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Development of an orbital-free approach for simulation
of multi-atomic nanosystems with covalent bonds
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On the example of the three-atomic clusters Al3, Si3, and C3, it is shown that an orbital-free version of the density functional theory may

be used for finding equilibrium configurations of multi-atomic systems with both metallic and covalent bonding. The equilibrium interatomic

distances, interbonding angles and binding energies are found to be in good agreement with known data.
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1. Introduction

A number of works (for instance [1–8]) have been devoted to the development of the orbital-free (OF) version
of the density functional theory (DFT) [9–13] over the last few years. This approach, in contrast to the Kohn–
Sham (KS) method, does not use the wave functions (orbitals) and operates with the only electron density. The OF
approach is the result of further development of the ideas of Hohenberg–Kohn [10]; i.e., that the basic state of a
quantum system can be completely described by means of electronic density. There has been significant progress
in the description of diatomic systems [8, 14, 15] and simple crystals [16]. However, an essential hindrance to
further development of the OF method is the fact that the electronic density of a single (isolated) atom is spherical,
i.e. the “orbital-free” atom has a shape of a ball, but balls form the close packed structures. For example, three
identical atoms are obliged to form an equilateral triangle with corners of 60 degrees. At the same time, it is
known that three atoms of silicon form an isosceles triangle with the main corner of about 80 degrees [17], atoms
of carbon build a linear chain [18], and atoms of aluminum really behave like balls – they form a correct equilateral
triangle [19]. The present work is an attempt to develop a technique which would allow us to adequately describe
the geometry of interatomic bonds in polyatomic systems within the OF approach.

2. A general description of the OF approach

As is well-known the DFT claims that the energy Eel of the ground state of any quantum system can be found
by minimization of some function which depends only on the electronic density of this system ρ:

Eel[ρ] = Ekin[ρ] + Eex[ρ] + Ec[ρ] + EH [ρ]−
∫
Vext(r)ρ(r)d3r, (1)

where Vext is an external potential, Ekin is kinetic energy, Eex is exchange energy, Ec is correlation energy, and
EH is Hartree energy:

EH [ρ] =
1

2

∫
ρ(r)ρ(r′)

|r− r′|
d3rd3r′.

The total energy Etot is given by integral:

Etot =

∫
Eel[ρ(r)]d3r. (2)

Minimization of (1) with the condition
∫
ρ(r)d3r = N means solving the following equation:

δEel[ρ]

δρ
− µ = 0, (3)

where µ is the Lagrange parameter gives one a sense of the electron chemical potential.
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Introducing F [ρ] =
δEel[ρ]

δρ
− µ, we obtain the equation:

F [ρ] ≡ −Vext(r) + ϕ(r) + µkin(ρ) + µex(ρ) + µc(ρ)− µ = 0, (4)

where ϕ(r) =

∫
ρ(r′)

|r− r′|
d3r′, µkin(ρ) =

δEkin[ρ]

δρ
, µex(ρ) =

δEex[ρ]

δρ
, µc(ρ) =

δEc[ρ]

δρ
.

There are some realistic approximations for exchange µex(ρ) and correlation µc(ρ) potentials; the potential
of the electron-electron repulsion ϕ(r) may be calculated using Fourier transformations or Poisson equations; the
external potential Vext(r) usually consists of atomic potentials or of pseudopotentials. The key problem is to find
the potential of kinetic energy – µkin(ρ). In the Kohn–Sham approach, this problem is absent because the kinetic
energy is calculated using electron orbitals (wave functions).

Quantum mechanical pseudopotentials are usually constructed for different angular states. Thus, we have to
present the total density as a sum of partial densities:

ρ = ρs + ρp + ρd + . . . . (5)

For the s-p case, we may write the equations:

Fs[ρs, ρ] ≡ −Vs(r) + ϕ(r) + µs
kin(ρs) + µex(ρ) + µc(ρ)− µs = 0,

Fp[ρp, ρ] ≡ −Vp(r) + ϕ(r) + µp
kin(ρp) + µex(ρ) + µc(ρ)− µp = 0,

(6)

where Vs(r) and Vp(r) are the s, p components of atomic pseudopotential. The electrostatic potential ϕ(r),
exchange and correlation potentials µex(ρ) and µc(ρ) are calculated through the total density ρ while partial kinetic
potentials µs

kin(ρs) and µp
kin(ρp) depend on corresponding partial densities ρs and ρp.

