Remark 4.14]. Let us remark that
hypothesis (49) below typically holds in the case of global boundary conditions, i.e. assigned on
whole boundary Γ, while hypothesis (50) typically holds in the case of local ones, i.e. assigned
on an open part Σ ⊂ Γ.
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Theorem 3.3. 1) Suppose:

dom(Θ) ⊆ Hs1(Γ)⊕Hs2(Γ) , s1 > −
3

2
, s2 > −

1

2
. (48)

Then,
σess(∆Π,Θ) = (−∞, 0] .

2) Suppose either:
dom(Θ) ⊆ H

1
2 (Γ)⊕H

3
2 (Γ) , (49)

or
dom (fΘ̃) ⊆ H5/2(Γ)⊕H

3
2 (Γ) , (50)

holds, where fΘ̃ is sesquilinear form associated to the self-adjoint operator in ran(Π) defined
by Θ̃ := Θ(Λ3 ⊕ Λ). Then:

σac(∆Π,Θ) = (−∞, 0] , (51)
and the wave operators:

W± := s- lim
t→±∞

e−it∆Π,Θeit∆ , W± := s- lim
t→±∞

e−it∆eit∆Π,ΘPac

exist and are complete, i.e. the limits exists everywhere w.r.t. strong convergence, ran(W±) =
L2(Rn)ac, ran(W±) = L2(Rn) and W ∗

± = W±, where L2(Rn)ac denotes the absolutely con-
tinuous subspace of L2(Rn) with respect to ∆Π,Θ and Pac is the corresponding orthogonal
projector.

Remark 3.4. Let us notice that the apparent discrepancy between the indices in the two con-
ditions (49) and (50) is due to the fact that the first one applies to operators acting between
the dual pair (ran(Π)′, ran(Π)), whereas the second one regards sesquilinear forms in the space
ran(Π). When written in terms of Θ̃, condition (49) reads as dom(Θ̃) ⊆ H

7
2 (Γ)⊕H 5

2 (Γ).

Under hypothesis (49), it is possible to introduce an alternative description of ∆Π,Θ

(see [1, Corollary 4.8]):

Corollary 3.5. Let ∆Π,Θ be defined according to Theorem 3.1 with Θ fulfilling (49). Define

BΘ := Θ + ΠγGΠ′ : dom(Θ) ⊆ ran(Π′)→ ran(Π) . (52)

Then:
dom(∆Π,Θ) = {u ∈ H2(Rn\Γ) : [γ]u ∈ dom(Θ) , Πγu = BΘ[γ]u} , (53)

where [γ]u := (−[γ1]u)⊕ ([γ0]u), and

(−∆Π,Θ + z)−1 − (−∆ + z)−1 = GzΠ
′(BΘ − ΠγGzΠ

′)−1Πγ(−∆ + z)−1 , z ∈ ZΠ,Θ . (54)

4. Dirichlet and Neumann boundary conditions on Σ ⊆ Γ

In this section, we apply our results to self-adjoint adjoint realizations of the Laplacian
with Dirichlet and Neumann type boundary conditions on Σ ⊆ Γ. For proofs and more details
on such realizations, we refer to [1, Sections 5 – 6]. In particular, by the results given there,
hypothesis (49) or (50) hold for the models considered here, namely: (49) is satisfied in the
case of ”global” boundary conditions (i.e. assigned on the whole Γ), while (50) holds in the
case of ”local” boundary conditions (i.e. assigned on Σ ⊂ Γ).

In the following, given X ⊂ Γ closed, we use the definition:

Hs
X(Γ) := {φ ∈ Hs(Γ) : supp (φ) ⊆ X} . (55)

Given Σ ⊂ Γ relatively open with a Lipschitz boundary, we denote by ΠΣ the orthogonal
projector in the Hilbert space Hs(Γ), s > 0, such that ran(ΠΣ) = Hs

Σc(Γ)⊥. One has ran (Π′Σ) =
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H−s
Σ

(Γ). Moreover, we use the identifications Hs
Σc(Γ)⊥ ' Hs(Σ) and H−s

Σ
(Γ) ' Hs(Σ)′. In

particular, by the former, the orthogonal projection ΠΣ can be identified with the restriction map
RΣ : Hs(Γ)→ Hs(Σ), RΣφ := φ|Σ.

4.1. Dirichlet boundary conditions

The self-adjoint extension ∆D corresponding to Dirichlet boundary conditions on the
whole Γ is given by the direct sum ∆D = ∆D

Ω+
⊕∆D

Ω−
, where

∆D
Ω± := ∆ � {u ∈ H2(Ω±) : γ±0 u = 0} . (56)

Since:
dom

(
∆D

Ω+

)
⊕ dom

(
∆D

Ω−

)
= {u ∈ H2(Rn\Γ) : [γ0]u = 0 , γ0u = 0} , (57)

with the parametrization introduced in Corollary 3.5, this corresponds to the choice Π(φ⊕ϕ) :=
φ⊕ 0, and BΘ = 0. Hence, from (31) we get:

∆Du = ∆u− [γ1]u δΓ .

