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In this paper, we consider an infinite system of functional equations for the Potts model with competing interactions of radius r = 2 and

countable spin values 0, 1, ..., and non-zero-filled, on a Cayley tree of order two. We describe conditions on hx guaranteeing compatibility of

distributions µ(n)(σn).

Keywords: Cayley tree, Potts model, Gibbs measures, functional equations.

Received: 23 March 2016

Revised: 13 April 2016

1. Introduction

The Potts model is related to and generalized by several other models, including the XY model, the Heisenberg
model and the N -vector model. The infinite-range Potts model is known as the Kac model. When the spins are
taken to interact in a non-Abelian manner, the model is related to the flux tube model, which is used to discuss
confinement in quantum chromodynamics. Generalizations of the Potts model have also been used to model
grain growth in metals and coarsening in foams. A further generalization of these methods by James Glazier and
Francois Graner, known as the cellular Potts model, has been used to simulate static and kinetic phenomena in
foam and biological morphogenesis. In this model, introduced by Askin and Teller (1943) and Potts (1952), the
energy between two adjacent spins at vertices i and j is taken to be zero if the spins are the different and equal to
a constant Jij if they are same.

In [1], the Potts model with countable set Φ of spin values on Zd was considered and it was proved that with
respect to Poisson distribution on Φ, the set of limiting Gibbs measure is not empty. In [2], the Potts model with a
countable set of spin values on a Cayley tree was considered and it was shown that the set of translation-invariant
splitting Gibbs measures of the model contains at most one point, independent of parameters for the Potts model
with countable set of spin values on the Cayley tree. This is a crucial difference from models with a finite set of
spin values, since those may have more than one translation-invariant Gibbs measures.

The work initiated in [4] was continued in [3] and a model was considered with nearest-neighbor interactions
and local state space given by the uncountable set [0, 1] on a Cayley tree Γk of order k ≥ 2. The translation-
invariant Gibbs measures are studied via a non-linear functional equation and we prove the non-uniqueness of
translation-invariant Gibbs measures in the right parameter regime for all k ≥ 2 and not only for k ∈ {2, 3} as
in [3]. In [5], models (Hamiltonians) with-nearest-neighbor interactions and with the set [0, 1] of spin values, on a
Cayley tree Γk of order k ≥ 1 were studied.

In this letter, we consider Potts model with competing interactions and countable spin values and we derive an
infinite system of functional equations for the Potts model on a second order Cayley tree.

2. Preliminaries

The Cayley tree (Bethe lattice) Γk of order k ≥ 1 is an infinite tree, i.e., a graph without cycles, such that
exactly k + 1 edges originate from each vertex. Let Γk = (V,L) where V is the set of vertices and L the set of
edges. Two vertices x and y are called nearest neighbors if there exists an edge l ∈ L connecting them and we
denote l = 〈x, y〉. A collection of nearest neighbor pairs 〈x, x1〉, 〈x1, x2〉, . . . , 〈xd−1, y〉 is called a path from x
to y. The distance d(x, y) on the Cayley tree is the number of edges of the shortest path from x and y.

For a fixed x0 ∈ V , called the root, we set:

Wn = {x ∈ V |d(x, x0) = n}, Vn =

n⋃
m=1

Wm,
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and denote:
S(x) = {y ∈Wn+1 : d(x, y) = 1}, x ∈Wn,

the set of direct successors of x.
The vertices x and y are called next-nearest-neighbor (NNN) which is denoted by 〉x, y〈, if there exists a

vertex z ∈ V such that x, z and y, z are nearest-neighbor. We consider NNN 〉x, y〈, for which there exists n such
that x ∈Wn and y ∈Wn+2, this kind of NNN is considered with the three states Potts model (see [6]).

We consider a Potts model with competing nearest-neighbor and prolonged next-nearest-neighbor interactions
on a Cayley tree where the spin takes values in the set Φ := 0, 1, 2, .... A configuration σ on V is then defined as
a function x ∈ V 7→ σ(x) ∈ Φ; the set of all configurations is ΦV .