As designing of pseudopotentials is followed by the finding of equilibrium pseudo-wave functions, it is always
possible to calculate partial densities of the isolated atom ρs(r) and ρp(r), as well as its full equilibrium electronic
density ρ(r) = ρs(r) + ρp(r). If we know the type of these functions we could calculate energy Ekin and find the
total energy of a single atom using Eq. (2). However, there is no basis to believe that there are some functions
for kinetic functional and energy, which could be used for atoms of any type and any quantity. Moreover, as it
was recently shown [20], the Hohenberg–Kohn idea about the existence of a universal density functional leading
to the energy minimum was not strictly proved, and it is possible to say only about approximate solutions for the
problem. However, in our case, the problem consists not in finding of the energy of a single atom (this can be
done in more traditional ways), but in calculation of the energy of the interatomic interaction, and in finding the
geometry of the polyatomic system corresponding to this interaction.

3. From dimers to trimers: a role of quantum rules and restrictions

3.1. Dimers

For simplicity, we will consider dimers consisting of atoms of one type. The elementary approach for the
electronic density of such dimer ρdim is the sum of densities of the atoms:

ρdim(r) = ρat(r−RA) + ρat(r−RB), (7)

where RA and RB are coordinates of points in which the A and B atoms with densities ρat are situated.
Then, the binding energy (per one atom) would be calculated as follows:

Eb =
1

2
(Edim − 2Eat) , (8)

where Eat = Etot
at =

∫
Eel[ρat(r)]d3r,

Edim =

∫
Eel[ρdim(r)]d3r +

ZAZB

|RA −RB |
, (9)

ZA and ZB are the positive charges of atomic cores equal to absolute values of charges of valence electrons.
We took Al, Si, and C as test elements (for the reasons stated above: trimers of these elements have essentially

different geometric configurations). For all three elements we accepted the following function µkin(ρ) as the
universal function for s-and p-states and:

µkin(ρ) = 0.9ρ1/3 − 15ρ2. (10)

We used the FHI98pp [21] package as a generator of pseudo-potentials. We calculated exchange and correlation
potentials in the local density approach [19, 20]. The studied atoms were located in a cubic cell of the L size
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TABLE 1. Equilibrium distances d and binding energies Eb (absolute values, per atom) for Si2,
Al2 and C2 in comparison to known calculated data

Dimer Source of data d, Å Eb, eV

Our method 2.1 2.0

Si2 Other calculations 2.23a 1.97a

2.21b 1.599b

Our method 2.4 1.2

Al2 Other calculations 2.46c 1.0d

2.95e 1.23e

Our method 1.3 4.8

C2 Other calculations 1.247 – 1.367f 4.7f

1.316g 3.5g

Notations: a [17], b [25], c [23], d [19], e [27], f [28], g [29]

(L = 52 a.u.; 1 a.u. = 0.529 Å). The cell was divided into 128×18×128 elementary sub-cells for the integration
with the integration step ∆L of 0.406 a.u. Results of calculations were compared to the published data.

Calculated values of interatomic distances and binding energies for the Al2, Si2, and C2 dimers are collected
in Table 1 in comparison with known published data. It is clear that agreement is rather good.

3.2. Trimers

To describe the angle dependence of interatomic bonding, we must analyze the reasons for this dependence
in the standard quantum-mechanical approach, which uses wave functions and electronic states. For example, it
is specified in the work [24] that the angle peculiarities of a cluster Si3 are defined by the Yang–Teller effect,
which is caused by the existence of an energy gap between the occupied and empty states. In other words, the
differences in semiconductor and metal small cluster structures are connected with the difference of their bond
wave functions: namely, covalent atoms have localized functions oriented between nearest atoms, while metallic
atoms have dispersed functions without spatial orientation.

