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1. Introduction

The AdS/CFT correspondence appeared at the end of the 1990s as an approach established a connection
between the string theory and conformal field theory models. In general, the existence of such relation could be
expected if both model types have the same origin [1–8]. The evolution of hadron physics models has evolved
in different ways over time. It was mandated by the fact that hadrons interact strongly, and in theory, there is
no a small parameter on which it would be possible to make an expansion similar to the well-known quantum
electrodynamics diagram approach. Initially, string theory was provided with phenomenological foundations in the
form of Regge trajectories and conformal field theory got its essential evolution as a consequence of the phase
transitions theory development [9]. When coming close to the phase-transition point, the physical value fluctuations
have an increasing characteristic length. This fact requires scale invariance, and thus, conformal transformations
and conformal theories immediately appear. From this, further development of such an approach has allowed
the establishment experimentally testable theory corollaries as well. Note that these theories were divergent from
one another increasingly not only in corollaries, but also in mathematical techniques, until a certain consistency
between their parameters were established.

The basic concept of the AdS/CFT correspondence is in the formulae establishing a correspondence for average
values [2, 6, 8, 10–14]: 〈

exp

i
∫
∂M

φ0Ô


〉

= exp{iScl(φ)}. (1)

Indeed, formula (1) consists of a variety of conceptions which must be deciphered. Thus:

1. Formula (1) maintains that the average values of operators Ô on the boundary of some manifold ∂M ,
which are taken with classic field values φ on the boundary of a manifold φ0, will be coincident with the
imaginary exponential of classic field action φ in a volume of manifold .

2. Operators Ô cannot be chosen randomly and must be dual with field values φ (this choice will be shown
in the part 2).

3. Manifold in a certain sense must be “good”, have a boundary (or boundaries) and have a dimensionality
one greater than the space for which we are going to construct the Green’s function.

4. The formula (1) was given for Minkowsky space. It is necessary to make the Wick rotation of time axis
for Euclidean space often used in Green’s temperature functions calculation.

Note that after the average values are estimated, the problem for the Green’s functions calculation becomes
amply obvious. For example, the following expression can be used for the retarded Green’s function [15]:

GR(k̄) = −i
∫
d4x̄θ(t)

〈[
Ô(x̄), Ô(0)

]〉
, (2)

where θ(t) is Heaviside function as usual.
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Summarizing what was stated above, we can say that the AdS/CFT correspondence is a method for Green’s
function calculation apart from formulae (1,2) for further use of these functions in applications. It is important to
emphasize that concepts of AdS/CFT correspondence are not only limited to Green’s function construction, but can
also be applied for direct calculation of kinetic coefficient relations (for example, the well-known relation between
viscosity and entropy density η/s = 1/4π) [3, 4, 16–25].

In accordance with the above-stated, we build a plan of the present mini review. In the second chapter it
will be briefly specified what kind of operators Ô are dual with fields φ and how to choose a manifold . In the
third part of this paper, a detailed case study for the scalar field will be analyzed. The basic formulae for Green’s
function calculation for fermions will be given in the fourth chapter and examples of the main Green’s functions
will be given. In the fifth chapter, a summary of the major scientific works expanding the primary models will be
presented.

2. Choice of operators and space

Here and subsequently, a convention will be applied in which Greek indices correspond to the conformal field
theory space on the boundary and Latin indices accord with field theory space of dimension one unit greater.

The choice of operators, Ô, as noted above, is not spontaneous and determined by the fact that operators must
be dual. Since the primary role in this theory is played by fields φ , which are defined by their transformation
property under coordinate transformations; it is easier to bring the correspondence in a tabular form (Table 1).

TABLE 1. Correspondence of the classic field theory operators to the boundary operators

Field properties under
transformations
of coordinates

Classic field theory
in a bulk

Operator on the boundary

scalar φ boson operator ÔB

vector Aa current operator Ĵµ

second-rank tensor gab energy operator T̂µν

spinor ψ fermion operator ÔF

Note that well-known Green’s fermion and boson functions can be constructed directly for fermion and boson
operators, but for applications, there are important relations which result from Kubo formulae.

