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Professor Boris Pavlov passed away on 30 January 2016.
Boris Pavlov was born in Kronshtadt, Russia, 27 July 1936. He graduated from Physical faculty of Leningrad

State University in 1958 and continued to work at the Department of Mathematical Physics. His PhD thesis (1964,
Supervisor – M. S. Birman) was devoted to investigation the spectrum of non-self-adjoint operator −y′′ + qy. Ten
years later, his PhD Thesis was followed by a Doctoral dissertation in Mathematical Analysis: “Dilation Theory
and Spectral Analysis of Nonselfadjoint Differential Operators”. He was a Vice-rector (Research) of Leningrad
University [1978–1981 and at the same time [1978–1982], he had a Chair of Mathematical Analysis at the Faculty
of Mathematics and Mechanics of Leningrad State University. Later [1982–1995] he worked as a Professor at the
department of Higher Mathematics and Mathematical Physics, Physics Faculty. The year 1995 was a branching
point for him. He held a Personal Chair in Pure Mathematics at the University of Auckland from 1994 to 2007,
however, he did not break his connections with Russia. From 1995 he was a Chief of Complex Systems Theory
Laboratory at Physical Faculty. Since 2009, he was a member of the then newly formed Institute for Advanced
Study at Massey University Albany.

B. S. Pavlov was well known for his high level of scholarship in diverse areas of analysis. He became a
Fellow of the Royal Society of New Zealand in 2004 and a member of the Russian Academy of Natural Sciences
in 2010. B. S. Pavlov leaves behind his wife Irina, a daughter and a son.

The highest scientific achievements of B. S. Pavlov (as he himself felt) are:

• Spectral theory of singular differential non-selfadjoint operators, 1962.
• Riesz-basis property of exponentials on a finite interval, 1979.
• Operator-theory interpretation of critical zeros of the Riemann zeta-function, 1972.
• Symmetric Functional Model for dissipative operators, 1979.
• Zero-range potentials with inner structure and solvable models, 1984.
• Theory of the shift operator on a Riemann surface, jointly with S. Fedorov. 1987.
• Modified analytic perturbation procedure (“Kick-start”) for operators with eigenvalues embedded into

continuous spectrum, 2005.
• Fitting of zero-range solvable model of a quantum network based on rational approximation of the Dirichle-

to-Neumann map of the original Hamiltonian, 2007.
• Fitted solvable model of the stressed tectonic plate, in connection with prediction of powerful earthquakes,

jointly with L. Petrova, 2008.
• Quasi-relativistic dispersion and high mobility of electrons in Si-B sandwich structures, jointly with

N. Bagraev, 2009.
• Theoretical interpretation of the low-threshold field emission from carbon nano-clusters, jointly with

Y. Fursey and A. Yafyasov, 2010.
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He supervised more than 30 students. Among them were:

1. V. L. Oleinik, Master,PhD student 1965–1971 (Associate Professor, St. Petersburg University)
2. S. V. Petras, Master,PhD student 1965–1970 (Associate Professor, St. Petersburg University of Economics)
3. M. G. Suturin, Master,PhD student 1966–1971 (Associate Professor, St. Petersburg Institute for Airspace

devices)
4. S. N. Naboko, Master, PhD student 1969–1976 (Full Professor, St. Petersburg University)
5. S. A. Avdonin, Master,PhD student 1969–1980 (Full Professor, the Univ. of Fairbancs, Alaska)
6. M. A.Shubova, Master,PhD student 1969–1982 (Full Professor, the University of New Hampshire, USA)
7. S. A. Ivanov, Master, PhD student 1972–1978 (Research worker at the Institute of Terrestrial Magnetism

RAS, St. Petersburg)
8. I. Yu. Popov, Master, PhD student 1974–1978 (full Professor, Chair of Higher Mathematics, ITMO Univer-

sity, St. Petersburg)
9. Yu. A. Kuperin, Master student 1975–1978 (Doctor of Science, Full Professor, St. Petersburg University)
10. Y. E. Karpeshina, Master,PhD student 1975–1985 (Full Professor, Birmingham University, Alabama, USA)
11. K. A. Makarov, Master, PhD student 1976–1982 (Full professor, Univ. Missouri-Columbia)
12. S. E. Cheremshantsev, Master, PhD student 1976–1982 (Full Professor, Chair of Higher Mathematics,

Orlean University, France)
13. A. V. Rybkin, Master, PhD student 1977–1982 (Full Professor, Univ. of Fairbancs, Alaska)
14. A. V. Strepetov, Master, PhD student 1978–1986 (St. Petersburg Institute of Airspace devices, St. Peters-

burg, Russia)
15. M. D. Faddeev, PhD student 1982–1985. (Associate Professor in St. Petersburg University)
16. P. B. Kurasov, Master, PhD student 1981–1987 (Associate Professor, Doctor of science, now in Lund

University, Sweden)
17. A. E. Ryzhkov, Master, PhD student 1974–1980 (Associate Professor, ITMO University, St. Petersburg)
18. V. A. Evstratov, Master, PhD student 1984–1992 (Assistant Professor St. Petersbufg University till 1994.

Now in business)
19. A. A. Shushkov, PhD student 1984–1987 (Assistant Professor St. Petersbufg University till 1991, now

somewhere in Canada)
20. N. I. Gerasimenko, PhD student 1985–1987 (Associate Professor at the Higher Military School, St.

Petersburg)
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21. M. M. Pankratov, Master, PhD student 1987–1991 (Insurance Company, Switzerland.)
22. S. V. Frolov, Master, PhD student 1988–1993 (Doctor of Technology, Full Professor, ITMO University,

St.Petersburg)
23. A. A. Pokrovski, Master, PhD student 1990–1995 (Research worker at the Institute for Physics of St.

Petersburg University, St. Petersburg, Russia)
24. R. Killip, Master, PhD student, the Univ of Auckland 1994–1996 (Associate Professor, UCLA, Los-

Angeles, USA)
25. J. Mac-Cormick, Master student, the Univ. of Auckland 1994–1995 (Research worker in Computer Design

Laboratory UCLA)
26. A. Kraegeloh, Master thesis, the Univ. of Auckland 1995–1997 (Insurance company, Germany)
27. M. Harmer, Master,PhD student Auckland 1996–2000 (Post Doc., Prague)
28. A. B. Mikhailova, Master student 2000–2001, St-Petersburg Univ. (Research worker at the Institute for

Physics of St. Petersburg University)
29. S. Mau, Master student, 1999–2002, the Univ of Auckland (PhD student, New York Univ., USA)
30. S. Marshall, Master student, the Univ of Auckland 2004–2006 (PhD student at Princeton)
31. S. Dillon, Master thesis, the Univ of Auckland, 2005–2007 (PhD at Massey Uni. NZ)

The scientific interests of B. S. Pavlov were very wide, ranging from quantum physics to earthquakes. But
were not his only interests. He liked kayak travels and alpine skiing. Everybody knew him as a good painter. In
this article, you can see his self-portrait. For his students, if they had a problem, they could visit Boris Sergeevich,
as his door was always open and he would help them using all his abilities and talents. He was kind and wonderful
person, a teacher in science and in life. We will never forget him.

To show particular remarkable features of B.S.Pavlov, we include here a few memories from his former
students.

A. Kiselev. I had the good fortune to study with Boris Sergeevich Pavlov for several years after I transferred
from LITMO to SPbGU in 1989. Boris Sergeevich had set my early direction in mathematics, suggesting problems
to work on and topics to study. However, he did much more than that; he truly cared about his students, and
provided support and advice not only professionally but in other aspects of life. More than anything, though, he
influenced me through his personal example of doing mathematics. For him, mathematics was something to live
and breathe, something to enjoy with friends and students. Boris Sergeevich treated his classes as performances,
including a bit of occasional improvisation, making those instances some of the most inspiring moments I saw.
He liked to say that mathematics is an experimental science. This way of thinking about mathematics – that one
should build models, experiments, tirelessly explore the entire landscape surrounding the problem of interest – has
become part of my mathematical DNA.

Boris Sergeevich was very generous and gentle with me, but he did not hesitate to provide precise feedback
when something needed fixing. I remember my first ever presentation of research paper which I read in order to
start working on my own problem. Within five minutes of the start Boris Sergeevich yawned and stopped me and
explained that he does not need me to faithfully reproduce all the details. I am not at an exam now – what is the
idea? This way my boring report quickly turned into a lively discussion. I am afraid that I could not tell the main
idea, however Boris Sergeevich did not let us fail and helped me formulate it in the end (I am pretty sure now he
figured it out long before I did but made me discover it myself). Every one of such interactions has been priceless
for me. The friendly, supportive and wise guidance of Boris Sergeevich came at a key time in my education and
truly helped me grow as a mathematician.

P. Kurasov. I would like to mention B. S. Pavlov’s precepts for young scientists:
Do other things than other researchers;
Use other ways than other researchers;
Look sharp during your research;
Read, but do not read much, otherwise you will not be read;
Do not disregard negative results;
Do not “cram your results into explanation” before you have checked it carefully.

This article bibliography contains the papers of B. S. Pavlov in Refereed Journals.
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1. Introduction

In this paper we investigate resonances and bound states of the self-adjoint Hamiltonian Hε acting in the
Hilbert space L2(R2) and corresponding to the formal differential expression

−∂2
x −

1

2

(
∂2
y + y2)−

√
2εyδ(x) on R2, (1.1)

in the sub-critical regime, ε ∈ (0, 1). The operator Hε will be rigorously introduced in Section 1.1 below. Operators
of this type were suggested by U. Smilansky in [1] as a model of irreversible quantum system. His aim was to
demonstrate that the ‘heat bath’ need not have an infinite number of degrees of freedom. On a physical level of
rigor he showed that the spectrum undergoes an abrupt transition at the critical value ε = 1. A mathematically
precise spectral analysis of these operators and their generalizations has been performed by M. Solomyak and
his collaborators in [2–8]. Time-dependent Schrödinger equation generated by Smilansky-type Hamiltonian is
considered in [9].