In our case, both wave functions and electronic states are absent, and therefore, we cannot speak about any
energy gap. In the OF approach, we deal only with the electronic density which defines all energies and structures
of the polyatomic system. However, the main quantum-mechanical rules still remain fair in this case. Besides
the Schrödinger’s (or Kohn–Sham) equations, out of which wave functions and electron states arise, we must not
forget Pauli’s principle which specifies that in one quantum state there can be only two electrons (without taking
into account spin). In our case, this principle may be paraphrased in the following way: a covalent bond is formed
by two electrons, the common wave function of which is localized in the space between two nearest atoms. It
is obvious that the quantity of the electrons which are responsible for this bond doesn’t change as the distance
between atoms changes (if, of course, the bond isn’t broken at all and the electronic structure isn’t completely
reconstructed). In the case of metals, the conduction states are close each other and electrons can easily “flow”
from one state to another during the changing of atomic geometry.

The above-mentioned concepts may be reformulated in the language of the electronic density: the density
integral (nint) between atoms with covalent bonding, has to remain its value with a change of distance between
atoms; in the case of metal bonding, the integral nint can have any possible value.

Certainly, there is a question: on what space do we have to provide integration, and what do we have to do
with intermediate cases, with atoms of different types? We will leave these questions for the future, and now we
will try to explain the differences in the structures of covalent and metal systems using the following homogeneous
clusters Al3, Si3 and C3 as examples.

It is obvious that the space of integration has to be rather local, and at the same time, it has to give us the
information on quantity of the electrons included in a covalent bond. In the present work we used the space having
a shape of the slab situated between two nearest atoms (Fig. 1) and oriented perpendicularly to the plane in which
the trimer triangle is placed. The thickness of a slab was taken as 2∆L. As the number of the integration points
can be changed with a change in the trimer configuration, the value of nint was normalized to one point.
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FIG. 1. The scheme for the arrangement of atoms in a trimer. Dashed lines show the space on
which the electronic density is integrated for definition the number of the electrons involved in
the covalent bond; α is a corner between bonds with identical lengths of d

The electronic density of the trimer ρtrim may be found as follows:

ρtrim(r) = ρat(r−RA) + ρat(r−RB) + ρat(r−RC), (11)

where RA, RB , and RC are coordinates of points in which the A, B, and C atoms with densities ρat are situated.
The binding energy is:

Eb =
1

3
(Etrim − 3Eat) , (12)

where

Etrim =

∫
Eel[ρtrim(r)]d3r +

ZAZB

|RA −RB |
+

ZAZC

|RA −RC |
+

ZBZC

|RB −RC |
, (13)

ZA and ZB are the positive charges of atomic cores equal to absolute values to charges of valence electrons.

Let us take the interatomic bond in a dimer as a standard. Let us call the value P =
ntrimer
int

ndimer
int

(the relation

of nint of trimer to nint of dimer) as “the bonding strength” and accept that for covalent bonds, the value of P
shouldn’t exceed 1.0 with a change of distance between atoms. For metallic bonds, P can have any possible value.

Calculated values P for clusters Al3, Si3, and C3 are presented in Fig. 2 as functions of the angle between
interatomic bonds in the case when restrictions on these values are absent. For each angle, we found the values
of interatomic distances, which corresponded to the minimum of the total energy of the cluster. One can see that
P is approximately 1.0 at α = 180 ◦ and increases when α approaches 60 ◦. The maximum value (P = 1.40) is
observed for carbon, which has the smallest interatomic distances. Interatomic distances in aluminum and silicon
are approximately the same, therefore it should come as no surprise that the “bonding strengths” for the Al3 and
Si3 trimers are approximately equal.