Thus, under calculation of shear viscosity (η), it is easier to use expressions which follow from Kubo theory:

η = − lim
$→0

Im Ξ($)

$
,

Ξ($) = −i h̄
v

∫
d4r̄ei$tθ(t) 〈[Πxy(r̄, t),Πxy(0, 0)]〉,

(3)

where v is a normalization volume, and Πxy(r̄, t) is a momentum flow density. It is convenient to carry out an
analysis by reference to the second-rank tensor and general energy operator T̂µν in this case. Similarly, we can
use vector Aa and current operator Ĵµ for Hall conductivity calculation.

The choice of a space plays no less important role than the operator choice. A fundamental point lies with the
fact that at absolute zero, theories will be correspond to the classic De Sitter space.

s2 =
L2

z2

(
dt2+dx̄2+dz2

)
, (4)

where z is an additional coordinate (which will be used for corresponding boundary conditions), t is a time
coordinate, x̄ are space coordinates, L is a parameter. Here the euclidian case is written down but proceeding
to Minkowsky space can be performed by Wick rotation. In the case of theories with non-zero temperature it is
necessary to consider more complicated metrics, for instance, of the following form which corresponds to a black
hole type solution:

ds2=
R2

z2

(
f(z)dt2+dx̄2+dz2/f(z)

)
,

f (z) = 1− z4

z4
h

,

(5)
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where zh is a parameter which is directly associated with Hawking’s temperature T :

zh = 1/(πT ).

Note that the metric (5) is applicable for models with a scalar field. For models with fermions, vector fields
and others, it is essential to use relevant solutions of the Einstein’s equations generalized to additional spatial
dimension with energy-momentum tensor introduced in field models [26–39].

As an example, we provide a solution corresponding to a model with fermions which will be used in the
chapter 4:

ds2 =
z2

R2

(
−f (z) dt2 + dx̄2

)
+

R2

z2f(z)
dz2,

f (z) = 1 +
Q2

z4
− 1 +Q2

z3
,

T =
3−Q2

4π
.

(6)

3. Generation of the Green’s functions for scalar field

Let us consider in more detail the generation of the Green’s functions for scalar field in pursuance of the
paper [40]. We start with the case of absolute zero and De Sitter space metric defined by (4). As is well-known,
the action for scalar field can be given by the following expression:

S = −1

2

∫
dd+1x

√
g
[
gMN∂Mϕ∂Nϕ+m2φ2

]
.

Now, the corresponding motion equation will take the form:

1
√
g
∂M

(√
ggMN∂Nφ

)
−m2φ = 0.

It is convenient to detach instantly the dependence on additional coordinate z:

zd+1∂z
(
z1−d∂zφ

)
+ z2δµν∂µ∂νφ−m2L2φ = 0.

Since the coefficients of equation do not explicitly depend on other coordinates, it is naturally to produce
Fourier transform:

φ (z, xµ) =

∫
ddk

(2π)
d
eikxfk (z).

Next, we obtain the following expression for the Fourier coefficients:

zd+1∂z
(
z1−d∂zfk

)
− k2z2fk −m2L2fk = 0.

Let us consider the given equation at a point z = 0. Let us assume that fk ∼ zβ . Then, β satisfies the following
expression:

β (β − d)−m2L2 = 0,

where d is the conformal theory space dimension. Solution of this equation is as follows:

β =
d

2
±
√
d2

4
+m2L2.

Thus, the solution near the border (it should be recalled that we construct the effective theory namely on the
border) will be in the next form:

fk (z) ≈ A (k) zd−4 +B (k) z4,

4 =
d

2
+ ν, ν =

√
d2

4
+m2L2.

