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We consider a model of point-like interaction between electrons and bosons in a cavity. The electrons are relativistic

and are described by a Dirac operator on a bounded interval while the bosons are treated by second quantization.

The model fits into the extension theory of symmetric operators. Our main technical tool to handle the model

is the so-called boundary triplet approach to extensions of symmetric operators. The approach allows explicit

computation of the Weyl function.
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1. Introduction

The problem of electro-magnetic field’s influence on an electron’s spectral and transport
properties has attracted great interest from physicists due to its importance both from funda-
mental and engineering viewpoints (see, e.g., [1] and references therein). It is important to find
solvable models to describe this phenomenon. We present a simple model in the framework of
extension theory of symmetric operators. The electro-magnetic field can be described classically
or it can be quantized. Using a classical description, such a model was proposed in in [2]. The
case of quantized electro-magnetic field is more complicated. As an example of this type of
model, we can mention [3], [4]. In the present paper, we suggest a model of point-like inter-
action between a relativistic fermion (the Dirac operator) and bosons (infinite matrix operator
in the Fock space). We use the boundary triplet approach to describe extensions of symmetric
operators (see, e.g., [8–13,15]).

In the following, we consider a particular example of point interaction for a quantum
system {D, D0} with a quantum reservoir {T, T}, where D0 denotes the self-adjoint Dirac
operator defined in the Hilbert space D = L2(∆,C2), where ∆ = (a; b), and T is the so-called
boson operator defined in the Hilbert space T = l2(N0). Before introducing the operators, let us
slightly specify the approach.

At first, we consider a system consisting of a quantum system {D, D0} and a quantum
reservoir {T, T}. This system’s composed Hamiltonian is given by the self-adjoint operator:

L0 := D0 ⊗ IT + ID ⊗ T,

which acts in L := D ⊗ T. In order to describe the interaction, we restrict the operator D0

to a densely defined closed symmetric operator D and consider the densely defined symmetric
operator:

L := D ⊗ IT + ID ⊗ T, (1.1)
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with dom (L) = dom (D)⊗ dom (T ), where:

(Df)(x) := −ic d
dx
⊗ σ1f(x) +

c2

2
⊗ σ3f(x), x ∈ ∆, (1.2)

f ∈ dom (D) := W 1,2
0 (∆,C2) := {f ∈ W 1,2(∆,C2) : f(a) = f(b) = 0}.

Here,

σ1 :=

(
0 1
1 0

)
and σ3 :=

(
1 0
0 −1

)
.

T denotes a boson operator in the Hilbert space T = l2(N0) such that:

T ~ξ = T{ξk}k∈N0 = {kξk}k∈N0 ,

~ξ = {ξk}k∈N0 ∈ dom (T ) := {{ξk}k∈N0 ∈ l2(N0) : {kξk}k∈N0 ∈ l2(N0)}.
(1.3)

To construct self-adjoint extensions we use the boundary triplet approach. Notice that there
are extensions which do not correspond to any interaction between both subsystems. From the
physical point of view it is very important to obtain those extensions which realistically describe
point interactions.

2. Preliminaries

2.1. Linear relations

A linear relation Θ in H is a closed linear subspace of H ⊕ H. The set of all linear
relations in H is denoted by C̃(H). We also denote by C(H) the set of all closed linear (not
necessarily densely defined) operators in H. Identifying each operator T ∈ C(H) with its graph
gr (T ), we regard C(H) as a subset of C̃(H).

The role of the set C̃(H) in extension theory becomes apparent from Proposition 2.3.
However, it’s role in the operator theory is substantially motivated by the following circum-
stances: in contrast to C(H), the set C̃(H) is closed with respect to taking inverse and adjoint
relations Θ−1 and Θ∗, respectively. The latter is given by: Θ−1 = {{g, f} : {f, g} ∈ Θ} and

Θ∗ =

{(
k
k′

)
: (h′, k) = (h, k′) for all

(
h
h′

)
∈ Θ

}
.

A linear relation Θ is called symmetric if Θ ⊂ Θ∗ and self-adjoint if Θ = Θ∗.

2.2. Boundary triplets and proper extensions

Let us briefly recall some basic facts regarding boundary triplets. Let A be a densely
defined closed symmetric operator with equal deficiency indices n±(A) := dim(N±i), Nz :=
ker (A∗ − z), z ∈ C±, acting on some separable Hilbert space H.

Definition 2.1.
(i) A closed extension Ã of A is called proper if dom (A) ⊂ dom (Ã) ⊂ dom (A∗).
(ii) Two proper extensions Ã′, Ã are called disjoint if dom (Ã′) ∩ dom (Ã) = dom (A) and
transversal if in addition dom (Ã′) + dom (Ã) = dom (A∗).