By now many of the spectral properties of Hε are understood. On the other hand, little attention has been
paid so far to the fact that such a system can also exhibit resonances. The main aim of this paper is to initiate
investigation of these resonances starting from demonstration of their existence. One of the key difficulties is that
this model belongs to a class wherein the resolvent extends to a Riemann surface having uncountably many sheets.
The same complication appears e.g. in studying resonances for quantum waveguides [10–13], [14, §3.4.2] and for
general manifolds with cylindrical ends [15, 16].

In this paper, we prove the existence and obtain a characterization of resonances of Hε on a countable subfamily
of sheets whose distance from the physical sheet is finite in the sense explained below. On any such sheet we
characterize a region which is free of resonances. As ε → 0+, the resonances on such sheets are localized in the
vicinities of the thresholds νn = n + 1/2, n ∈ N. We obtain a description of the subset of the thresholds in the
vicinities of which a resonance exists for all sufficiently small ε > 0 and derive asymptotic expansions of these
resonances in the limit ε → 0+. No attempt has been made here to define and study resonances on the sheets
whose distance from the physical sheet is infinite.

As a byproduct, we obtain refined properties of the bound states of Hε using similar methods as for resonances.
More precisely, we obtain a lower bound on the first eigenvalue of Hε and an asymptotic expansion of the weakly
coupled bound state of Hε in the limit ε→ 0+.

Methods developed in this paper can also be useful to tackle resonances for the analog of Smilansky model
with regular potential which is suggested in [17] and further investigated in [18, 19].
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Notations

We use notations N := {1, 2, . . . } and N0 := N∪{0} for the sets of positive and natural integers, respectively.
We denote the complex plane by C and define its commonly used sub-domains: C× := C \ {0}, C± := {λ ∈
C : ± Imλ > 0} and Dr(λ0) := {λ ∈ C : |λ − λ0| < r}, D×r (λ0) := {λ ∈ C : 0 < |λ − λ0| < r}, Dr := Dr(0),
D×r := D×r (0) with r > 0. The principal value of the argument for λ ∈ C× is denoted by arg λ ∈ (−π, π]. The
branches of the square root are defined by:

C× 3 λ 7→ (λ)
1/2
j := |λ|1/2ei((1/2) arg λ+jπ), j = 0, 1.

If the branch of the square root is not explicitly specified, we understand the branch (·)1/2
0 by default. We also set

0 = (0, 0) ∈ C2.
The L2-space over Rd, d = 1, 2, with the usual inner product is denoted by (L2(Rd), (·, ·)Rd) and the L2-based

first order Sobolev space by H1(Rd), respectively. The space of square-summable sequences of vectors in a Hilbert
space G is denoted by `2(N0;G). In the case that G = C we simply write `2(N0) and denote by (·, ·) the usual
inner product on it.

For ξ = {ξn} ∈ `2(N0), we adopt the convention that ξ−1 = 0. Kronecker symbol is denoted by δnm,
n,m ∈ N0, we set en := {δnm}m∈N0 ∈ `2(N0), n ∈ N0, and adopt the convention that e−1 := {0}. We understand
by diag({qn}) the diagonal matrix in `2(N0) with entries {qn}n∈N0

and by J({an}, {bn}) the Jacobi matrix in
`2(N0) with diagonal entries {an}n∈N0

and off-diagonal entries {bn}n∈N1. We also set J0 := J({0}, {1/2}).
By σ(K), we denote the spectrum of a closed (not necessarily self-adjoint) operator K in a Hilbert space.

An isolated eigenvalue λ ∈ C of K having finite algebraic multiplicity is a point of the discrete spectrum for K;
see [23, §XII.2] for details. The set of all the points of the discrete spectrum for K is denoted by σd(K) and the
essential spectrum of K is defined by σess(K) := σ(K)\σd(K). For a self-adjoint operator T in a Hilbert space, we
set λess(T) := inf σess(T) and, for k ∈ N, λk(T) denotes the k-th eigenvalue of T in the interval (−∞, λess(T)).
These eigenvalues are ordered non-decreasingly with multiplicities taken into account. The number of eigenvalues
with multiplicities of the operator T lying in a closed, open, or half-open interval ∆ ⊂ R satisfying σess(T)∩∆ = ∅
is denoted by N (∆;T). For λ ≤ λess(T) the counting function of T is defined by Nλ(T) := N ((−∞, λ);T).

1.1. Smilansky Hamiltonian

Define the Hermite functions:

χn(y) := e−y
2/2Hn(y), n ∈ N0. (1.2)

Here, Hn(y) is the Hermite polynomial of degree n ∈ N0 normalized by the condition ‖χn‖R = 12. For more
details on Hermite polynomials see [20, Chap. 22] and also [21, Chap. 5]. As it is well-known, the family
{χn}n∈N0

constitutes an orthonormal basis of L2(R). Note also that the functions χn satisfy the three-term
recurrence relation: √

n+ 1χn+1(y)−
√

2yχn(y) +
√
nχn−1(y) = 0, n ∈ N0, (1.3)

where we adopt the convention χ−1 ≡ 0. The relation (1.3) can be easily deduced from the recurrence relation [20,
eq. 22.7.13] for Hermite polynomials. By a standard argument any function U ∈ L2(R2) admits unique expansion:

U(x, y) =
∑
n∈N0

un(x)χn(y), un(x) :=

∫
R

U(x, y)χn(y)dy, (1.4)

where {un} ∈ `2(N0;L2(R)). Following the presentation in [7], we identify the function U ∈ L2(R2) and the
sequence {un} and write U ∼ {un}. This identification defines a natural unitary transform between the Hilbert
spaces L2(R2) and H := `2(N0;L2(R)). For the sake of brevity, we denote the inner product on H by 〈·, ·〉. Note
that the Hilbert space H can also be viewed as the tensor product `2(N0)⊗ L2(R).

For any ε ∈ R, we define the subspace Dε of H as follows: an element U ∼ {un} ∈ H belongs to Dε if, and
only if

(i) un ∈ H1(R) for all n ∈ N0;

(ii) {−(u′′n,+ ⊕ u′′n,−) + νnun} ∈ H with un,± := un|R± and νn = n+ 1/2 for n ∈ N0;

1We do not distinguish between Jacobi matrices and operators in the Hilbert space `2(N0) induced by them, since in our considerations all
the Jacobi matrices are bounded, closed, and everywhere defined in `2(N0).

2This normalization means that Hn(y) is, in fact, a product of what is usually called the Hermite polynomial of degree n ∈ N0 with a
normalization constant which depends on n.
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(iii) the boundary conditions

u′n(0+)− u′n(0−) = ε
(√
n+ 1un+1(0) +

√
nun−1(0)

)
are satisfied for all n ∈ N0. For n = 0 only the first term is present on the right-hand side.

By [7, Thm. 2.1], the operator:

domHε := Dε, Hε{un} := {−(u′′n,+ ⊕ u′′n,−) + νnun}, (1.5)

is self-adjoint in H. It corresponds to the formal differential expression (1.1). Further, we provide another way of
defining Hε which makes the correspondence between the operator Hε and the formal differential expression (1.1)
more transparent. To this aim, we define the straight line Σ := {(0, y) ∈ R2 : y ∈ R}. Then, the Hamiltonain Hε,
ε ∈ (−1, 1), can be alternatively introduced as the unique self-adjoint operator in L2(R2) associated via the first
representation theorem [22, Thm. VI.2.1] with a closed, densely defined, symmetric, and semi-bounded quadratic
form:

hε[u] := ‖∂xu‖2R2 +
1

2
‖∂yu‖2R2 +

1

2
(yu, yu)R2 + ε

√
2
(

sign (y)|y|1/2u|Σ, |y|1/2u|Σ
)
R
,

dom hε :=
{
u ∈ H1(R2) : yu ∈ L2(R2), |y|1/2(u|Σ) ∈ L2(R)

}
.

(1.6)

For more details and for the proof of equivalence between the two definitions of Hε, see [7, §9]. Since Hε
commutes with the parity operator in y-variable, it is unitarily equivalent to H−ε. We remark that the case ε = 0
admits separation of variables. Thus, it suffices to study Hε with ε > 0.

In the following proposition, we collect fundamental spectral properties of Hε, ε ∈ (0, 1), which are of
importance in the present paper.

Proposition 1.1. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Then the following claims hold:

(i) σess(Hε) = [1/2,+∞);

(ii) inf σ(Hε) ≥
1− ε

2
;

(iii) 1 ≤ N1/2(Hε) <∞;

(iv) N1/2(Hε) = 1 for all sufficiently small ε > 0.

Items (i)–(iii) follow from [6, Lem 2.1] and [7, Thm. 3.1 (1),(2)]. Item (iv) is a consequence of [6, Thm. 3.2]
and [7, §10.1]. Although we only deal with the sub-critical case, ε ∈ (0, 1), we remark that in the critical case,
ε = 1, the spectrum of H1 equals to [0,+∞) and that in the sup-critical case, ε > 1, the spectrum of Hε covers
the whole real axis. Finally, we mention that in most of the existing literature on the subject not ε > 0 itself but
α =
√

2ε is chosen as the coupling parameter. We choose another normalization of the coupling parameter in order
to simplify formulae in the proofs of the main results.

