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1. Introduction

The possibility of lasing without inversion (LWI) was first postulated by Kocharovskaya
and Harris [1, 2]. In the latter of these works, the assumption of LWI viability had been based
on a comparison of the absorption and transmission coefficients of a three-level system, which
is excited according to V -scheme, whereas in previous works, it was shown that, for certain
parameter values for a system which is excited according to Λ-scheme, the laser generation
without inversion is possible. Furthermore, in our opinion, the work of Imamoglu and Harris [3],
must be highlighted. In this work, issued shortly after those two mentioned above, the opinion
was first expressed that LWI could be produced using the absorption that disappeared within one
of the Λ-scheme arms, whereas within another arm, excitation is performed by means of a strong
EM-field (phenomenon of electromagnetic induced transparency (EIT)) [4]. In the subsequent
works, the possibility for LWI, in principle, has been widely discussed (see, e.g. [4–9]).

However, Zibrov et al. [11] were the first to experimentally observe the LWI phenome-
non, where a set of four levels for the hyperfine atomic structure of 87Rb was considered: two
hyperfine levels for the ground 2S1/2 state, as well as two analogous levels for the first excited
2P1/2 state. The strong-coupled and weak probe fields were bound according to the V -scheme
one superfine level of the ground state with two superfine levels of the first exited state. In the
article, the frequency range at which the absorption coefficient becomes negative, i.e. lasing
generation occurs, was determined both theoretically (by means of numerical solution of the
Liouville equation for the density matrix) and experimentally.

Work [12] is similar to one just mentioned, with the difference being that LWI was
experimentally implemented using sodium atoms in the framework of the Λ-scheme, formed
by two hyperfine levels of the ground state 2S1/2 and level F = 1 of the first excited state
2P1/2 of this atom. In this work, the strong coupling field acts between the F = 2 levels of
the 2S1/2 state and the F = 1 level of the 2P1/2 state. This field, in combination with very
weak probe field, connecting levels of the hyperfine structure with F = 1 of the 2S1/2 and 2P1/2

states leads to the appearance of EIT resonance. Additionally, it was experimentally shown
that at a frequency close to where EIT occurs, amplification of the probe signal is observed.
Subsequently, the system has been positioned inside an annular resonator, and laser oscillation
was observed within the system, being provided by vacuum fluctuations.
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In this work, the possibility of laser generation without inversion (LWI) within a multi-
level system that is positioned inside a high-Q annular resonator will be considered. The subject
being dealt with here is closely allied with work [13], where are a non-inversion superreliance
impulse was observed for fine levels of the helium atom.

2. The statement of the problem

In this work, radiation emitted from 33S1 state (level “b”) of isotope 4He, whose coherent
excitation is performed according to the Λ-scheme from levels 23P2 and 23P1 (hereafter referred
to as, levels “a” and “c”) of this atom (see Fig. 1), will be considered. It should be noted that
the first of those two lower states could be referred to as metastable ones [16], and hereupon
a considerable population could be created at this level, for example, by means of an impact
from the ground state. In the framework of such an excitation, the fine bond is broken, and the
efficiency of population induction for the 23P state could be described as follows:
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where j and s depict total electron and spin moments, parameter α characterizes an anisotropy of
impact excitation. As an example, this value may be set as a ratio of induced orbital alignment
to a population [14]: α = T 2
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FIG. 1. The excitation scheme

In this work, we will assume, that the Hamilton operator of the atomic system takes the
form:

Ĥ = Ĥ0 + V̂ , (3)

where H0 is the Hamiltonian operator of a free helium atom, while operator V̂ describes the
excitation process of level j = 1 (hereafter, of the level ”b”) of 33S1 state of the aforementioned
atom. In regard to the excitation process, we will assume that in both arms, ab and cb, excitation
is initiated by means of light polarized linearly along the OZ-axis laboratory frame of reference
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(this axis coincides with the direction of propagation for the exiting radiation), at frequencies
ω − δa/h̄ and ω + δc/h̄, respectively. The wave functions of all states have been constructed
according to general addition rules for angular momenta, whereas energy parameters of those
functions have been chosen according to the quantum defect method:
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where eq is the path of the light polarization in some arm of the Λ-scheme.