(7)

The relation (7) gives an opportunity to correlate the irregular on the border function φ with regular function ϕ
through the agency of the expression:

ϕ (x) = lim
z→0

z∆−dφ(z, x).

After the brief introduction that gives an insight into both field behavior on the boundary and the prominent
role of the parameter β we can pass on to average calculation and the Green’s function development. An average,
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as in any quantum theory, can be evaluated out from the following relation (it is important that we have to apply
the fields φ which are defined on the boundary):

〈O (x)〉c =
δSrengrav [φ]

δϕ (x)
,

or to pass on to variation derivative in a bulk:

〈O (x)〉ϕ = lim
z→0

zd−4
δSrengrav [φ]

δφ (z, x)
. (8)

Hereafter, let us recall how to perform calculations with action in a bulk (index M ) and on the boundary (∂ ):

Sgrav =

∫
M

∫
dzddxL [φ, ∂φ],

δSgrav =

∫
M

∫
dzddx

[
∂L
∂φ

δφ+
∂L

∂ (∂µφ)
δ (∂µφ)

]
,

δSgrav =

∫
M

∫
dzddx

[(
∂L
∂φ
− ∂µ

(
∂L

∂ (∂µφ)

))
δφ+ ∂µ

(
∂L

∂ (∂µφ)
δφ

)]
,

δSon−shellgrav =

∞∫
ε

∫
ddx∂z

(
∂L

∂ (∂zφ)
δφ

)
= −

∫
∂M

ddx
∂L

∂ (∂zφ)
δφ

∣∣∣∣
z=ε

.

It is convenient to introduce an analogue of a pulse having applied the additional coordinate:

Π = − ∂L
∂ (∂zφ)

.

Now the calculation of variation derivatives can be simplified:

δSon−shellgrav =

∫
∂M

ddxΠ (ε, x) δφ (ε, x),

δSon−shellgrav

δφ (ε, x)
=Π (ε, x) = − ∂L

∂ (∂zφ)
.

In the general case, of course, there will be divergences in the action that is why it is necessary to introduce
counterterms Sct:

Sren = Son−shellgrav + Sct.

After that we should redefine the value Π as well:

Πren(z, x) =
δSren

δφ(z, x)
,

Πren(z, x) =− ∂L
∂ (∂zφ(ε, x))

+
δSct

δφ(ε, x)
.

Finally, we can get the expression for average values calculation:

〈O(x)〉ϕ = lim
z→0

zd−4Πren(z, x).

Now, we pass on to direct calculation of the Green’s functions. Recall that:

〈O (x)〉ϕ =

∫
[Dψ]O (x) exp

(
SE [ψ] +

∫
ddyϕ(y)O(y)

)
.

Hereinafter we write an evident expansion:

〈O (x)〉ϕ = 〈O (x)〉ϕ=0 +

∫
ddy 〈O (x)O (y)〉ϕ (y) + .... (9)

Determining the Green’s functions as follows:

GE (x− y) = 〈O (x)O (y)〉 ,
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we can rewrite the expression (9) in the form:

〈O (x)〉ϕ =〈O (x)〉ϕ=0 +

∫
ddyGE (x− y)ϕ (y),

〈O (x)〉ϕ =

∫
ddyGE (x− y)ϕ (y)

or after performing a Fourier transform we get:

〈O (k)〉ϕ =GE (k)ϕ (k) ,

GE (k) =
〈O (k)〉ϕ
ϕ (k)

.

Now using (8) we can obtain the final expression for the Green’s function:

GE(k) = lim
z→0

z2(d−4) Πren(z, x)

φ(z, k)
. (10)

We will meet a similar expression futher in the ratio for Green’s fermionic function. Note that such structure
remains for the Green’s functions of fields with other spin value.

Next remember the equation for scalar field action:

S = −η
2

∫
dzddx

√
g
[
gMN∂Mφ∂Nφ+m2φ2

]
.