1.2. Main results

While we are primarily interested in the resonances, as indicated in the introduction, we have also a claim
to make about the discrete spectrum which we present here as our first main result and which complements the
results listed in Proposition 1.1.

Theorem 1.2. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Then the following claims hold.

(i) λ1(Hε) ≥ 1−
√

1

4
+ ε4 for all ε ∈ (0, 1).

(ii) λ1(Hε) = ν0 −
ε4

16
+O(ε5) as ε→ 0+.

Theorem 1.2 (i) is proven by means of Birman–Schwinger principle. The bound in Theorem 1.2 (i) is non-trivial
for ε4 < 3/4. This bound is better than the one in Proposition 1.1 (ii) for small ε > 0.

For the proof of Theorem 1.2 (ii) we combine Birman-Schwinger principle and the analytic implicit function
theorem. We expect that the error term O(ε5) in Theorem 1.2 (ii) can be replaced by O(ε6) because the operator
Hε has the same spectral properties as H−ε for any ε ∈ (0, 1). Therefore, the expansion of λ1(Hε) must be
invariant with respect to interchange between ε and −ε. In Lemma 4.1 given in Section 4 we derive an implicit
scalar equation on λ1(Hε). This equation gives analyticity of ε 7→ λ1(Hε) for small ε. It can also be used to
compute higher order terms in the expansion of λ1(Hε). However, these computations might be quite tedious.
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Our second main result concerns the resonances of Hε. Before formulating it, we need to define the resonances
rigorously. Let us consider the sequence of functions:

rn(λ) := (νn − λ)1/2, n ∈ N0. (1.7)

Each of them has two branches rn(λ, l) := (νn − λ)
1/2
l , l = 0, 1. The vector-valued function R(λ) =

(r0(λ), r1(λ), r2(λ), . . . ) naturally defines the Riemann surface Ẑ with uncountably many sheets. With each
sheet of Ẑ we associate the set E ⊂ N0 and the characteristic vector lE defined as:

lE := {lE0 , lE1 , lE2 , . . . }, lEn :=

{
0, n /∈ E,
1, n ∈ E.

(1.8)

We adopt the convention that lE−1 = 0. The respective sheet of Ẑ is convenient to denote by ZE . Each sheet ZE
of Ẑ can be identified with the set C \ [ν0,+∞) and we denote by Z±E the parts of ZE corresponding to C±. With
the notation settled, we define the realization of R(·) on ZE as:

RE(λ) := (r0(λ, lE0 ), r1(λ, lE1 ), r2(λ, lE2 ), . . . ). (1.9)

The sheets ZE and ZF are adjacent through the interval (νn, νn+1) ⊂ R, n ∈ N0, (ZE ∼n ZF ), if their
characteristic vectors lE and lF satisfy:

lFk = 1− lEk , for k = 0, 1, 2, . . . , n

lFk = lEk , for k > n.

We set ν−1 = −∞ and note that any sheet ZE is adjacent to itself through (ν−1, ν0). In particular, the function
λ 7→ RE(λ) turns out to be componentwise analytic on the Riemann surface Ẑ.

The sequence E = {E1, E2, . . . , EN} of subsets of N0 is called a path if for any k = 1, 2, . . . , N − 1 the
sheets ZEk

and ZEk+1
are adjacent. The following discrete metric:

ρ(E,F ) := inf{N ∈ N0 : E = {E1, E2, . . . , EN}, E1 = E,EN = F}, (1.10)

turns out to be convenient. The value ρ(E,F ) equals the number of sheets in the shortest path connecting ZE
and ZF . Note that for some sheets ZE and ZF a path between them does not exist and in this case we have
ρ(E,F ) =∞. We identify the physical sheet with the sheet Z∅ (for E = ∅). A sheet ZE of Ẑ is adjacent to the
physical sheet Z∅ if ρ(E,∅) = 1 and it can be characterised by existence of N ∈ N0 such that lEn = 1 if, and
only ifn ≤ N . Also, we define the component:

Z̃ := ∪E∈EZE ⊂ Ẑ, E := {E ⊂ N0 : ρ(E,∅) <∞}, (1.11)

of Ẑ which plays a distinguished role in our considerations. Any sheet in Z̃ is located on a finite distance from the
physical sheet with respect to the metric ρ(·, ·). The component Z̃ of Ẑ in (1.11) can alternatively be characterized
as:

Z̃ = ∪F∈FZF , F := {F ⊂ N0 : sup{n ∈ N0 : lFn = 1} <∞}. (1.12)

The number of the sheets in Z̃ is easily seen to be countable. In order to define the resonances of Hε on Z̃, we
show that the resolvent of Hε admits an extension to Z̃ in a certain weak sense.

Proposition 1.3. For any u ∈ L2(R) and n ∈ N0 the function:

λ 7→ r∅n,ε(λ;u) :=
〈
(Hε − λ)−1u⊗ en, u⊗ en

〉
(1.13)

admits unique meromorphic continuation rEn,ε(·;u) from the physical sheet Z∅ to any sheet ZE ⊂ Z̃.

The proof of Proposition 1.3 is postponed until Appendix. Now we have all the tools to define resonances of
Hε on Z̃.

Definition 1.4. Each resonance of Hε on ZE ⊂ Z̃ is identified with a pole of rEn,ε(·;u) for some u ∈ L2(R) and
n ∈ N0. The set of all the resonances for Hε on the sheet ZE is denoted by RE(ε).

Our definition of resonances for Hε is consistent with [23, §XII.6], see also [14, Chap. 2] and [24] for multi-
threshold case. It should be emphasized that by the spectral theorem for self-adjoint operators the eigenvalues of
Hε are also regarded as resonances in the sense of Definition 1.4 lying on the physical sheet Z∅. This allows us to
treat the eigenvalues and ‘true’ resonances on the same footing. Needless to say, bound states and true resonances
correspond to different physical phenomena and their equivalence in this paper is merely a useful mathematical
abstraction.
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According to Remark 2.5 below, the set of the resonances for Hε on ZE is symmetric with respect to the
real axis. Thus, it suffices to analyze resonances on Z−E . Now, we are prepared to formulate the main result on
resonances.

Theorem 1.5. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Let the sheet ZE ⊂ Z̃ of the Riemann
surface Ẑ be fixed. Define the associated set by:

S(E) :=
{
n ∈ N : (lEn−1, l

E
n , l

E
n+1) ∈ {(1, 0, 0), (0, 1, 1)}

}
.

Let RE(ε) be as in Definition 1.4 and set R−E(ε) := RE(ε) ∩ C−. Then, the following claims hold:

(i) R−E(ε) ⊂ U(ε) :=
{
λ ∈ C− : |νn−1 − λ||νn − λ| ≤ ε4n2, ∀n ∈ N

}
.

(ii) For any n ∈ S(E) and sufficiently small ε > 0 there is exactly one resonance λEn (Hε) ∈ C− of Hε on Z−E
lying in a neighbourhood of νn, with the expansion

λEn (Hε) = νn −
ε4

16

[
(2n+ 1) + 2n(n+ 1)i

]
+O(ε5), ε→ 0 + . (1.14)

(iii) For any n ∈ N \ S(E) and all sufficiently small ε, r > 0

R−E(ε) ∩ Dr(νn) = ∅.

FIG. 1.1. The region U(0.12) (for ε = 0.12) from Theorem 1.5 (i) (in grey) consists of 6
connected components. The components located in the neighbourhoods of the points ν0, ν1, ν2,
ν3, are not visible because of being too small. The plot is performed with the aid of Sagemath.

In view of Theorem 1.5 (i) for sufficiently small ε > 0, the resonances of Hε on any sheet of Z̃ are located in
some vicinity of the thresholds νn (see Figure 1.1). Such behavior is typical for problems with many thresholds;
see e.g. [11, 13] and [14, §2.4, 3.4.2]. Note also that the estimate in Theorem 1.5 (i) reflects the correct order in ε
in the weak coupling limit ε → 0+ given in Theorem 1.5 (ii). However, the coefficient of ε4 in the definition of
U(ε) can be probably improved. Observe also that R−E(ε) ⊂ U(1) for any ε ∈ (0, 1).

According to Theorem 1.5 (ii)–(iii), the existence of a resonance near the threshold νn, n ∈ N, on a sheet ZE
for small ε > 0 depends only on the branches chosen for rn−1(λ), rn(λ), rn+1(λ) on ZE . Although, one cannot
exclude that higher order terms in the asymptotic expansion (1.14) depend on the branches chosen for other square
roots. By exactly the same reason as in Theorem 1.2 (ii), we expect that the error term O(ε5) in Theorem 1.5 (ii)
can be replaced by O(ε6). Theorem 1.5 (ii)–(iii) are proven by means of the Birman-Schwinger principle and
the analytic implicit function theorem. The implicit scalar equation on resonances derived in Lemma 4.1 gives
analyticity of ε 7→ λEn (Hε) for small ε > 0 and, as in the bound state case, it can be used to compute further terms
in the expansion of λEn (Hε).

We point out that according to numerical tests that we performed, some resonances emerge from the inner
points of the intervals (νn, νn+1), n ∈ N0, as ε → 1−. The mechanism for the creation of these resonances is
unclear at the moment.