The Hamiltonian for the Potts model with competing interactions has the form:

H(σ) = −J
∑
〈x,y〉
x,y∈V

δσ(x)σ(y) − J1

∑
〉x,y〈
x,y∈V

δσ(x)σ(y), (2.1)

where J, J1 ∈ R are coupling constants and δ is the Kroneker’s symbol.
Let λ be the Lebesgue measure on [0, 1]. For the set of all configurations on A, the a priori measure λA

is introduced as the |A| fold product of the measure λ. Here and subsequently, |A| denotes the cardinality
of A. We consider a standard sigma-algebra B of subsets of Ω = [0, 1]V generated by the measurable cylinder
subsets. A probability measure µ on (Ω,B) is called a Gibbs measure (with Hamiltonian H) if it satisfies the
Dobrushin-Lanford-Ruelle (DLR) equation, namely for any n = 1, 2, . . . , and σn ∈ ΩVn

:

µ
({
σ ∈ Ω : σ|Vn

= σn
})

=

∫
Ω

µ(dω)νVn

ω|Wn+1
,

where νVn

ω|Wn+1
is the conditional Gibbs density:

νVn

ω|Wn+1
(σn) =

1

Zn(ω|Wn+1
)

exp
{
− βH(σn | |ω|Wn+1)

}
,

and β =
1

T
, T > 0 is the temperature.

Let Ln = {〈x, y〉 ∈ L : x, y ∈ Vn} and ΩVn is the set of configurations in Vn (and ΩWn that in Wn). Fur-
thermore, σ|Vn

and ω|Wn
denote the restrictions of configurations σ, ω ∈ Ω to Vn and Wn+1, respectively. Next,

σn : x ∈ Vn 7→ σn(x) is a configuration in Vn and H
(
σn||ω|Wn+1

)
is defined as the sum H(σn)+U

(
σn, ω|Wn+1

)
where:

H(σn) = −J
∑

〈x,y〉∈Ln

ξσn(x)σn(y),

U
(
σn, ω|Wn+1

)
= −J

∑
〈x,y〉:

x∈Vn, y∈Wn+1

ξσn(x)ω(y).

Finally, Zn
(
ω
∣∣
Wn+1

)
represents the partition function in Vn, with the boundary condition ω

∣∣
Wn+1

:

Zn

(
ω
∣∣
Wn+1

)
=

∫
ΩVn

exp
{
− βH

(
σ̃n ||ω

∣∣
Wn+1

)}
λVn

(dσ̃n).

We write x < y if the path from x0 to y goes through x. We call vertex y a direct successor of x if y > x
and x, y are nearest neighbors. We denote by S(x) the set of direct successors of x and observe that any vertex
x 6= x0 has k direct successors and x0 has k + 1.

Let h : x ∈ V 7→ hx = (ht,x, t ∈ [0, 1]) ∈ R[0,1] be a mapping of x ∈ V \ {x0}. Given n = 1, 2, . . ., consider
the probability distribution µ(n) on ΩVn

defined by:

µ(n)(σn) = Z−1
n exp

{
− βH(σn) +

∑
x∈Wn

hσ(x),x

}
. (2.2)

Here, as before, σn : x ∈ Vn 7→ σ(x) and Zn is the corresponding partition function:

Zn =

∫
ΩVn

exp

{
− βH(σ̃n) +

∑
x∈Wn

hσ̃(x),x

}
λVn(dσ̃n). (2.3)
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The probability distributions µ(n) are called compatible if for any n ≥ 1 and σn−1 ∈ ΩVn−1
:∫

ΩWn

µ(n) (σn−1 ∨ ωn)λWn
(d(ωn)) = µ(n−1) (σn−1) . (2.4)

Here, σn−1 ∨ ωn ∈ ΩVn
is the concatenation of σn−1 and ωn. In this case, because of the Kolmogorov extension

theorem, there exists a unique measure µ on ΩV such that, for any n and σn ∈ ΩVn
, µ

({
σ
∣∣∣
Vn

= σn

})
=

µ(n)(σn). Such a measure is called a splitting Gibbs measure corresponding to Hamiltonian (2.1) and function
x 7→ hx, x 6= x0.

The following theorem describes conditions on hx guaranteeing compatibility of distributions µ(n)(σn).

3. Functional Equations

Theorem 3.1 Probability distributions µ(n)(σn), n = 1, 2, . . . , in (2.2), for a Cayley tree of order two, are
compatible iff for any x ∈ V \ {x0} the following equation holds:

h∗i,x = Fi(h
∗
y, h
∗
z, β, J), i = 1, 2, . . . , (3.1)

where S(x) = {y, z}, h∗x =

(
h1,x − h0,x + ln

ν(1)

ν(0)
, h2,x − h0,x + ln

ν(2)

ν(0)
, . . .