We denote by ExtA the set of all proper extensions of A completed by the non-proper
extensions A and A∗. For instance, any self-adjoint or maximally dissipative (accumulative)
extension is proper.
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Definition 2.2 ( [11]). A triplet Π = {H,Γ0,Γ1}, where H is an auxiliary Hilbert space and
Γ0,Γ1 : dom (A∗)→ H are linear mappings, is called a boundary triplet for A∗ if the “abstract
Green’s identity”,

(A∗f, g)− (f, A∗g) = (Γ1f,Γ0g)− (Γ0f,Γ1g), f, g ∈ dom (S∗), (2.1)

is satisfied and the mapping Γ := (Γ0,Γ1)> : dom (A∗) → H⊕H is surjective, i.e. ran (Γ) =
H⊕H. ♦

A boundary triplet Π = {H,Γ0,Γ1} for A∗ always exists whenever n+(A) = n−(A).
Note also that n±(A) = dim(H) and ker (Γ0) ∩ ker (Γ1) = dom (A).

With any boundary triplet Π one associates two canonical self-adjoint extensions Aj :=
S∗ � ker (Γj), j ∈ {0, 1}. Conversely, for any self-adjoint extension A0 = S∗0 ∈ ExtS there
exists a (non-unique) boundary triplet Π = {H,Γ0,Γ1} for A∗ such that A0 := A∗ � ker (Γ0).

Using the concept of boundary triplets, one can parametrize all proper extensions of A
in the following way.

Proposition 2.3 ( [9,13]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗. Then the mapping:

ExtA 3 Ã→ Γdom (Ã) = {(Γ0f,Γ1f)> : f ∈ dom (Ã)} =: Θ ∈ C̃(H), (2.2)

establishes a bijective correspondence between the sets ExtA and C̃(H). We write Ã = AΘ if
Ã corresponds to Θ by (2.2). Moreover, the following holds:
(i) A∗Θ = AΘ∗ , in particular, A∗Θ = AΘ if and only if Θ∗ = Θ.
(ii) AΘ is symmetric (self-adjoint) if and only if Θ is symmetric (self-adjoint).
(iii) The extensions AΘ and A0 are disjoint (transversal) if and only if there is a closed
(bounded) operator B such that Θ = gr (B). In this case (2.2) takes the form:

AΘ := Agr (B) = A∗ � ker (Γ1 −BΓ0). (2.3)

In particular, Aj := A∗ � ker (Γj) = AΘj
, j ∈ {0, 1}, where Θ0 :=

(
{0}
H

)
and

Θ1 :=

(
H
{0}

)
= gr (O) where O denotes the zero operator in H. Note also that C̃(H) contains

the trivial linear relations {0} × {0} and H ×H corresponding to A and A∗, respectively, for
any boundary triplet Π.

2.3. Gamma field and Weyl function

It is well known that the Weyl function is an important tool in the direct and inverse
spectral theory of Sturm-Liouville operators. In [8, 9], the concept of Weyl function was
generalized to the case of an arbitrary symmetric operator A with n+(A) = n−(A) ≤ ∞.
Following [9] we briefly recall basic facts on Weyl functions and Gamma fields associated with
a boundary triplet Π.

Definition 2.4 ( [8, 9]). Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗ and A0 = A∗ �
ker (Γ0). The operator valued functions γ(·) : ρ(A0) → [H,H] and M(·) : ρ(A0) → [H]
defined by the following:

γ(z) :=
(
Γ0 � Nz

)−1
, Nz = ker (A∗−z) and M(z) := Γ1γ(z), z ∈ ρ(A0), (2.4)

are called the Gamma field and the Weyl function, respectively, corresponding to the boundary
triplet Π.
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Clearly, the Weyl function can equivalently be defined by:

M(z)Γ0fz = Γ1fz, fz ∈ Nz, z ∈ ρ(A0).

The Gamma field γ(·) and the Weyl function M(·) in (2.4) are well defined. Moreover, both
γ(·) and M(·) are holomorphic on ρ(A0) and the following relations:

γ(z) =
(
I + (z − ζ)(A0 − z)−1

)
γ(ζ), z, ζ ∈ ρ(A0), (2.5)

and

M(z)−M(ζ)∗ = (z − ζ)γ(ζ)∗γ(z), z, ζ ∈ ρ(A0), (2.6)

hold. Identity (2.6) yields that M(·) is [H]-valued Nevanlinna function (M(·) ∈ R[H]), i.e.
M(·) is [H]-valued holomorphic function on C± satisfying:

M(z) = M(z)∗ and
Im(M(z))

Im(z)
≥ 0, z ∈ C+ ∪ C−.