Example 1.6. Let E = {1, 2, 4, 5}. In this case lE = {0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, . . . } and we get that S(E) =
{1, 4, 6}. By Theorem 1.5 (ii)–(iii) for all sufficiently small ε > 0 there will be exactly one resonance on Z−E near
ν1, ν4, ν6 and no resonances near the thresholds νn with n ∈ N \ {1, 4, 6}. We confirm this result by numerical
tests whose outcomes are shown in Figures 1.2 and 1.3.
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FIG. 1.2. Resonances of Hε with ε = 0.2 lying on Z−E with E = {1, 2, 4, 5} are computed
numerically with the help of Mathematica. Unique weakly coupled resonances near the thresholds
ν1 = 1.5, ν4 = 4.5, ν6 = 6.5 are located at the intersections of the curves.

To plot Figure 1.2, we used the condition on resonances in Theorem 2.4 below. The infinite Jacobi matrix
in this condition was truncated up to a reasonable finite size. Along the curves, respectively, the real and the
imaginary part of the determinant of the truncated matrix vanishes. At the points of intersection of the curves the
determinant itself vanishes. These points are expected to be close to true resonances3. We have also numerically
verified that resonances do not exist near other low-lying thresholds νn with n ∈ N \ {1, 4, 6}, which corresponds
well to Theorem 1.5. In Figure 1.3 we summarize the results of all the numerical tests.

FIG. 1.3. Resonances of Hε with ε = 0.2 lying on Z−E with E = {1, 2, 4, 5}.

Finally, we mention that no attempt has been made here to analyze the multiplicities of the resonances and to
investigate resonances lying on Ẑ \ Z̃.

Structure of the paper

Birman-Schwinger-type principles for the characterization of eigenvalues and resonances of Hε are provided
in Section 2. Theorem 1.2 (i) on a lower bound for the first eigenvalue and Theorem 1.5 (i) on resonance free
region are proven in Section 3. The aim of Section 4 is to prove Theorem 1.2 (ii) and Theorem 1.5 (ii)–(iii) on
weakly coupled bound states and resonances. The proofs of technical statements formulated in Proposition 1.3 and
Theorem 2.4 are postponed until Appendix.

2. Birman-Schwinger-type conditions

The Birman–Schwinger principle is a powerful tool for analyzing the discrete spectrum of a perturbed operator
in the spectral gaps of the unperturbed one. This principle also has other various applications. Frequently, it
can be generalized to detect resonances, defined as the poles of a meromorphic continuation of the (sandwiched)

3The analysis of convergence of the numerical method is beyond our scope.
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resolvent from the physical sheet to non-physical sheet(s) of the underlying Riemann surface. In the model under
consideration, we encounter yet another manifestation of this principle.

In order to formulate a Birman-Schwinger-type condition on the bound states for Hε, we introduce the sequence
of functions:

bn(λ) :=
n1/2

2(νn − λ)1/4(νn−1 − λ)1/4
, n ∈ N, (2.1)

and the off-diagonal Jacobi matrix:

J(λ) = J ({0}, {bn(λ)}) , λ ∈ (0, ν0) . (2.2)

Recall that we use the same symbol J(λ) for the operator in `2(N0) generated by this matrix. It is straightforward
to check that the operator J(λ) is bounded and self-adjoint. It can be easily verified that the difference J(λ)− J0 is
a compact operator. Therefore, one has σess(J(λ)) = σess(J0) = [−1, 1]. Moreover, the operator J(λ) has simple
eigenvalues ±µn, µn > 1, with the only possible accumulation points at µ = ±1.

Theorem 2.1. [6, Thm. 3.1] Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5) and let the Jacobi matrix
J(λ) be as in (2.2). Then, the relation:

N ((0, λ);Hε) = N ((1/ε,+∞); J(λ)), (2.3)

holds for all λ ∈ (0, ν0).

Remark 2.2. A careful inspection of the proof of [6, Thm 3.1] yields that Theorem 2.1 can also be modified,
replacing (2.3) by:

N ((0, λ];Hε) = N ([1/ε,+∞); J(λ)). (2.4)

In other words, the right endpoint of the interval (0, λ) and the left endpoint of the interval (1/ε,+∞) can be
simultaneously included.

The following consequence of Theorem 2.1 and of the above remark will be useful further.

Corollary 2.3. Let the assumptions be as in Theorem 2.1. Then the following claims hold:

(i) ε 7→ λk(Hε) are continuous non-increasing functions;

(ii) dim ker (Hε − λ) = dim ker
(
I + εJ(λ)

)
for all λ ∈ (0, ν0). In particular, since the eigenvalues of J(λ) are

simple, the eigenvalues of Hε are simple as well.

Proof. (i) Let ε1 ∈ (0, 1). For λ = λk(Hε1), k ∈ N, we have by Theorem 2.1 and Remark 2.2

N ([1/ε1,+∞); J(λ)) = N ((0, λ];Hε1) ≥ k.
Hence, for any ε2 ∈ (ε1, 1), we obtain:

N ((0, λ];Hε2) = N ([1/ε2,+∞); J(λ)) ≥ N ([1/ε1,+∞); J(λ)) ≥ k.
Therefore, we get λk(Hε2) ≤ λ = λk(Hε1). Recall that Hε represents the quadratic form hε defined in (1.6).
Continuity of the eigenvalues follows from [22, Thms. VI.3.6, VIII.1.14] and from the fact that the quadratic form:

dom hε 3 u 7→ ε
√

2
(

sign y|y|1/2u|Σ, |y|1/2u|Σ
)
R
, ε ∈ (0, 1),

is relatively bounded with respect to

dom hε 3 u 7→ ‖∂xu‖2R2 +
1

2
‖∂yu‖2R2 +

1

2
(yu, yu)R2

with a bound less than one; cf. [6, Lem. 2.1].

(ii) By Theorem 2.1, Remark 2.2, and using symmetry of σ(J(λ)) with respect to the origin we get:

dim ker (Hε − λ) = N ((0, λ];Hε)−N ((0, λ);Hε)

= N ([1/ε,+∞); J(λ))−N ((1/ε,+∞); J(λ)) = dim ker
(
I + εJ(λ)

)
. �

For resonances of Hε, one can derive a Birman-Schwinger-type condition analogous to the one in Corol-
lary 2.3 (ii). For the sheet ZE ⊂ Z̃ of the Riemann surface Ẑ, we define the Jacobi matrix:

JE(λ) := J({0}, {bEn (λ)}), λ ∈ C \ [ν0,+∞), (2.5)

where

bEn (λ) :=
1

2

(
n

rn(λ, lEn )rn−1(λ, lEn−1)

)1/2

, n ∈ N. (2.6)
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The Jacobi matrix JE(λ) in (2.5) is closed, bounded, and everywhere defined in `2(N0), but in general non-
selfadjoint. For E = ∅ and λ ∈ (0, ν0) the Jacobi matrix J∅(λ) coincides with J(λ) in (2.2). In what follows it is
also convenient to set bE0 (λ) = 0. In the next theorem, we characterize resonances of Hε lying on the sheet ZE .

Theorem 2.4. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Let the sheet ZE ⊂ Z̃ be fixed,
let RE(ε) be as in Definition 1.4 and the associated operator-valued function JE(λ) be as in (2.5). Then, the
following equivalence holds:

λ ∈ RE(ε) ⇐⇒ ker (I + εJE(λ)) 6= {0}. (2.7)

For E = ∅, the claim of Theorem 2.4 follows from Corollary 2.3 (ii). The proof of the remaining part of
Theorem 2.4 is postponed until Appendix. The argument essentially relies on Krein-type resolvent formula [7] for
Hε and on the analytic Fredholm theorem [25, Thm. 3.4.2].

Remark 2.5. Thanks to compactness of the difference JE(λ)−J0 we get by [23, Lem. XIII.4.3] that σess(εJE(λ)) =
σess(εJ0)) = [−ε, ε]. Therefore, the equivalence (2.7) can be rewritten as:

λ ∈ RE(ε) ⇐⇒ −1 ∈ σd(εJE(λ)).

Identity JE(λ)∗ = JE(λ) combined with [22, Rem. III.6.23] and with Theorem 2.4 yields that the set RE(ε) is
symmetric with respect to the real axis.

3. Localization of bound states and resonances

In this section we prove Theorem 1.2 (i) and Theorem 1.5 (i). The idea of the proof is to estimate the norm of
JE(λ) and to apply Corollary 2.3 (ii) and Theorem 2.4.

Proof of Theorem 1.2 (i) and Theorem 1.5 (i). The square of the norm of the operator JE(λ) in (2.5) can be esti-
mated from above by:

‖JE(λ)‖2 ≤ sup
ξ∈`2(N0),‖ξ‖=1

‖JE(λ)ξ‖2 ≤ sup
ξ∈`2(N0),‖ξ‖=1

( ∑
n∈N0

|bEn (λ)ξn−1 + bEn+1(λ)ξn+1|2
)

≤ sup
ξ∈`2(N0),‖ξ‖=1

(
2
∑
n∈N0

(
|bEn (λ)|2|ξn−1|2 + |bEn+1(λ)|2|ξn+1|2

))
≤ 4 sup

n∈N0

|bEn (λ)|2 sup
ξ∈`2(N0),‖ξ‖=1

‖ξ‖2 = 4 sup
n∈N
|bEn (λ)|2,

(3.1)

where bEn (λ), n ∈ N0, are defined as in (2.6).
If ‖εJE(λ)‖ < 1 holds for a point λ ∈ C−, then the condition ker (I+ εJE(λ)) 6= {0} is not satisfied. Thus, λ

cannot by Theorem 2.4 be a resonance of Hε lying on Z−E in the sense of Definition 1.4. In view of estimate (3.1)
and of (2.6) to fulfil ‖εJE(λ)‖ < 1, it suffices to satisfy:

n

|νn−1 − λ|1/2|νn − λ|1/2
<

1

ε2
, ∀ n ∈ N,

or, equivalently,
|νn − λ| · |νn−1 − λ| > ε4n2, ∀ n ∈ N.