After discrimination of the total derivative the equation becomes as follows:

S = −η
2

∫
dzddx∂M

[√
gφgMN∂Nφ

]
+
η

2

∫
dzddxφ

√
g

[
1
√
g
∂M

(√
ggMN∂Nφ

)
−m2φ

]
.

Now the action on the boundary of the manifold takes the form:

Son−shell =− η

2

∫
dzddx∂M

[√
gφgMN∂Nφ

]
,

Son−shell =
η

2

∫
dd(
√
gφgzz∂zφ)z=ε.

Taking into account the expression for Π:

Π = − ∂L
∂ (∂zφ)

= η
√
ggzz∂zφ,

it is easy to get that:

Son−shell =
1

2

∫
z=ε

ddxΠ (z, x)φ (z, x).

If we use the ratios for Fourier components:

φ (z, x) =

∫
ddk

(2π)
d
eikxfk (z) , Π (z, x) =

∫
ddk

(2π)
d
eikxΠk (z) ,

we get that:

Son−shell =
1

2

∫
ddk

(2π)d
Π−k(z = ε)fk(z = ε).

Refreshing the memory about f on the boundary, it is easy to comprehend that on the boundary Π behaves
like:

Π(z, x) ≈ ηLd−1
[
(d−4)A(x)z−4 +4B(x)z4−d

]
, (z → 0).

The same expression in Fourier components will be as follows:

Π−k(z) ≈ ηLd−1
[
(d−4)A(−k)z−4 +4B(−k)z4−d

]
, (z → 0).

This makes it possible to rewrite the expression for the action on the boundary:

Son−shell =
η

2
Ld−1

∫
ddk

(2π)d
[
ε−2ν(d−4)A(−k) + dA(−k)B(k)

]
.
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Unfortunately, this action diverges (see the power of ε). It is necessary to add a counterterm to the action for
its regularization. Upon the demand for invariance and simplicity an appropriate counterterm will be as follows:∫

∂AdS

ddx
√
γφ2 (ε, x),

where:

ds2
z=ε = γµνdx

µdxν =
L2

ε2
δµνdx

µdxν .

It is easy to modify the counterterm and we can see that:∫
∂AdS

ddx
√
γφ2 (ε, x) = Ld

∫
ddk

(2π)
d

[
ε−2νA (−k)A (k) + 2A (−k)B (k)

]
.

For now, write down the counter term with correct coefficient and we obtain:

sct =− η

2

d−4
L

∫
∂AdS

ddx
√
γφ2,

sct =− η

2

d−4
L1−d

∫
ddk

(2π)d
[
ε−2νA(−k)A(k) + 2A(−k)B(k)

]
.

From the last expression we finally obtain the formula for regularized action:

Sren =
η

2
Ld−1(24− d)

∫
ddk

(2π)d
A(−k)B(k).

Then let us represent the function f as follows (for random z);

fk(z) = A(k)φ1(z, k) +B(k)φ2(z, k).

It is naturally that for small z we get:

φ1(z, k) ≈ zd−4, φ2(z, k) ≈ z4.

Then, we introduce the following notation:

χ =
B

A
.

Now

Sren =
η

2
Ld−1(24− d)

∫
ddk

(2π)d
χ(k)ϕ(k)ϕ(−k).

For now, it is easy to write an expression for variation derivative:

〈O (x)〉ϕ =(2π)
d δSren

δϕ (−k)
= ηLd−1 (2∆− d)χ (k)ϕ (k) ,

〈O (k)〉ϕ =2νηLd−1B (k) .

Wherefrom we immediately obtain that:

GE(k) = 2νηLd−1B(k)

A(k)
. (11)

This formula has an important significance and will be used hereafter and for fermions as well (but without
formula derivation). Its meaning is in the fact that in the AdS/CFT correspondence for Green’s function calculation
it is just enough to determine coefficients at the equation’s asymptotics with respect to additional coordinate for
our field of interest:

fk(z) = zd/2gk(z).

Then:
z2∂2

zgk + z∂zgk −
(
ν2 + k2z2

)
gk = 0.