Moreover, using the identity: (γ0SLz)
−1 = P−z − P+

z , where P±z denote the Dirichlet-to-
Neumann operators for Ω± respectively (see e.g. [1, equation (5.4)]), one has, for any z ∈ C\R−,

(−∆D + z)−1 = (−∆ + z)−1 + SLz(P
+
z − P−z )γ0 (−∆ + z)−1 . (58)

Now, we turn to Dirichlet boundary conditions supported on a relatively open part Σ ⊂ Γ
with Lipschitz boundary. We denote by ∆D,Σ the self-adjoint extension corresponding to the
orthogonal projector defined by Π(φ ⊕ ϕ) := (ΠΣφ) ⊕ 0 ≡ (φ|Σ) ⊕ 0 and to the self-adjoint
operator Θ(φ⊕ ϕ) := (−ΘD,Σφ)⊕ 0:

ΘD,Σ : dom(ΘD,Σ) ⊆ H
−3/2

Σ
(Γ)→ H3/2(Σ) , ΘD,Σφ := (γ0SLφ)|Σ , (59)

dom(ΘD,Σ) := {φ ∈ H−1/2

Σ
(Γ) : (γ0SLφ)|Σ ∈ H3/2(Σ)} . (60)

By Theorem 3.1 and (31), one has:

∆D,Σu = ∆u− [γ̂1]u δΣ , (61)

dom(∆D,Σ) = {u ∈ H1(Rn) ∩ L2
∆(Rn\Γ) : [γ̂1]u ∈ dom(ΘD,Σ) , (γ0u)|Σ = 0} , (62)

⊆ {u ∈ H1(Rn) ∩ L2
∆(Rn\Γ) : (γ−0 u)|Σ = (γ+

0 u)|Σ = 0 , ([γ̂1]u)|Σc
= 0} (63)

and
(−∆D,Σ + z)−1 = (−∆ + z)−1 − SLzΠ′Σ (RΣγ0SLzΠ

′
Σ)
−1
RΣγ0 (−∆ + z)−1 . (64)

4.2. Neumann boundary conditions

Let us consider the self-adjoint extension corresponding to Neumann boundary condi-
tions on the whole Γ; this is given by the direct sum ∆N = ∆N

Ω+
⊕∆N

Ω−
, where:

∆N
Ω± := ∆ � {u ∈ H2(Ω±) : γ±1 u = 0} . (65)

Since:
dom

(
∆N

Ω+

)
⊕ dom

(
∆N

Ω−

)
= {u ∈ H2(Rn\Γ) : [γ1]u = γ1u = 0} , (66)

with the parametrization introduced in Corollary 3.5, this corresponds to the choice Π(φ⊕ϕ) :=
0⊕ ϕ, and BΘ = 0. From (31), it follows that:

∆Nu = ∆u− [γ0]u ν ·∇δΓ ,

and, denoting with Q±z the Neumann-to-Dirichlet operators for Ω± respectively, the relation
(γ1DLz)

−1 = Q+
z −Q−z , (see e.g. [1, equation (5.7)]) yields, for z ∈ C\R−,

(−∆N + z)−1 = (−∆ + z)−1 +DLz(Q
+
z −Q−z )γ1 (−∆ + z)−1 . (67)
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Next, we turn to Neumann boundary conditions supported on a relatively open part Σ ⊂ Γ
with Lipschitz boundary. We denote by ∆N,Σ the self-adjoint extension corresponding to the
orthogonal projector defined by Π(φ ⊕ ϕ) := 0 ⊕ (ΠΣϕ) ≡ 0 ⊕ (ϕ|Σ) and to the self-adjoint
operator Θ(φ⊕ ϕ) := 0⊕ (−ΘN,Σϕ):

ΘN,Σ : dom(ΘN,Σ) ⊆ H
−1/2

Σ
(Γ)→ H1/2(Σ) , ΘN,Σϕ = (γ̂1DLϕ)|Σ , (68)

dom(ΘN,Σ) := {ϕ ∈ H1/2

Σ
(Γ) : (γ̂1DLϕ)|Σ ∈ H1/2(Σ)} . (69)

By Theorem 3.1 and (31), we have:

∆N,Σu = ∆u− [γ̂0]u ν ·∇δΣ , (70)

dom(∆N,Σ) = {u ∈ H1(Rn\Σ) ∩ L2
∆(Rn\Γ) : [γ̂0]u ∈ dom(ΘN,Σ) , [γ̂1]u = 0 , (γ̂1u)|Σ = 0}

(71)
⊆ {u ∈ H1(Rn\Σ) ∩ L2

∆(Rn\Γ) : (γ̂−1 u)|Σ = (γ̂+
1 u)|Σ = 0 , ([γ̂1]u)|Σc

= 0} (72)

and

(−∆N,Σ + z)−1 = (−∆ + z)−1 −DLzΠ′Σ (RΣγ̂1DLzΠ
′
Σ)
−1
RΣγ1 (−∆ + z)−1 . (73)
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