It also follows also from (2.6) that 0 ∈ ρ(Im(M(z))) for all z ∈ C±.
A Weyl function M(·) is said to be of a scalar type if there exists a scalar Nevanlinna

function m(·) such that the the representation:

M(z) = m(z)IH, z ∈ C+, (2.7)

holds where IH is the identity operator in H, see [5]. Obviously, M(·) is of a scalar type if
n±(A) = 1.

2.4. Krein-type formula for resolvents

Let Π = {H,Γ0,Γ1} be a boundary triplet for A∗, M(·) and γ(·) the corresponding
Weyl function and Gamma field, respectively. For any proper (not necessarily self-adjoint)
extension ÃΘ ∈ ExtA with non-empty resolvent set ρ(ÃΘ), the following Krein-type formula
holds (cf. [8–10]):

(AΘ − z)−1 − (A0 − z)−1 = γ(z)(Θ−M(z))−1γ∗(z), z ∈ ρ(A0) ∩ ρ(AΘ). (2.8)

Formula (2.8) extends the known Krein formula for canonical resolvents to the case of any
AΘ ∈ ExtA with ρ(SΘ) 6= ∅. Moreover, due to relations (2.2), (2.3) and (2.4) formula (2.8) is
connected with the boundary triplet Π. We emphasize that this connection makes it possible to
apply the Krein-type formula (2.8) to boundary value problems.

2.5. Direct sum of operators

Let Sn be a densely defined closed symmetric operator in a Hilbert space Hn with

n+(Sn) = n−(Sn) ≤ ∞, n ∈ N. Consider the operator S :=
∞⊕
n=1

Sn acting in H :=
∞⊕
n=1

Hn,

the Hilbert direct sum of Hilbert spaces Hn. By definition, H = {f = ⊕∞n=1fn : fn ∈

Hn,
∞∑
n=1

||fn||2 <∞}. From this, it is apparent that:

S∗ =
∞⊕
n=1

S∗n, dom (S∗) = {f = ⊕∞n=1fn ∈ H : fn ∈ dom (S∗n),
∞∑
n=1

||S∗nfn||2 <∞}.
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Theorem 2.5 (Theorem 2.10 of [7]). Let Πn = {Hn,Γ
n
0 ,Γ

n
1} be a boundary triplet for S∗n and

Mn(·) the corresponding Weyl function, n ∈ N. A direct sum Π = ⊕∞n=1Πn forms an ordinary

boundary triplet for the operator S∗ =
∞⊕
n=1

S∗n if and only if

sup
n
||Mn(i)||Hn <∞, sup

n
||(Im(Mn(i)))−1||Hn . (2.9)

3. Weyl function computation

Let us describe the procedure to obtain all extension of the operator (1.1). Firstly, let us
consider symmetric Dirac operator, defined by (1.2). The adjoint operator D∗ appears as:

(D∗f)(x) = −ic d
dx
⊗ σ1f(x) +

c2

2
⊗ σ3f(x), x ∈ ∆,

f ∈ dom (D∗) = W 1,2(∆,C2).
(3.1)

The triplet ΠD = {HD,ΓD0 ,Γ
D
1 }, HD := C2,

ΓD0

(
f1

f2

)
:=

1√
2

(
f1(a) + f1(b)
f1(a)− f1(b)

)
,

ΓD1

(
f1

f2

)
:=

ic√
2

(
f2(a)− f2(b)
f2(a) + f2(b)

)
,

(3.2)

f ∈ dom (D∗), forms a boundary triplet for D∗. The Gamma field and the Weyl function are
given by:

γD(z)

(
ξ1

ξ2

)
=

1√
2


cos(k(z)(x− ν))

cos(k(z)d)

sin(k(z)(x− ν))

sin(k(z)d)

ik1(z)
sin(k(z)(x− ν))

cos(k(z)d
ik1(z)

cos(k(z)(x− ν))

sin(k(z)d)

(ξ1

ξ2

)
, (3.3)

z ∈ C±. Here,

k(z) :=
1

c

√
z2 − c4

4
, z ∈ C, (3.4)

where the branch of the multifunction k(·) is fixed by the condition k(x) > 0 for x >
c2

2
.