This equation is precisely the equation for Bessel functions and its corresponding solution for f will have a form
zd/2I∓ν (kz).

Taking into account the fact that Bessel functions have the following asymptotic:

I∓ν (z) ≈ 1

Γ (1∓ ν)

(z
2

)∓ν
, z → 0,
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we can obtain that:

φ1 (z, k) = Γ (1−ν)

(
k

2

)ν
zd/2I−ν (kz) , φ2 (z, k) = Γ (1+ν)

(
k

2

)−ν
zd/2Iν (kz) ,

fk (z) = zd/2

[
Γ (1−ν)

(
k

2

)ν
A (k) I−ν (kz) +Γ (1+ν)

(
k

2

)−ν
B (k) Iν (kz)

]
.

Correspondingly:

I∓ν (z) ≈ ez√
2πz

, (z →∞) .

Now we have that:

fk (z) ≈ zd/2e
kz

√
2πkz

[
Γ (1−ν)

(
k

2

)ν
A (k) +Γ (1+ν)

(
k

2

)−ν
B (k)

]
.

From which,we get:

B(k)

A(k)
= −Γ(1− ν)

Γ(1 + ν)

(
k

2

)2ν

=
Γ(−ν)

Γ(ν)

(
k

2

)2ν

.

Finally, the expression for the scalar field Green’s function take the form:

GE (k) = 2νηLd−1 Γ (−ν)

Γ (ν)

(
k

2

)2ν

, (12)

or by performing an inverse Fourier transform, we derive:

GE(x) =

∫
ddk

(2π)d
eikxGE(k).

With account of the following: ∫
ddk

(2π)
d
eikxkn =

2n

πd/2
Γ
(
d+n

2

)
Γ
(
−n2
) 1

|x|d+n
.

We derive a resultant expression for average with which we have defined the Green’s function.

〈O (x)O (0)〉 =
2νηLd−1

πd/2
Γ
(
d
2 + ν

)
Γ (−ν)

1

|x|2∆
.

Note that the expression for the Green’s function has the well known conformal field theory form with a power
law of decrease. From the given methodical example, it is possible to retrace what is necessary to do in more
complex cases.

4. Green’s functions for fermion field

In this case, it is necessary to start with known models [41] that consist of not only fermion fields but also
metric solutions in which a boundary naturally arises. An eligible candidate is a solution in AdS5 for the charged
black hole in IIB supergravity type with three U(1) charge, wherein Q1 = Q2 and Q3 = 0.

The Lagrangian density for this model is:

L =
1

2k2

{
R− 1

4
e4αFµνF

µν − 12∂µα∂
µα+

1

L2

(
8e2α + 4e−4α

)}
. (13)
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Here, k is a coupling constant, R is a crookedness, Fµν is a density tensor of a vector field Aµ, α is a scalar field.
In this case, the solution for metrics, scalar and vector fields will have the following form:

ds2 =e2A
(
−hdt2 + dx2

)
+
e2B

h
dr2,

A = ln
r

L
+

1

3
ln

(
1 +

Q2

r2

)
,

B =− ln
r

L
− 2

3
ln

(
1 +

Q2

r2

)
,

h =

(
r2 + 2Q2

)
r2

(r2 +Q2)
2 , α =

1

6
ln

(
1 +

Q2

r2

)
,

Aµdx
µ = Φdt, Φ =

√
2Qr2

(r2 +Q2)L
,

where r is a radial coordinate, Q is a black hole charge. Since the metrics is diagonal and depends only on r Dirac
equations can be simplified by substitution:

Ψ→ (−ggrr)1/4
Ψ,

g = det (gαβ) .

We write down Dirac equation for fermions:

[γµ (∂µ − iqAµ)−m]ψ = 0,

here q and m are charge and mass as well, γ are Dirac matrices. Then, after separation of variables, on which the
equation coefficients don’t depend, we get:

ψ → e−iwt+ikxψ.