)
and

Fi(h
∗
y, h
∗
z, β, J) = ln

1 +
∞∑

p,q=0
p+q 6=0

exp
{
βJ(δip + δiq) + J1βδpq + h∗p,y + h∗q,z

}
1 +

∞∑
p,q=0
p+q 6=0

exp
{
βJ(δ0p + δ0q) + J1βδpq + h∗p,y + h∗q,z

} .
Proof. Necessity Assume that (2.4) holds; we will prove (3.1). Substituting (2.2) in (2.4), obtain that for any
configurations σn−1 : x ∈ Vn−1 7→ σn−1(x) ∈ Φ:

1

Zn

∑
σ(n)∈ΦWn

exp

{
− βHn(σn) +

∑
x∈Wn

hσ(x),x

}
×
∏
y∈Wn

ν(σ(y))

=
1

Zn−1
exp

{
− βHn−1(σn−1) +

∑
x∈Wn−1

hσn−1(x),x

}
.

Zn−1

Zn

∑
σ(n)∈ΦWn

exp

{
−βHn−1(σn−1)+Jβ

∑
x∈Wn−1
y,z∈S(x)

(
δσ(x)σ(y) + δσ(x)σ(z)

)
+J1β

∑
x∈Wn−1
y,z∈S(x)

δσ(y)σ(z)+
∑
x∈Wn

hσ(x),x

}

×
∏
y∈Wn

ν(σ(y)) = exp

{
− βHn−1(σn−1) +

∑
x∈Wn−1

hσn−1(x),x

}
.

After some abbreviations, we obtain:

Zn−1

Zn

∏
x∈Wn−1

∑
σ
(n)
x ={σ(y),σ(z)}

exp

{
Jβ
(
δσ(x)σ(y) + δσ(x)σ(z)

)
+J1βδσ(y)σ(z)+hσ(y),y+hσ(z),z+ln ν(σ(y))+ln ν(σ(z))

}

=
∏

x∈Wn−1

exp
{
hσn−1(x),x

}
.

Consequently, for any i ∈ Φ,

exp
{
h0,y + h0,z + 2 ln ν(0)

}
+

∞∑
p,q=0
p+q 6=0

exp
{
Jβ(δip + δiq) + J1βδpq + hp,y + hq,z + ln ν(p) + ln ν(q)

}
exp

{
h0,y + h0,z + 2 ln ν(0)

}
+

∞∑
p,q=0
p+q 6=0

exp
{
Jβ(δ0p + δ0q) + J1βδpq + hp,y + hq,z + ln ν(p) + ln ν(q)

}
= exp

{
hi,x − h0,x

}
,
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such that:

h∗i,x = ln

1 +
∞∑

p,q=0
p+q 6=0

exp
{
Jβ(δip + δiq) + J1βδpq + h∗p,y + h∗q,z

}
1 +

∞∑
p,q=0
p+q 6=0

exp
{
Jβ(δ0p + δ0q) + J1βδpq + h∗p,y + h∗q,z

} ,
where:

h∗i,x = hi,x − h0,x + ln
ν(i)

ν(0)
.

Sufficiency. Let (3.1) is satisfied we will prove (2.4).
∞∑

p,q=0

exp
{
Jβ(δip + δiq) + J1βδpq + hp,y + hq,z + ln ν(p) + ln ν(q)

}
= a(x) exp

{
hi,x

}
, (3.2)

here i = 0, 1, . . . .
We have:

LHS of (2.4) =
1

Zn
exp

{
− βHn−1(σn−1)

} ∏
x∈Wn−1

ν(σ(x))×

∑
x∈Wn−1
y,z∈S(x)

exp
{
Jβ(δσ(x)σ(y) + δσ(x)σ(z)) + J1βδσ(y)σ(z) + hσ(y),y + hσ(z),z

}
. (3.3)

Substituting (3.2) into (3.3) and denoting An =
∏

x∈Wn−1

a(x), we get:

RHS of (3.3) =
An1

Zn
exp

{
− βHn−1(σn−1)

} ∏
x∈Wn−1

hσn−1(x),x. (3.4)

Since µ(n), n ≥ 1 is a probability, we should have:∑
σn−1

(n)∑
σ

µ(n)
(
σn−1, σ

(n−1)
)

= 1.

Hence, from (3.4) we obtain Zn−1An−1 = Zn, and (2.4) holds.
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