Thus, the claim of Theorem 1.5 (i) is proven. If ‖εJ∅(λ)‖ < 1 holds for a point λ ∈ (0, 1/2) then the condition
ker (I + εJ∅(λ)) 6= {0} is not satisfied. Thus, by Corollary 2.3 (ii), λ is not an eigenvalue of Hε. In view of (3.1)
and (2.6) to fulfil ‖εJ∅(λ)‖ < 1, it suffices to satisfy:(

νn−1 − λ
)(
νn − λ

)
= λ2 − 2nλ+ n2 − 1/4 > n2ε4, ∀ n ∈ N. (3.2)

The roots of the equation λ2 − 2nλ + n2 − 1/4 − n2ε4 = 0 are given by λ±n (ε) = n ±
√

1/4 + n2ε4. Since
λ+
n (ε) > 1/2 for all n ∈ N, the condition (3.2) yields λ1(Hε) ≥ min

n∈N
λ−n (ε). For n ∈ N we have:

λ−n+1(ε)− λ−n (ε) = 1− (2n+ 1)ε4(
1
4 + n2ε4

)1/2
+
(

1
4 + (n+ 1)2ε4

)1/2 ≥ 1− (2n+ 1)ε4

(2n+ 1)ε2
= 1− ε2 > 0.

Hence, min
n∈N

λ−n (ε) = λ−1 (ε) and the claim of Theorem 1.2 (i) follows. �
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4. The weak coupling regime: ε→ 0+

In this section, we prove Theorem 1.2 (ii) and Theorem 1.5 (ii)–(iii). Intermediate results of this section given
in Lemmata 4.1 and 4.3 are of an independent interest.

First, we introduce some auxiliary operators and functions. Let n ∈ N0 and the sheet ZE ⊂ Z̃ be fixed. We
make use of notation Pkl := en+k−2(·, en+l−2) with k, l ∈ {1, 2, 3}. Note that for n = 0 we have Pk1 = P1k = 0
for k = 1, 2, 3. It will also be convenient to decompose the Jacobi matrix JE(λ) in (2.5) as:

JE(λ) = Sn,E(λ) + Tn,E(λ), (4.1)

where the operator-valued functions λ 7→ Tn,E(λ),Sn,E(λ) are defined by:

Tn,E(λ) := bEn+1(λ) [P23 + P32] + bEn (λ) [P21 + P12] , Sn,E(λ) := JE(λ)− Tn,E(λ). (4.2)

Clearly, the operator-valued function Sn,E(·) is uniformly bounded on D1/2(νn). Moreover, for sufficiently
small r = r(n) ∈ (0, 1/2) the bounded operator I + εSn,E(λ) is at the same time boundedly invertible for all
(ε, λ) ∈ Ωr(n) := Dr × Dr(νn). Thus, the operator-valued function:

Rn,E(ε, λ) :=
(
I + εSn,E(λ)

)−1
, (4.3)

is well-defined and analytic on Ωr(n) and, in particular, Rn,E(0, νn) = I. Furthermore, we introduce auxiliary
scalar functions Ωr(n) 3 (ε, λ) 7→ fEkl(ε, λ) by:

fEkl(ε, λ) :=
(
Rn,E(ε, λ)en+k−2, en+l−2

)
, k, l ∈ {1, 2, 3}. (4.4)

Thanks to Rn,E(0, νn) = I we have fEkl(0, νn) = δkl. Finally, we introduce 3× 3 matrix-valued function:

Dr × D×r (νn) 3 (ε, λ) 7→ An,E(ε, λ) :=
(
aEkl(ε, λ)

)3,3
k,l=1

(4.5)

with the entries given for k, l = 1, 2, 3 by:

aEkl(ε, λ) := bEn (λ)
(
fE1k(ε, λ)δ2l + fE2k(ε, λ)δ1l

)
+ bEn+1(λ)

(
fE2k(ε, λ)δ3l + fE3k(ε, λ)δ2l

)
. (4.6)

We remark that rankAn,E(ε, λ) ≤ 2 due to linear dependence between the first and the third columns in An,E(ε, λ).
In the first lemma, we derive an implicit scalar equation which characterizes those points λ ∈ C \ [ν0,+∞)

near νn for which the condition ker (I+ εJE(λ)) 6= {0} is satisfied under additional assumption that ε > 0 is small
enough. This equation can be used to characterize the ‘true’ resonances for Hε as well as the weakly coupled
bound state if n = 0 and E = ∅.

Lemma 4.1. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Let n ∈ N0 and the sheet ZE ⊂ Z̃ be
fixed. Let r = r(n) > 0 be chosen as above. Then for all ε ∈ (0, r) a point λ ∈ Dr(νn) \ [ν0,∞) is a resonance
of Hε on ZE if, and only if

det
(
I + εAn,E(ε, λ)

)
= 0.

Proof. Using the decomposition (4.1) of JE(λ) and the auxiliary operator in (4.3), we find:

dim ker (I + εJE(λ)) = dim ker (I + εSn,E(λ) + εTn,E(λ)) = dim ker (I + εRn,E(ε, λ)Tn,E(λ)) . (4.7)

Note that:
rank (Rn,E(ε, λ)Tn,E(λ)) ≤ rank (Tn,E(λ)) ≤ 3

and, hence, using [26, Thm. 3.5 (b)], we get:

dim ker (I + εRn,E(ε, λ)Tn,E(λ)) ≥ 1 ⇐⇒ det (I + εRn,E(ε, λ)Tn,E(λ)) = 0. (4.8)

For the orthogonal projector P := P11 + P22 + P33 the identity Tn,E(λ) = Tn,E(λ)P is straightforward. Hence,
employing [27, IV.1.5] we find:

det (I + εRn,E(ε, λ)Tn,E(λ)) = det (I + εRn,E(ε, λ)Tn,E(λ)P) = det (I + εPRn,E(ε, λ)Tn,E(λ)) . (4.9)

For k, l ∈ {1, 2, 3} we can write the following identities:

PkkPRn,E(ε, λ)Tn,E(λ)Pll = PkkRn,E(ε, λ)
(
bEn (λ) [P21 + P12] + bEn+1(λ) [P23 + P32]

)
Pll

= PkkRn,E(ε, λ)
(
bEn (λ) [P2lδ1l + P1lδ2l] + bEn+1(λ) [P2lδ3l + P3lδ2l]

)
= Pklb

E
n (λ)

[
fE2k(ε, λ)δ1l + fE1k(ε, λ)δ2l

]
+ Pklb

E
n+1(λ)

[
fE2k(ε, λ)δ3l + fE3k(ε, λ)δ2l

]
= aEkl(ε, λ)Pkl
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with fEkl as in (4.4), and as a result we get

PRn,E(ε, λ)Tn,E(λ) =

3∑
k=1

3∑
l=1

aEkl(ε, λ)Pkl,

with aEkl(ε, λ) as in (4.6). Hence, the determinant in (4.9) can be expressed as:

det (I + εRn,E(ε, λ)Tn,E(λ)) = det(I + εAn,E(ε, λ))

where on the right-hand side we have the determinant of the 3× 3 matrix I + εAn,E(ε, λ); cf. (4.5). The claim of
lemma then follows from (4.7), (4.8), and Theorem 2.4. �

In the second lemma, we establish the existence and investigate properties of solutions of the scalar equation in
Lemma 4.1. To this aim it is natural to try to apply the analytic implicit function theorem. The main obstacle that
makes a direct application of the implicit function theorem difficult lies in the fact that λ 7→ det(I+εAn,E(ε, λ)) is
not analytic near νn due to the cut on the real axis. We circumvent this obstacle by applying the analytic implicit
function theorem to an auxiliary function which is analytic in the disc and has values in different sectors of this
disc that are in direct correspondence with the values of λ 7→ det(I + εAn,E(ε, λ)) on the four different sheets in
Z̃ which are mutually adjacent in a proper way.

Assumption 4.2. Let n ∈ N0 and the sheet ZE ⊂ Z̃ be fixed. Let the sheets ZF , ZG and ZH be such that
ZE ∼n−1 ZF , ZF ∼n ZG and ZG ∼n−1 ZH . For r > 0 let the matrix-valued function Dr × D×r 3 (ε, κ) 7→
Bn,E(ε, κ) be defined by:

Bn,E(ε, κ) :=


An,E(ε, νn − κ4), arg κ ∈ ΦE := (−π,− 3π

4 ] ∪ (0, π4 ],

An,F (ε, νn − κ4), arg κ ∈ ΦF := (− 3π
4 ,−

π
2 ] ∪ (π4 ,

π
2 ],

An,G(ε, νn − κ4), arg κ ∈ ΦG := (−π2 ,−
π
4 ] ∪ (π2 ,

3π
4 ],

An,H(ε, νn − κ4), arg κ ∈ ΦH := (−π4 , 0] ∪ ( 3π
4 , π].

Tracing the changes in the characteristic vector along the path ZE ∼n−1 ZF ∼n ZG ∼n−1 ZH , one easily
verifies that ZH ∼n ZE . Thus, Bn,E is analytic on Dr × D×r for sufficiently small r > 0 which is essentially a
consequence of componentwise analyticity in Dr of vector-valued function:

κ 7→ R•(νn − κ4), • ∈ {E,F,G,H} for arg κ ∈ Φ•,

where R• is as in (1.9).