It is easy to obtain that:[
−i
√
−gttγt (w + qAt) +

√
grrγr∂r + i

√
gxxγxk −m

]
Ψ = 0 .

As in the usual Dirac theory, these equations are split into pairs. Writing through the Pauli matrices σ one pair of
equations we have: [√

−gttσ1 (w + qAt) +
√
grrσ3∂r + (−1)

α
i
√
gxxσ2k −m

]
Ψα = 0.

The asymptotic behavior of Dirac spinor in AdS5 has the following form:

ψα
r→∞−−−→ aαr

m

1

0

+ bαr
−m

0

1

.
The expected value of the boundary spinorial operator dual to the bulk spinor ψ can be written as:〈Oψ〉 =

(0, b1, 0, b2)T . In fact, Ow = 0.5 (1− γr)Ow, γr =

σ3 0

0 σ3

, which means that the boundary spinorial operator

is left-handed, where σ3 is the Pauli matrix. By imposing the in-falling boundary condition at the horizon, we can
obtain the retarded Green’s function as:

G =


0

G1

0

G2

 , Gα =
bα
aα
. (14)

Note that if we use the alternative quantization, the Green’s function has the form: Gα = −aα/bα, then the
spinor operator at the border is right-handed. If m = 0, G1 and G2 are related by G2 = −1/G1 [42]. Therefore,
the alternative quantization for G1 is the standard quantization for G2, and vice versa. Taking G1 and G2 into
account, the alternative quantization gives the same Fermi momenta as the standard quantization does at m = 0.

The fact that the corresponding Green’s functions in (14) are defined in the same manner as for the scalar
field Green’s functions in (11) has important significance. That is the general prescription of the Green’s function
construction for more complex theories as well.
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Let us consider equations for ψ1 = (u1, u2)
T and introduce u± = u1 ± iu2, then we get:

∂ru+ + h∗ (r)u+ = f∗ (r)u−,

∂ru− + h (r)u− = f (r)u+,

h (r) = i

√
−gtt
grr

(w + qAt) ,

f (r) =
m√
grr
− ik

√
gxx

gtt
.

From which, we finally obtain:

∂rru+ + p∗(r)∂ru+ + q∗(r)u+ = 0,

∂rru− + p(r)∂ru− + q(r)u− = 0,

p(r) = −∂rf(r)/f(r),

q(r) = |h(r)|2 − |f(r)|2 + p(r)h(r) + h(r).

For massless particles m = 0 and for the case when w ∝ 0 (q > 1/2), the solution can be written exactly:

u−(r) =

(
r

r + i
√

2Q

)ν(k)
(
r + i

√
2Q

r − i
√

2Q

)q/2
2F1

(
ν(k)− q + 1/2, ν(k); 2ν(k) + 1;

2r

r + i
√

2Q

)
,

ν(k) =
k√
2Q

.

(15)

Now, under w ∝ 0, we finally have:

G1 = lim
r→∞

(
−i

(−1)n+1u∗− − u−
(−1)n+1u∗− + u−

)
, n = q − ν(k)− 1/2.

Further calculations are performed, assuming that we have a precise analytical solution (15) for the case w ∝ 0,
we can develop perturbation theory and derive the Green’s function in the ordinary form for calculations in the
frame of AdS/CFT correspondence:

G(w, k) =
Z

−w + vF (k − kF )− c(kF )w2ν(k)
,

kF = kF (n) =
√

2Q(q − n− 1/2), n = 0, 1, 2, ..., |q − 1/2|.
(16)

Note that the formula (16) predicts few Fermi surfaces for the case of charge > 1/2.
The Green’s functional form, similar to the cited (16), is a typical form for computation in the framework of

AdS/CFT correspondence, and appears for other metrics as well [43, 44].

5. Further development of the approach

Further development of the AdS/CFT correspondence approaches proceeds in the same manner as the already-
existing solid state physics models’ application, but also the way of further extension of both metric and space
classes.