We repeated the calculations using thicker slabs (4∆L and 8∆L) for integration of nint(dimer) and nint(trimer)
values between atoms in dimers and trimers and we found that results changed by no more than by 2 per cent.

In Figure 3 (curve A), we present the results for calculations of binding energies for the Al3, Si3 and C3

trimers without restriction of the “bonding strengths”. From these curves it is clear that in all three cases, the
maxima of the binding energy (on the absolute value) correspond to triangular clusters, “bonding strengths” in
which significantly exceed the corresponding values, characteristic for linear chains. This result looks natural for
aluminum as its states have the metallic, not localized character; but for the clusters of Si3 and C3 having covalent
bonds it is necessary to introduce restrictions on values of P stipulated above. We have taken into account this
condition (P = 1) and found dependences of the binding energy on the angle between bonds in the Si3 and C3

clusters (Fig. 3, curve B). One can see that atoms of carbon seek to form linear chains, while for silicon, neither
a linear chain, nor an equilateral triangle is energetically favorable; atoms of silicon prefer to form an isosceles
triangle with the angle α of 80 degrees.

Equilibrium values for interatomic distances d, angles α, and binding energies Eb for the trimers Al3, Si3,
and C3 are collected in Table 2 (calculated for the condition P = 1) in comparison with known data. One can
see that comparison is good. Thus, we showed that an orbital-free approach is capable of correctly describing the
orientations of interatomic bonds in atomic clusters, as well as values of interatomic distances and binding energies.

Certainly, it is interesting to compare our results for interatomic densities with results of standart DFT-KS
calculations. For this purpose, we calculated “bonding strentghs” P for Si3 and Al3 using the popular DFT-KS
code FHI96md [31] for the same triangles as were studied above. We have found that P were equal 1 (±0.02) for
all cases for Si3, but it increased up to 1.3 for the Al3 equilateral triangle. These results are in excellent agreement
with ours.
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FIG. 2. “The bonding strengths” in the
Al3, Si3 and C3 trimers as functions of
the corner between interatomic bonds
in the case when there are no restric-
tions on the interatomic electron den-
sity

FIG. 3. Calculated dependence of
binding energy (on atom) on the an-
gle between interatomic bonds for the
Al3, Si3 and C3 trimers. A) Values are
obtained without restrictions on elec-
tronic density in interatomic bonds;
B) values calculated with the condition
P = 1.0

TABLE 2. Equilibrium distances d, angles α and binding energies Eb (absolute values, per atom)
for Si3, Al3 and C3 in comparison with known calculated data

Trimer Source of data α, deg d, Å Eb, eV

Our method ≈80 2.1 3.7

Si3 Other calculations 77.8a 2.26b 2.51b

78.10c 2.177c 2.93d

79.6e

Our method 60 2.3 2.4

Al3 Other calculations 60f 2.50f 1.74g

60h 2.55h 1.96f

Our method 180 1.2 7.0

C3 Other calculations 180i 1.29j 6.8i

180k 1.3k 5.0l

1.316l

Notations: a [17], b [25], c [30], d [31], e [32], f [27], g [19], h [33], i [18], j [30], k [28], l [29]

4. Conclusion

We showed that the use of the restriction principle for the interatomic density (following from Pauli’s principle)
allows us to correctly describe the angular dependences of the interatomic bonding in polyatomic clusters within
the orbital-free version of the density functional theory. In particular, it is possible to show that for the Al3 cluster,
the equilateral triangle is favorable; the Si3 trimer is characterized by an isosceles triangle with angles of 80 and
50 degrees, and the three atoms of carbon are present as a linear chain. Calculated equilibrium interatomic distances
and binding energy values are in fair agreement with known data. As the problem of correctly describing the angles
between interatomic bonds is a key point in the modeling of polyatomic systems, it is possible to consider that our
work opens a direct way to design an effective method for modeling of big nanosystems and supermolecules.

We have to note that the consideration which is carried out above is directly applicable only to the systems
consisting of identical atoms and requires a special development for application to more complicated systems.
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