Exciting electric field
−→
E (t) causes medium polarization that is characterized by the

polarization vector
−→
P , whose quantity is proportional to the density of the atoms n0 and mean

value of the dipole moment operator d̂, calculated with the density correlation matrix:
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P = −n0=
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From the last expression, one can see that the medium polarization, as a result of
excitation, is defined by the density correlation matrix, and, therefore, depends on its variation.
In turn, the right side of Liouville equation that describes the density matrix evolution, depends
on Rabi frequency, which is proportional to the electric field value. Therefore, mutual variation
of the density matrix and of the induced electric field could be described by the following
system of self-consistent equations:

d

dt
ρ̃aa(t) =Γρ̃bb(t)−

i

h̄
(Vab(t)ρ̃ba(t)− ρ̃ab(t)Vba(t)) ,

d

dt
ρ̃bb(t) =− Γρ̃bb(t)−

i

h̄
(Vba(t)ρ̃ab(t)− ρ̃ba(t)Vab(t))−

i

h̄
(Vbc(t)ρ̃cb(t)− ρ̃bc(t)Vcb(t)) ,

d

dt
ρ̃cc(t) =Γρ̃bb(t)−

i

h̄
(Vcb(t)ρ̃bc(t)− ρ̃cb(t)Vbc(t)) ,

d

dt
ρ̃ab(t) =− Γ

2
ρ̃ab(t)−

i

h̄
(Ea − Eb)ρ̃ab(t)−

i

h̄
(Vab(t)ρ̃bb(t)− ρ̃aa(t)Vab(t)) ,

d

dt
ρ̃cb(t) =− Γ

2
ρ̃cb(t)−

i

h̄
(Ec − Eb)ρ̃cb(t)−

i

h̄
(Vcb(t)ρ̃bb(t)− ρ̃cc(t)Vcb(t)) ,

ρ̃ba(t) =ρ̃†ab(t); ρ̃bc(t) = ρ̃†cb(t),

∇2−→E− 1

c2

∂2

∂t2
−→
E =

4π

c2

∂2

∂t2
−→
P ,

(6)

where the matrix Γ describes the relaxation process, Ea and Ec are the energies for the lower
levels “a” and “c” respectively, Eb is the energy of the upper 33S1 state. Solution of such systems
is usually attempted using the rotating wave approximation, which means, that in system (6),
all terms that oscillate with the frequency ω of the exciting field should be neglected. The
higher order derivatives of slowly-varying summands should also be neglected. To separate
such terms in the system, it is convenient to introduce density matrices ρi,j(t) (i, j = a, b, c)
connected with previously used similar matrices, by means of the relations: ρii(t) = ρ̃ii(t)
(i = a, b, c), ρb,i(t) = ρ̃b,i(t) exp(−i(Eb − Ei)t), i = a, c, ρi,j(t) = ρj,i(t)

†. In regard to the
last equation, to separate rapidly oscillating summands, field strength and field polarization
vectors should be solved in the following manner: E = E(x, t)ei(ωt+kx) + E∗(x, t)e−i(ωt+kx) and
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P = P(x, t)ei(ωt+kx) + P∗(x, t)e−i(ωt+kx), where E(x, t) = <E(x, t) + i=E(x, t) and P(x, t) =
<P(x, t) + i=P(x, t). As a result of such substitutions, the last equation of system (6) will be
reduced to a pair of first-order equations that links the real and imaginary parts of field strength
and polarization vectors:

d

dt
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d

dx
(=E(x, t)) =− 2πω<(P(x, t)),

d

dt
(<E(x, t)) + c

d
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(<E(x, t)) =2πω=(P(x, t)).