An approach for the Green’s functions calculation in the frame of AdS/CFT correspondence was evolved
in article [43], but for the case when metric was described by the metrics of the so-called Schrodinger black
hole. Unfortunately, the authors could not retrieve a compact enough analytic expression for the fermions Green’s
function and it was thus investigated numerically.

Generalization of AdS/CFT correspondence onto the case of D-branes and the use of the given description
for zero-point sound in strange metals investigation has been done in the paper [45]. This research obviously
demonstrates that methods under development can also be extended to more complex mathematical objects.

Research issues important for various applications of Feynman propagators were discussed in [46]. Note that
this paper is among one of the first on that subject.

In article [47], the application of AdS/CFT correspondence to study the transport in new-found Dirac semimet-
als was proposed [48, 49]. The authors succeeded in obtaining agreement with experimental data and explain
transport characteristics’ behavior in the critical zone.

In [50], the authors completed the natural generalization of the AdS/CFT correspondence for the case of
two interacting subsystems. In this instance, it was assumed that one subsystem consists of strongly interacting
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fermions, the Green’s function of which can be found in the framework of the AdS/CFT correspondence. Another
subsystem interacts with the first one quite weakly (i.e. it is possible to apply a standard diagram technique within
the confines of the perturbation theory) and its Green’s functions can be found by the perturbation theory.

Article [51] is dedicated to the application of the method under consideration to clarify the characteristics of
so-called zero-point sound in metals. For example, in [52], the authors used the standard method to derive an
expression for the zero-point sound parameters, having applied the Green’s functions followed from the correspon-
dence under discussion.

Investigation [53] is also of interest, as an approach to the Green’s functions calculation in the presence of
magnetic field was evolved in this work and prospects of this approach application in the Hall quantum effect
physics were discussed.

In our opinion, issues surrounding the Green’s function in an external magnetic field were more successfully
defined in [54], in which the Green’s function in an external magnetic field was obtained in the form similar to (16)
with momentum quantization which is identical to Landau quantization and experimentally observed characteristics
were estimated.

The important applications of cuprates physics were considered in publication [55], where an exploration of
mode stability was performed and in general, the Green’s function was shown to be stable and have the form
similar to (16).

The possibility for AdS/CFT correspondence application in high-temperature superconducting cuprates physics
was also considered in [56], where the appearance of mechanisms for Fermi arcs generation was investigated and
the Green’s functions were adduced with regard to strong quasiparticle decay.

The properties of universal thermal and electrical conductivity were investigated and research for Reissner-
Nordstrom black hole in arbitrary dimension was performed in the scientific work [57].

Article [58] is dedicated to the generalization of AdS/CFT correspondence approaches in the case of impurities
presence in system. The ways of impurity introduction and their correct description within suggested approach
were discussed.

Further description of impurities combined with semi-holographic approach was given in the paper [44].
Impurities were characterized as a subsystem weakly interacting with a system from which Green’s functions can
be determined using the AdS/CFT correspondence.

An important approach generalization for the case of an external periodic potential presence was done in
article [59]. The results can be useful for analysis of the non-Fermi liquids’ transport characteristics in external
periodic fields created by superstructures, for instance.

Some research [60] was dedicated to the Fermi surface structure within the framework of the proposed
approach. The polar motion of Green’s functions was also explored.

Detailed mathematical analysis of evolving problems in the approach under consideration and investigation of
important special cases were performed in [42]. Asymptotics of arising solutions and the case of final temperatures
were also analyzed in detail in this paper.

The features of non-Fermi liquids’ behavior and the unique characteristics of arising Green’s functions were
discussed in [61]. The behavior criteria of a non-Fermi electronic liquid were also mentioned there.

Non-Fermi liquids were also considered in [62]. This article is especially valuable because the authors adjusted
the calculations (analytical and numerical) to obtain the excitations dispersion laws. In particular, it was shown
that excitations with dispersion law ω ∝ k2.09±0.01 exist in Non-Fermi liquids.