Lemma 4.3. Let n ∈ N0 and the sheet ZE ⊂ Z̃ be fixed. Set (p, q, r) := (lEn−1, l
E
n , l

E
n+1). Let the matrix-valued

function Bn,E be as in Assumption 4.2. Then the implicit scalar equation:

det
(
I + εBn,E(ε, κ)

)
= 0

has exactly two solutions κn,E,j(·) analytic near ε = 0 such that κn,E,j(0) = 0, satisfying
det(I + εBn,E(ε, κn,E,j(ε))) = 0 pointwise for sufficiently small ε > 0, and having asymptotic expansions:

κn,E,j(ε) = ε
(zn,E)

1/2
j

2
+O(ε2), ε→ 0+, (4.10)

where zn,E = (−1)q+r(n+ 1) + (−1)p+q+1ni.

Proof. First, we introduce the shorthand notations:

u(κ) := b•n(νn − κ4), v(κ) := b•n+1(νn − κ4), • ∈ {E,F,G,H} for arg κ ∈ Φ•.

Let bkl with k, l ∈ {1, 2, 3} be the entries of the matrix-valued function Bn,E . Furthermore, we define the scalar
functions X = X(ε, κ), Y = Y (ε, κ), and Z = Z(ε, κ) by:

X := b11 + b22 + b33,

Y := b11b22 + b22b33 + b11b33 − b13b31 − b12b21 − b23b32,

Z := b11b22b33 + b13b32b21 + b12b23b31 − b13b31b22 − b12b21b33 − b11b23b32.

(4.11)

Employing an elementary formula for the determinant of 3× 3 matrix, the equation det(I + εBn,E(ε, κ)) = 0 can
be equivalently written as:

1 + εX(ε, κ) + ε2Y (ε, κ) + ε3Z(ε, κ) = 0. (4.12)
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By a purely algebraic argument, one can derive from (4.6) that Z = 0. Hence, (4.12) simplifies to 1 + εX(ε, κ) +
ε2Y (ε, κ) = 0. Introducing new parameter t := ε/κ, we can further rewrite this equation as:

1 + tκX(ε, κ) + t2κ2Y (ε, κ) = 0. (4.13)

Note also that the coefficients (ε, κ) 7→ κX(ε, κ), κ2Y (ε, κ) of the quadratic equation (4.13) are analytic in D2
r .

For each fixed pair (ε, κ) the equation (4.13) has (in general) two distinct roots tj(ε, κ), j = 0, 1. The condition
det(I + εBn,E(ε, κ)) = 0 with κ 6= 0 holds if, and only if at least one of the two conditions:

fj(ε, κ) := ε− κtj(ε, κ) = 0, j = 0, 1, (4.14)

is satisfied. Using analyticity of u(·) and v(·) near κ = 0, we compute:

lim
κ→0

κu = lim
r→0+

reiπ/8u(reiπ/8) = lim
r→0+

n1/2

2

reiπ/8

((−1 + ir4)
1/2
p (ir4)

1/2
q )1/2

=
n1/2eiπ/8

2((−1)p+qieiπ/4)1/2
,

lim
κ→0

κv = lim
r→0+

reiπ/8v(reiπ/8) = lim
r→0+

(n+ 1)1/2

2

reiπ/8

((ir4)
1/2
q (1 + ir4)

1/2
r )1/2

=
(n+ 1)1/2eiπ/8

2((−1)q+reiπ/4)1/2
.

Hence, we get:

lim
ε,r→0+

reiπ/8bkl(ε, re
iπ/8) = lim

r→0+
reiπ/8u(reiπ/8)

(
fE2k(0)δ3l + fE3k(0)δ2l

)
+ lim
r→0+

reiπ/8v(reiπ/8)
(
fE1k(0)δ2l + fE2k(0)δ1l

)
=
n1/2eiπ/8

(
δ2kδ3l + δ3kδ2l

)
2((−1)p+qieiπ/4)1/2

+
(n+ 1)1/2eiπ/8

(
δ1kδ2l + δ2kδ1l

)
2((−1)q+reiπ/4)1/2

.

Combining this with (4.11) we end up with:

lim
(ε,κ)→0

κX = lim
ε,r→0+

reiπ/8X(ε, reiπ/8) = lim
ε,r→0+

reiπ/8
[
b11 + b22 + b33

]
(ε, reiπ/8) = 0,

lim
(ε,κ)→0

κ2Y = lim
ε,r→0+

r2eiπ/4Y (ε, reiπ/8)

= lim
ε,r→0+

r2eiπ/4
[
b11b22 + b22b33 + b11b33 − b13b31 − b12b21 − b23b32

]
(ε, reiπ/8)

= lim
ε,r→0+

r2eiπ/4
[
− b12b21 − b23b32

]
(ε, reiπ/8)

= −
(

n1/2eiπ/8

2((−1)p+qieiπ/4)1/2

)2

−
(

(n+ 1)1/2eiπ/8

2((−1)q+reiπ/4)1/2

)2

= − (−1)p+q+1ni

4
− (−1)q+r(n+ 1)

4
= −zn,E

4
.

Hence, the roots tj(ε, κ) of (4.13) converge in the limit (ε, κ) → 0 to the roots 2
[
(zn,E)

1/2
j

]−1
, j = 0, 1, of the

quadratic equation zn,Et
2 − 4 = 0. Moreover, analyticity of the coefficients in equation (4.13), the above limits,

and the formula for the roots of a quadratic equation imply analyticity of the functions (ε, κ) 7→ tj(ε, κ) near 0.

Step 2. The partial derivatives of fj in (4.14) with respect to ε and κ are given by ∂εfj = 1 − κ∂εtj and
∂κfj = −tj − κ∂κtj . Analyticity of tj near 0 implies (∂εfj)(0) = 1 and (∂κfj)(0) = −tj . In particular, we have
shown that (∂κfj)(0) 6= 0. Since the functions fj(·) are analytic near 0 and satisfy fj(0) = 0, we can apply the
analytic implicit function theorem [25, Thm. 3.4.2] which yields existence of a unique function κj(·), analytic near
ε = 0 such that κj(0) = 0 and that fj(ε, κj(ε)) = 0 holds pointwise. Moreover, the derivative of κj at ε = 0 can
be expressed as:

κ′j(0) = − (∂εfj)(0)

(∂κfj)(0)
=

1

tj(0)
. (4.15)

Hence, we obtain Taylor expansion for κj near ε = 0:

κj(ε) = κj(0) + κ′j(0)ε+O(ε2) =
ε

tj(0)
+O(ε2) = ε

(zn,E)
1/2
j

2
+O(ε2) ε→ 0 + .

The functions κj , j = 0, 1, satisfy all the requirements in the claim of the lemma. �

Now we are prepared to prove Theorem 1.2 (ii) and Theorem 1.5 (ii)–(iii) from the introduction.
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Proof of Theorem 1.2 (ii). By Proposition 1.1 (iv) we have N1/2(Hε) = 1 for all sufficiently small ε > 0. Recall
that we denote by λ1(Hε) the corresponding unique eigenvalue. Thus, we have by Lemma 4.1:

det(I + εA0,∅(ε, λ1(Hε))) = 0.

Using the construction of Assumption 4.2 for the physical sheet and n = 0, we obtain

det(I + εB0,∅(ε, (ν0 − λ1(Hε))
1/4)) = det(I + εA0,∅(ε, λ1(Hε))) = 0,

where we have chosen the principal branch for (·)1/4. Thus, by Lemma 4.3, we get:

(ν0 − λ1(Hε))
1/4 =

ε

2
+O(ε2), ε→ 0+,

where we have used the fact that z0,∅ = 1. Hence, taking the fourth power of the left and right hand sides in the
above equation we arrive at:

λ1(Hε) = ν0 −
ε4

16
+O(ε5), ε→ 0 + . �

Proof of Theorem 1.5 (ii)–(iii). Let n ∈ N and the sheet ZE ⊂ Z̃ be fixed. Let us repeat the construction of
Assumption 4.2. By Lemma 4.3 we infer that there exist exactly two analytic solutions κn,E,j , j = 0, 1 of the
implicit scalar equation det(I + εBn,E(ε, κ)) = 0 such that κn,E,j(0) = 0. It can be checked that both solutions
correspond to the same resonance and it suffices to analyze the solution κn,E := κn,E,0 only.

For all small enough ε > 0 the asymptotics (4.10) yields:

arg(κn,E(ε)) =
1

2
arg(zn,E) ∈ ΦE , if, and only if n ∈ S(E).

Hence, if n ∈ N \ S(E), Lemmata 4.1 and 4.3 imply that there will be no resonances in the vicinity of the point
λ = νn lying on Z−E for sufficiently small ε > 0. Thus, we have proven Theorem 1.5 (iii). While if n ∈ S(E) we
get by Lemmata 4.1 and 4.3 that there will be exactly one resonance

λEn (Hε) = νn − (κn,E(ε))4,

in the vicinity of the point λ = νn lying on Z−E for sufficiently small ε > 0 and its asymptotic expansion is a
direct consequence of the asymptotic expansion (4.10) given in Lemma 4.3. Thus, the claim of Theorem 1.5 (ii)
follows. �

APPENDIX

A. Krein’s formula, meromorphic continuation of resolvent, and condition on resonances

In this appendix, we use Krein’s resolvent formula for Smilansky Hamiltonian to prove Proposition 1.3 and
Theorem 2.4 on meromorphic continuation of (Hε − λ)−1 to Z̃. The proposed continuation procedure is of an
iterative nature wherein, we first extend (Hε − λ)−1 to the sheets adjacent to the physical sheet, then to the sheets
which are adjacent to the sheets being adjacent to the physical sheet and so on.