(7)

Hereafter, we will assume the polarization field to be independent from the spatial
coordinates. Next, we introduce the dimensionless Rabi frequency ΩR(t), which is linked to
the polarization vector by the relation ΩR(t) = E(t)τ0ea0/h̄, where τ0 = 36 · 10−9 s [16] is the
time of life of excited state 33S1, and introduce dimensionless time τ = t/τ0, and, additionally,
assuming that functions P and E vary slowly with time, and that the system is positioned
inside an annular resonator, such that one of the eigenfrequencies coincides with the transition
frequency between the “centers of gravity” for the upper and lower multiples, then, for system
(8), one can write:
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where za = exp(iτ(
∆

2h̄
+ δa)) and zc = exp(iτ(

∆
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− δc)), and ΩM is the dimensionless

frequency of the field oscillation amplitude ΩM =
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, which depends on

〈r〉 – dimensionless main value of operator r̂ for the 33S1 state. The substitution of values for
the fundamental constants in the last relation leads to the relation ΩM = 5.1610−4√n0 , where
n0 – density of the particulars.

3. The approximate solution of the Liouville equation

According to the fact, that the coupling field, which is acting in the “bc” arm of
Λ-scheme, is considered strong relative to the field acting in the “ba” arm, a solution for
system (9) could be found by means of perturbation theory, in the framework of initial conditions
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ρaa(0) = ρ(0)
aa , ρcc(0) = ρ(0)

cc and ρbb(0) = 0, where ρcc(0) and ρbb(0) are determined by relation
(1). Large values for the coupling field lead to the segmentation of them considered systems
splitting into blocks, the first of which associates the density correlation matrices ρab(t) and
ρac(t):

d

dt
ρab(t) =− γab

2
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i

2
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aaWabe

it(δa+∆/2h̄) +
i

2
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d
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2
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2
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(9)

Now, it is pertinent to introduce matrix xac(t) and xab(t) according to expression:

ρac(t) = xac(t)e
−γact/2; ρab(t) = xab(t)e

−γabt/2, (10)

then, according to the second equation of system (9), for matrix xac(t) , one can obtain that:
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t
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Then, having differentiated the first of equations (9) and substituting it into expres-
sion (11), the equation for the xac(t) matrix may be obtained:
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Partial solution of this equation makes it possible to write a similar solution for ρab(t)
matrix:

ρab(t) = eit[∆+2δa h̄]/2h̄ (2∆ + (−iγac + 2δa − 2δc) h̄)

2h̄
ρ(0)
aaWabU, (13)

where U is a square matrix having the same order as the density matrix of the upper level
(ρbb(t), in the case under consideration), that contains Ib – the identity matrix of the same order
as ρbb(t):

U =

[
1

4
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4h̄2
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. (14)

From expression (13), it is apparent that in the absence of relaxation processes, the
difference of the frequency mismatches in each arm of the Λ−scheme is equal to the lower
levels splitting of δc − δa = ∆, and the absorption of the probe field in the bc arm vanishing.
This effect is known as electromagnetically induced transparency (EIT).

Based on formula (13), the expression for density matrix that defines the “low-frequency
coherence” can be obtained:
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)
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as well as elements of the density matrix ρbc(t), that determines coherence in bc arm:

ρbc(t) =

{
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4. Discussion on the subject of numerical calculation results.

Before considering the items related to the solution of the system (9), some principal
problems connecting to the possibility of laser generation should be discussed.

First of all, it should be noted that, as numerical calculation has demonstrated, the
low-frequency coherence does not have a significant influence on the generation process. Much
more significant impediments to the generation process are resonance collisions of excited atoms
with atoms in ground state, that exhibit a destructive behavior, resulting in decay of generation.

From the theory of collisional depolarization [14], it is well-known that within the limits
of the impact-parameter method, the relaxation constant of collisional process of two heavy
particles, being described by the mutual interaction law W ∼ 1/Rn (here R is an internuclear
distance), is described by the relaxation constant:

γ = n0v

(
Q

h̄v

) 2
n−1

F (n), (17)

where n0 is a projectile density (the density of the of buffer gas particles), v – relative velocity
of colliding particles, while Q is a constant that depends on angular moments and interaction
low, F (n) is an expression that appears due to averaging of variation of the products of the
density matrix over the impact parameter. Concerning the Q quantity, it should be noted that
this value is equal to the Van der Waals constants difference in the case of interaction by law
W ∼ 1/R6, and to the quadrupole moment in the case of interaction by law W ∼ 1/R3. The
first of these laws is implemented at interaction of two different atoms, whereas the second
is utilized for the interaction of identical atoms. Owing to the fact that in coherent excitation
experiments, the hyperfine sublevels of the ground state are usually used as the lower levels,
then the influence of the collisions on those atoms is described by the law W ∼ 1/R3, whereas
influence of buffer gas on the excited state is described by law W ∼ 1/R6. It follows from what
was said, that the resonance collisions (collisions of two identical particles) leads to significant
broadening of the lower hyperfine levels, and even to their overlapping.

Within the work under consideration, when lower levels, having a fine structure for the
excited state with splitting of about 0.1 cm−1 are used [16], as a consequence, the influence
of collisions with particles of buffer gas is fairly insignificant. In support of this statement,
the following could be noted. On the one hand, for successful laser emission recording, it is
necessary to induce significant impact population of the 23P state of helium atoms ensemble.
Without going into technical difficulties, it should be noted that as soon as such an ensemble
has been created, atoms engaged in 23P state would interact with each other by law 1/R3, while
with atoms of buffer gas by law 1/R6. But it is clear that at given general density of helium
atoms, the density of impact-excited atoms would be significantly less than the density of non-
excited particles, and therefore 23P state of helium atom would be broadened to a significantly
weaker extent. It should be noted as well that, in the case under consideration, one of the lower
states 23P2 is metastable [16], whereas the influence of finiteness of the lifetime of the second
lower state 23P1 can be taken into account by means of introducing the appropriate relaxation
constants.

System (9) was integrated numerically, using method that has been described, in some
detail, in our previous work [17]. On the system integration, we assumed that, at the initial
point of time, the upper level is not populated ρi,b(0) = 0 (i = a, b, c), whereas a numerical
vales of the rest blocks of the density matrix are defined by formula (1). As for the fields
that are active in the arms of Λ-scheme, in each arm, they are equal to the vector sum of the
two fields: the stationary pumping field and the polarization one. With regard to the stationary
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pumping fields, we will assume that they are equal to zero at t ≤ 0, and reach their preset
values in a stepwise manner at t > 0. Additionally, we will assume that at the initial point of
time, the system undergoes a short “start-up” impulse, and later, at t > 0, the field active in the
system is defined by system (9). Numerical calculation results are represented in Figs. 2 – 6.

FIG. 2. The dependence of intensity of polarization field on dimensionless time.
Curves 1–3 coincide the mismatches in bc arm of Λ-scheme equal to δc = 0,
∆/2, ∆ whereas mismatch in ba arm is equal to zero

FIG. 3. The dependence of intensity of polarization field on the efficiency of
excitation. Curves 1–3 coincide to values of angle Θ = 0, π/4, π/2

In Fig. 2, the intensity of the polarization field for dimensionless time is represented
for several mismatched dimensionless laser frequency values in the bc arm: δc = 0,∆/2,∆ -
whereas in another arm, the mismatch is constant: δa = 0. To that end, relaxation constants in
the arms have been taken into account, according to the tabular values of transition probability
33S1 → 23P [16] , with weights proportional to multiplicity of the above-mentioned states.
It should be noted that the relaxation constants for the 23Pj states, both in this figure and
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FIG. 4. The influence of relaxation on the generated field. Curve 1 is the curve 1
from the Fig. 1 (lower levels dose not relax); curve 2: each of levels “a” and “c”
relaxed with the relaxation constant equal to the half of the spectroscopic value;
curve 3: levels 23P2 did not relax and 23P1 relaxes with the constant equal to
the spectroscopic value; curve 4: both lower levels relaxes with the rate constant
equal to one-and-a-half time exceeding the spectroscopic value

FIG. 5. All of the three levels, 33S1, 22P1 and 22P2, are relaxing, with equally
large relaxation constants γ = 4, 6, 8 (curves 1–3 consequently)

in subsequent ones, were assumed to be zero. It is apparent from this figure that emission
represents a pulse train, with a magnitude that decreases as δc increases.