A significant model of Fermi liquid was analyzed in [63]. In this article, the Luttinger relation was shown to
relate the area enclosed by the Fermi surfaces to the fermion density, which was derived from Gauss’s Law for the
bulk electric field. All low energy modes were demonstrated to be consistent with Landau’s Fermi liquid theory.

AdS/CFT correspondence was generalized for the case of M-theory in [64]. The charge transport properties
of 2 + 1 dimensional conformal field theories at non-zero temperature were considered. For the theory with
Abelian U(1) charges, the action of particle-vortex duality on the hydrodynamic-to-collisionless crossover function
was presented, leading to powerful functional constraints for self-dual theories.

The publication [65] was devoted to quantum dot investigation and consisted of a variety of model descriptions
in which AdS/CFT correspondence ideas can be used. The Kondo lattice models were also considered; they can be
described by mean-field theory obtained by mapping a quantum impurity coupled to a self-consistent environment.
Such a theory yields a ‘fractionalized Fermi liquid’ phase of conduction electrons coupled to a critical spin liquid
state, and is an attractive mean-field theory of strange metals.

The research [66] is also of interest, where a general hydrodynamic theory of transport was analyzed in the
vicinity of superfluid-insulator transitions in two spatial dimensions described by “Lorentz”-invariant quantum
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critical points. The exact results for the null frequency transport coefficients for a supersymmetric conformal field
theory, which is solvable by the AdS/CFT correspondence were also presented.

Propagation of the AdS/CFT correspondence ideas onto the case of the absolute zero phases of compressible
quantum matter was investigated in [67]. Fermi surfaces with the singularities of Landau’s Fermi liquid theory
have several phases, while other Fermi surfaces have non-Fermi liquid singularities. Compressible phases found
in models applicable to condensed matter systems were also argued to be present in models obtained by applying
chemical potentials.

An important application to calculate the relation of entropy to viscosity is given in the [68]. The viscosity
to entropy ratio has been shown to take on a very simple universal value in all gauge theories with the AdS/CFT
correspondence. Investigators described the origin of this universal ratio, and focused on how it is modified by
generic higher derivative corrections, corresponding to curvature corrections on the gravity side of the duality. In
particular, certain curvature corrections are known to push the viscosity to entropy ratio below its universal value.
This fact disproves a longstanding conjecture that such a universal value represents a strict lower bound for any
fluid in nature.

Consideration of the ratio of entropy to viscosity is also given in [69]. The existence of a sound mode, which is
described by hydrodynamics, even at energies much greater than the temperature, was shown. The authors explain
how these and other properties of the field theory are consistent with those of a (3+1)-dimensional Landau Fermi
liquid which is finely tuned to the Pomeranchuk critical point.

In article [70], the dynamics of few cycle optical pulses in non-Fermi liquid was considered. Energy spectrum
of non-Fermi liquid was taken from the AdS/CFT correspondence. Conditions of quasi-particle excitation existence
were defined. The non-Fermi liquid parameters’ impact on the shape of the few cycle pulses was estimated.

Paper [71] can be mentioned as an example of another application of the approach under consideration. The
indirect spin–spin interaction between impurities in a non-Fermi quantum liquid system is theoretically investigated
in this paper. The poles of the Green’s functions are shown to be responsible for the observed excitation spectra.
Specifically, the anti-de Sitter/conformal field theory (AdS/CFT) correspondence is used to gain access to the
analytical expressions of the Green’s functions for our particular problem. For example, the current-voltage
characteristic is determined by the imaginary part of the Green’s function. Great progress in the Green’s functions
calculation for different systems was made by the AdS/CFT correspondence between the conformal field theory
and the theory of superstrings [72].

Thus, the AdS/CFT correspondence is a powerful method to obtain Green’s functions in systems of strongly
interacting particles. The use of this method has made possible significant progress towards answering a number
of modern physics most vital questions.
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