To this aim, we define for n ∈ N0 the scalar functions C\[ν0,+∞) 7→ yn(λ) and (C\[ν0,+∞))×R 7→ ηn(λ;x)
by:

yn(λ) := rn(λ)
√
νn, ηn(λ;x) := ν1/4

n exp(−rn(λ)|x|), (A.1)

where rn(·), n ∈ N0, is as in (1.7). Next, we introduce the following operator-valued function:

T(λ) : `2(N0)→ H, T(λ){cn} := {cnηn(λ;x)}.

For each fixed λ ∈ C \ [ν0,+∞) the operator T(λ) is bounded and everywhere defined and the adjoint of T(λ)
acts as:

T(λ)∗{un} ∼ {In(λ;un)}n∈N0
, In(λ;u) :=

∫
R

ηn(λ;x)u(x)dx.

With these preparations, the resolvent difference of Hε and H0 can be expressed by [7, Thm. 6.1] (see also [4, Sec.
6]) as follows:

(Hε − λ)−1 = (H0 − λ)−1 + T(λ)Y(λ)
[(
I + εJ∅(λ)

)−1 − I
]
Y(λ)T(λ)∗, λ ∈ C \ [ν0,+∞), (A.2)

where H0 is the Smilansky Hamiltonian with ε = 0, Y(λ) = diag{(2yn(λ))−1/2} and J∅(λ) is as in (2.5). The
formula (A.2) can be viewed as a particular case of abstract Krein’s formula (see e.g. [29–31]) for the resolvent
difference of two self-adjoint extensions of their common densely defined symmetric restriction.
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Proof of Proposition 1.3 and Theorem 2.4. Let us fix n ∈ N0 and a sheet ZE ⊂ Z̃. We denote by Rn(λ) the
resolvent of the self-adjoint operator H2(R) 3 f 7→ −f ′′ + νnf in the Hilbert space L2(R). We can express the
function r∅n,ε(·;u) in (1.13) using Krein’s formula (A.2) as:

r∅n,ε(λ;u) =
〈
(Hε − λ)−1u⊗ en, u⊗ en

〉
=
〈
(H0 − λ)−1u⊗ en, u⊗ en

〉
+
(
Y(λ)

[
(I + εJ∅(λ))

−1 − I
]
Y(λ)T(λ)∗u⊗ en,T(λ)∗u⊗ en

)
= (Rn(λ)u, u)R + In(λ;u)In(λ;u)

([
(I + εJ∅(λ))

−1 − I
]
Y(λ)en,Y(λ)∗en

)
= (Rn(λ)u, u)R +

In(λ;u)In(λ;u)

2yn(λ)

[((
I + εJ∅(λ)

)−1
en, en

)
− 1

]
.

Since (Rn(λ)u, u)R, yn(λ), In(λ;u), and In(λ;u) can be easily analytically continued to Z̃, to extend r∅n,ε(·;u)

meromorphically to the other sheets of the component Z̃ it suffices to extend:

s∅n,ε(λ) :=
(

(I + εJ∅(λ))
−1 en, en

)
,

meromorphically from Z∅ to Z̃. The poles of the meromorphic extension of s∅n,ε(·) can be identified with the
resonances of Hε in the sense of Definition 1.4.

To this aim, we set by definition:

sEn,ε(λ) :=
(

(I + εJE(λ))
−1 en, en

)
,

for any λ ∈ C \ [ν0,+∞) such that −1 /∈ σ(εJE(λ)). In what follows, we let ZE and ZF be two sheets of Z̃ such
that ZE ∼n−1 ZF with n ∈ N0

4. Suppose that λ 7→ sEn,ε(·) is well defined and meromorphic either on Z+
E or on

Z−E . Next, we extend λ 7→ sEn,ε(·) meromorphically from Z±E to Z∓F . Without loss of generality, we restrict our
attention to the case that λ 7→ sEn,ε(·) is meromorphic on Z+

E and extend it meromorphically to Z−F . On the open
set Ωn := C+ ∪ C− ∪ (νn−1, νn), the operator-valued function:

JEF (λ) :=

{
JE(λ), λ ∈ C+,

JF (λ), λ ∈ Ωn \ C+,

is analytic which is essentially a consequence of analyticity on Ωn of the entries b•m(λ) (with • = E for λ ∈ C+

and • = F for λ ∈ C−) for the underlying Jacobi matrix. Thus, the operator-valued function:

Ωn 3 λ 7→ AEFε (λ) := ε (I + εJ0)
−1

(JEF (λ)− J0)

is also analytic on Ωn because of the analyticity of JEF (λ). Furthermore, the values of AEFε (·) are compact
operators thanks to compactness of the difference JEF (λ)− J0. Taking into account that:((

I + AEFε (λ)
)−1

en, (I + εJ0)
−1 en

)
=

{
sEn,ε(λ), λ ∈ C+,

sFn,ε(λ), λ ∈ Ωn \ C+,

we obtain from the analytic Fredholm theorem [28, Thm. VI.14] that C− 3 λ 7→ sFn,ε(λ) is a meromorphic
continuation of C+ 3 λ 7→ sEn,ε(λ) across the interval (νn−1, νn) and that the poles of C− 3 λ 7→ sFn,ε(λ) satisfy
the condition:

ker (I + εJF (λ)) 6= {0}, λ ∈ C−.

Starting from the physical sheet Z∅, we use the above procedure iteratively to extend s∅n,ε(·) meromorphically to

the whole of Z̃ thus proving Proposition 1.3 and Theorem 2.4. �
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In this note, we continue our analysis (started in [1]) of the isotropic three-dimensional harmonic oscillator perturbed by a pair of identical

attractive point interactions symmetrically situated with respect to the origin, that is to say, the mathematical model describing a symmetric

quantum dot with a pair of point impurities. In particular, by making the coupling constant (to be renormalized) dependent also upon the

separation distance between the two impurities, we prove that it is possible to rigorously define the unique self-adjoint Hamiltonian that,

differently from the one introduced in [1], behaves smoothly as the separation distance between the impurities shrinks to zero. In fact, we

rigorously prove that the Hamiltonian introduced in this note converges in the norm-resolvent sense to that of the isotropic three-dimensional

harmonic oscillator perturbed by a single attractive point interaction situated at the origin having double strength, thus making this three-

dimensional model more similar to its one-dimensional analog (not requiring the renormalization procedure) as well as to the three-dimensional

model involving impurities given by potentials whose range may even be physically very short but different from zero. Moreover, we show

the manifestation of the Zeldovich effect, known also as level rearrangement, in the model investigated herewith. More precisely, we take

advantage of our renormalization procedure to demonstrate the possibility of using the concept of ‘Zeldovich spiral’, introduced in the case of

perturbations given by rapidly decaying potentials, also in the case of point perturbations.

Keywords: level crossing, degeneracy, point interactions, renormalisation, Schrödinger operators, quantum dots, perturbed quantum oscillators,

Zeldovich effect, level rearrangement.
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1. Introduction

The main purpose of this note is to extend the results of [1] by fixing the problematic behavior of the
Hamiltonian H{β,~x0} studied therein in the limit x0 = | ± ~x0| → 0+, that is to say as the distance between the two
twin point perturbations shrinks to zero. As was noticed in [1], the Hamiltonian H{β,~x0}, the self-adjoint energy
operator of the three-dimensional isotropic harmonic oscillator perturbed by a pair of identical point interactions
symmetrically situated around the origin defined rigorously by means of a ’coupling constant renormalization’, does
not converge to H2β , the one of the three-dimensional isotropic harmonic oscillator perturbed by a single point
interaction situated at the origin having double strength. Such a singular behavior manifested by singular double
wells with point interactions in three dimensions is in sharp contrast with conventional double wells generated
by potentials, whose range may even be very short but non-zero. By citing [1] it is important to recall that
’as is well known to Quantum Chemistry students, three-dimensional interactions with a nonzero range do not
manifest this singular behavior in the limit of the distance between the two centers shrinking to zero, as the
classical textbook example of H+

2 smoothly approaching He+ in the limit R → 0+ clearly shows’ (see [2–4]).
The same phenomenon had been observed in [5] (see also [6–10]) dealing with another model involving a pair
of identical point interactions symmetrically situated around the origin defined rigorously by using a ’coupling
constant renormalization’ as well, namely the one-dimensional energy operator in which the kinetic component is
given by the Salpeter free Hamiltonian

√
p2 +m2, m > 0.

As was fully proved in [10], this singular behavior does not occur in the one-dimensional analog of the model
given that the Dirac distribution is an infinitesimally small perturbation of the Laplacian in one dimension, which
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implies that the renormalization procedure is not required at all in that case to define a self-adjoint Hamiltonian
(obtained instead by means of the KLMN theorem, see [11]).

Here, in the next section, we adopt the same strategy used in [5] to regularize the behavior in the limit
x0 → 0+: we make the coupling constant to be renormalized dependent also on x0, in addition to the two standard
parameters, namely the positive integer labeling the ultraviolet energy cut-off and the real number whose reciprocal
represents the extension parameter (see [5–7]). The new self-adjoint Hamiltonian H{β,~x0}, clearly dependent on x0
and obtained as the norm resolvent limit after removing the energy cut-off (Theorem 2.1), is shown to approach
smoothly H2β in the norm resolvent limit as x0 → 0+ (Theorem 2.2). We would like to stress that, although
this is exactly the strategy employed also in papers such as [12–14] to obtain the self-adjoint operator with the δ′-
interaction perturbing either the negative Laplacian or the Hamiltonian of the harmonic oscillator in one dimension
as the norm resolvent limit of Hamiltonians with the perturbation consisting of a triple of δ-interactions, the
dependence on x0 is completely different.