Figure 3 illustrates the dependance of the polarization field intensity on the efficiency of
the lower levels population, that is characterized by angle Θ (see formula (1)). The calculation
results show that the polarization field values are practically symmetrical with respect to the
angle value Θ = π/2. Therefore, this figure depicts the field-angle dependence, for Θ = 0,
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π/4, π/2. It is apparent from the figure that for decreasing angle Θ within the preset limits, the
polarization field intensity also decreases.

Subsequent figures illustrate the influence of relaxation on the generated field. It is
worth noting that, in the case under consideration, the 22P state consists of two levels, 22P1

and 22P2, the latter of which is the metastable one.
In Fig. 4, four curves are presented that illustrate the dependance of the polarization field

intensity on dimensionless time. The first of these curves takes into account the radiative decay
of the upper level 33S1 on the lower levels 22P1 and 22P2, with the constants that correspond to
the spectroscopic values [16] (curve (1) from the previous figure). Curves 2 and 3, in addition
to the relaxation process of the upper state, take into account the radiative decay from the
lower states, and at that, when plotting curve 2, it has been assumed that each of 22P levels
decay at a rate equal to half that of the spectroscopic value, whereas curve 3 illustrates the case
when level 22P1 decays at a rate equal to the spectroscopic value, whereas the metastable level
does not relax. Curve 4 describes the case when both of 2P levels relax at a rate 1.5 times
that of the spectroscopic value. It is apparent from this figure that curves 2 and 3 practically
identical, while further increase of the relaxation rate results in a decrease in the polarization
field intensity.

In Fig. 5, the case was illustrated when all three levels, 33S1, 22P1 and 22P2, are
radiatively relaxing, with equally sized relaxation constants γ = 4, 6, 8. It is apparent from
the Fig. 4 that, for the last two relaxation constant values, emission consists practically of one
pulse, and this is in agreement with the results of previous work [13].

In the conclusion of this paragraph, we will provide some approximate formulas that
explain the appearance of the generated signal, and, particularly, the fact that the strongest
generation corresponds to the mismatch δc = 0, provided that in another arm of the Λ-scheme
there is no mismatch δa = 0 (see Fig. 2). To obtain these results, we used the software package
Mathematica, deriving density matrixes values ρaa(0), ρcc(0) (formula (1)), at the angle value
Θ = 0, and after that, correlation matrices elements ρab and ρcb were calculated analytically with
help of (13) and (16) formulas. Based on those matrices, spurs of matrices Sp(rabρaa(0)rabU),
Sp(rbaρaa(0)rabUrbcrcb) and Sp(ρcc(0)rcb), were calculated analytically, making it possible to
obtain the right side of equation defining the polarization field:

d

dt
Epol = kEpol Sp(ρbcrcb + ρbarba). (18)

Then, the variable x being imposed according to the relationship δc = x∆ and assuming
∆ to be large, in first order perturbation theory, the expression for the polarization field can be
obtained :

ln (Epol) ∼
(200− 7

√
70)e

1
2
it(1−2x)∆

4500(−1 + 2x)∆
. (19)

From this formula, it is apparent that the maximum of polarization field is achievable at
x = 0 i.e. δc = 0, which coincides with the data in Fig. 2.

5. Conclusion

In this work, the possibility of laser generation without inversion of the fine levels of
helium atom is considered. It should be mentioned that considerations of the problem in this
work and in articles quoted above [11, 12] differ in principle. In the first part of this article,
the positiveness of the reinforcement coefficient is achieved via radiation transitions from a
specially-populated additional level, whereas in the second part of the paper, generation occurs
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in that arm of the Λ-scheme where the absorption is absent, due to the system achieving an EIT
state.

A peculiar feature of this work consists in that for lower levels, used for the coherent
excitation according to Λ-scheme, the excited states 23P1 and 23P2 of the He atom were used.
The latter circumstances have permitted us to avoid significant broadening of the lower levels,
by means of their interaction with buffer gas. At the same time, the creation and maintenance
of a sufficient population at those levels is most probably caused by a strain to the system.
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