Notice that k(·) is holomorphic in C \
[
−c

2

2
,
c2

2

]
. Furthermore,

k1(z) :=
c k(z)

z + c2

2

, z ∈ C. (3.5)

which is also holomorphic in C \
[
−c

2

2
,
c2

2

]
. The function k1(·) admits the representation:

k1(z) =

√
z − c2

2

z + c2

2

, z ∈ C, (3.6)
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where the branch of

√
z − c2

2

z + c2

2

is fixed by the condition

√
x− c2

2

x+ c2

2

> 0 for x >
c2

2
. We obtain

the following:

MD(z) =

(
mD

1 (z) 0
0 mD

2 (z)

)
, z ∈ C±, (3.7)

where

mD
1 (z) := ck1(z) tan(k(z)d)

mD
2 (z) := −ck1(z) cot(k(z)d)

, z ∈ C±, (3.8)

and d :=
b− a

2
, ν :=

b+ a

2
. The self-adjoint extension D(1) := D∗ � ker (ΓD0 ) has the domain:

dom (D(1)) = {f ∈ W 1,2(∆,C2) : f1(a) = f1(b) = 0}, (3.9)

while the extension D(2) := D∗ � ker (ΓD1 ) has the domain:

dom (D(2)) = {f ∈ W 1,2(∆,C2) : f2(a) = f2(b) = 0}. (3.10)

In the following, we denote elements of L by ~f . In particular, we use the notation:

~f =

(
~f1

~f2

)
, ~fj ∈ L2(∆c,T), j = 1, 2. (3.11)

Let us construct the boundary triplet ΠL = {HL,ΓL0 , Γ̃
L
1 } for L∗.

Operator T gives us spectral decomposition T = ⊕∞n=0Tn, where Tn – bounded self-
adjoint operator defined on Tn, T = ⊕∞n=0Tn. Thus, operator L admits the representation:

L = ⊕∞n=0Ln = ⊕∞n=0D ⊗ ITn + ID ⊗ Tn.
For each Ln boundary triplet, the Gamma field and the Weyl function can be obtained easily,
as Tn is bounded, see [6]. The problem is that the direct sum of boundary triplets, in general,
is not a boundary triplet. The typical approach to such a problem is a regularization procedure,
see [14]. However, in our case, the regularization is not necessary.

Theorem 3.1. The Weyl function ML(·) is given by:

ML(z) =

(
mD

1 (z − T ) 0
0 mD

2 (z − T )

)
, z ∈ C±. (3.12)

Proof. We compute:

CD
j := sup

λ∈R
|mD

j (i− λ)| <∞, and ΛD
j := sup

λ∈R

1

|mD
j (i− λ)|

<∞, (3.13)

j = 1, 2. This relies on the fact that sup
λ∈R
|k1(i− λ)| <∞ and sup

λ∈R

1

|k1(i− λ)|
<∞.

Let us rewrite Ln = D + n, n ∈ N0 which is a closed symmetric operator defined on
Ln = D ⊗ Tn. Notice that L = ⊕n∈ZLn and L = ⊕n∈ZLn. The triplet ΠLn = ΠD ⊗ ITn =
{HLn ,ΓLn

0 ,ΓLn
1 },

HLn := HD ⊗ ITn , ΓLn
0 = ΓD0 ⊗ ITn , ΓLn

1 = ΓD1 ⊗ ITn , (3.14)

is a boundary triplet for L∗n, n ∈ Z. The corresponding Weyl function MLn(·) is given by:
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MLn(z) =

(
mD

1 (z − Tn) 0
0 mD

2 (z − Tn)

)
, n ∈ Z, z ∈ C±. (3.15)

Notice that:

CD
jn := ‖mD

j (i− Tn)‖ = sup
λ∈∆n

|mD
j (i− λ)| ≤ CD

j <∞, j = 1, 2, (3.16)

which yields:

‖MLn(i)‖ ≤ max{CD
1n, C

D
2n} ≤ max{CD

1 , C
D
2 } <∞. (3.17)

Similarly, we verify:

‖(MLn(i))−1‖ ≤ max{ΛD
1n,Λ

D
2n} ≤ max{ΛD

1 ,Λ
D
2 } <∞, (3.18)

where:

ΛD
jn := ‖(mD

j (i− Tn))−1‖ = sup
λ∈∆n

1

|mD
j (i− λ)|

< ΛD
j <∞, (3.19)

j = 1, 2. By Theorem 2.5, we see that Π′L = ⊕n∈ZΠLn is a boundary triplet for L. In particular,
the Weyl function ML(·) is computed by:

ML(z) =

(
mD

1 (z − T ) 0
0 mD

2 (z − T )

)
, z ∈ C±. (3.20)

�

The considerations remain true if we use the boundary triplet of [7, Section 3.1].
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