We also carry out the detailed spectral analysis of the lowest lying eigenvalues of H{β,~x0} as functions of α,
the parameter labeling the self-adjoint extensions. Although the analysis could be extended to higher eigenvalues at
the conceptual level, we have decided to restrict our investigation because of its increasing operational complexity
(the same restriction had also been adopted in [1, 8–10, 15, 16]). The latter analysis shows that the spectrum of
H{β,~x0}, similarly to that of the operator H{β,~x0} investigated in [1], exhibits the rather remarkable phenomenon
of having a range of values of the parameter where the 2S state is more tightly bound than the 2P one.

In the third section, we revisit the spectral analysis of the lowest lying eigenvalues by regarding them as
functions of β, the parameter appearing explicitly in the coupling constant to be renormalized. Our main motivation
for this further analysis has been the fact that, following [17], the latter parameter is the conventional one used to
study the manifestation of the Zeldovich effect (see [18]), widely known also as level rearrangement. We are going
to show that the phenomenon, studied by the authors of that article when the perturbation of the three-dimensional
isotropic harmonic oscillator is represented by a potential whose range is physically very short but different from
zero, does manifest itself also in the case of point perturbations. In particular, it is our intention to demonstrate that
the structure of the discrete spectrum of operators like H2β and H{β,~x0} can be better understood by adopting the
cylindrical mapping based on the Cartesian product R×S1, with E, the energy parameter, drawn along the real line
(the symmetry axis of the cylinder) and the extension parameter along the unit circle identifying ±∞, instead of the
traditional R2. This alternative representation was first introduced in [19], in which the rather intriguing concept
of ‘Zeldovich spiral’ was proposed investigating the 3D-isotropic harmonic oscillator perturbed by three rapidly
decaying potentials, even though their plots are of the type E vs. α = 1/β. In the third section of the current
note, we will show that, as a result of our renormalization procedure (which is different from the one adopted
in [20] and leads to the spectral requirement E0(α = 0, x0) = 0 = E0(β = +∞, x0) for the ground state energy
of H{β,~x0}), the Zeldovich spiral can also be visualized in the case of point perturbations of the three-dimensional
isotropic harmonic oscillator directly on plots of the type E vs. β.

Finally, in the last section we review the key results of this note and outline prospective avenues of further
research work.

2. The regularized three-dimensional isotropic harmonic oscillator perturbed by two twin attractive
point perturbations symmetrically situated with respect to the origin

Given that all the steps preceding the introduction of the coupling constant are identical to those from (3.1)
up to (3.10) in [1], we omit them here and refer the reader to that paper. As anticipated earlier and following the
strategy used in [5], the coupling constant will be made dependent on the magnitude of the position vectors of the
twin point impurities, namely x0 = | ± ~x0|, x0 = (x0, 0, 0), x0 > 0, as follows:

1

µ(`, β;x0)
=

1

β
+ 2

∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2

, (2.1)

or equivalently

µ(`, β;x0) = β

1 + 2β
∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2

−1 (2.1b)

with β ∈ R3\{0}.
In perfect accordance with the use of the term ‘attractive’ in [1, 5, 8, 9], it is clear that µ(`, β;x0) > 0 for

the large values of ` involved in the limit ` → +∞ regardless of the sign of β, making the singular interaction
attractive because of the presence of the negative sign in the second term in (3.2) in [1].
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Hence, for any E < 3/2:

1

2µ(`, β;x0)
− (H`

0 − E)−1s (~x0, ~x0) =
1

2β
+
∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2

−
∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2 − E

(2.2)

and

1

2µ(`, β;x0)
− (H`

0 − E)−1as (~x0, ~x0) =
1

2β
+
∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2

−
∑̀
|~n|=0

ψ(x0)22n1+1ψ
2
2n2

(0)ψ2
2n3

(0)

2n1 + 2n2 + 2n3 + 5
2 − E

. (2.3)

Therefore, we need only mimic what was done in [1] to get that, after removing the ultraviolet cut-off, i.e. in
the limit `→ +∞, the norm resolvent limit of our net of Hamiltonians(

H{`,β,~x0} − E
)−1

= (H0 − E)−1

+
1

1
2µ(`,β;x0)

− (H`
0 − E)−1s (~x0, ~x0)

∣∣(H`
0 − E)−1s (·, ~x0)

〉〈
(H`

0 − E)−1s (~x0, ·)
∣∣

+
1

1
2µ(`,β;x0)

− (H`
0 − E)−1as (~x0, ~x0)

∣∣(H`
0 − E)−1as (·, ~x0)

〉〈
(H`

0 − E)−1as (~x0, ·)
∣∣ (2.4)

is given by:

(H0 − E)−1 +

∣∣(H0 − E)−1s (·, ~x0)
〉〈

(H0 − E)−1s (~x0, ·)
∣∣

1

2β
+ lim
`→+∞

 ∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2

−
∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2 − E


+

∣∣(H0 − E)−1as (·, ~x0)
〉〈

(H0 − E)−1as (~x0, ·)
∣∣

1

2β
+ lim
`→+∞

 ∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2

−
∑̀
|~n|=0

ψ(x0)22n1+1ψ
2
2n2

(0)ψ2
2n3

(0)

2n1 + 2n2 + 2n3 + 5
2 − E


= (H0 − E)−1 +

∣∣(H0 − E)−1s (·, ~x0)
〉〈

(H0 − E)−1s (~x0, ·)
∣∣

1

2β
− E

∞∑
|~n|=0

Ψ2
2~n(~x0)

(|2~n|+ 3/2)(|2~n|+ 3/2− E)

+

∣∣(H0 − E)−1as (·, ~x0)
〉〈

(H0 − E)−1as (~x0, ·)
∣∣

1

2β
+ lim
`→+∞

 ∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2

−
∑̀
|~n|=0

ψ(x0)22n1+1ψ
2
2n2

(0)ψ2
2n3

(0)

2n1 + 2n2 + 2n3 + 5
2 − E

 . (2.5)

As can be immediately noticed, the series in the denominator of the second term on the right hand side is
convergent for any fixed x0 > 0 and any E < 3/2 as an easy consequence of an estimate similar to (3.8) in [1] (see
also (2.2) in [9]).

We can also analyze the limits appearing in both denominators in (2.5) by means of a suitable modification
of the method used in [1] (essentially based on the properties of the semigroup of the three-dimensional harmonic
oscillator, as seen in [1, 9, 20]). In fact, for any E < 3/2, the limit in the first denominator of (2.5) is given by:

− E
∞∑
|~n|=0

Ψ2
2~n(~x0)

(|2~n|+ 3/2)(|2~n|+ 3/2− E)
= lim
`→+∞

 ∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2

−
∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2 − E

 =

1

2π3/2

 1∫
0

ξ
1
2

(1− ξ2)3/2
dξ −

1∫
0

ξ
1
2−E

[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ

 =

1

2π3/2

1∫
0

(ξ
1
2 − ξ 1

2−E)
[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ <∞. (2.6)
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The second one, well defined even for any E < 5/2, is instead equal to:

1

2π3/2

 1∫
0

ξ
1
2

[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ −
1∫

0

ξ
1
2−E

[
e−x

2
0

1−ξ
1+ξ − e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ

 <∞. (2.7)

Hence, for any E < 3/2, the norm limit of the resolvents for ` → +∞ (i.e after removing the ultraviolet
cut-off) can be written as:

(H0 − E)−1 +

∣∣(H0 − E)−1s (·, ~x0)
〉〈

(H0 − E)−1s (~x0, ·)
∣∣

1

2β
+

1

2π3/2

1∫
0

(ξ
1
2 − ξ 1

2−E)
[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ

+

∣∣(H0 − E)−1as (·, ~x0)
〉〈

(H0 − E)−1as (~x0, ·)
∣∣

1

2β
+

1

2π3/2

 1∫
0

ξ
1
2

[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ −
1∫
0

ξ
1
2−E

[
e−x

2
0

1−ξ
1+ξ − e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ


. (2.8)

The final part of the proof meant to show that the limiting operator (2.8) is indeed the resolvent of a self-adjoint
operator is omitted, as was also done in the case of its counterpart in [1], since it is exactly along the same lines
of its analogs in the aforementioned papers [5, 8, 9].

The results obtained so far can thus be summarized in the following theorem.

Theorem 2.1. The Hamiltonian of the three-dimensional isotropic oscillator perturbed by two identical at-
tractive point interactions situated symmetrically with respect to the origin at the points ±~x0 = (±x0, 0, 0),
x0 = |±~x0| > 0, making sense of the merely formal expression

H{µ(β;x0),~x0} = H0 − µ(β;x0) [δ(~x− ~x0) + δ(~x+ ~x0)]

with

µ(β;x0) = β

1 + 2β

∞∑
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3
2

−1
is the self-adjoint operator H{β,~x0} whose resolvent is given by the bounded operator (2.8). The latter is the limit
of the resolvents of the Hamiltonians (with the energy cut-off ` defined by (2.4)) in the norm topology of bounded
operators on L2(R3) once the energy cut-off is removed, i.e. for `→ +∞. Furthermore, H{β,~x0} regarded as a
function of β is an analytic family in the sense of Kato.

Before moving forward, it may be worth noticing the close analogy between the denominator of the second
term in (2.5) (and its other representation in (2.8)) and its counterpart in the case of the spherically symmetric
quantum dot with a single point impurity centered at the origin appearing in (2.4) in [1] (see also (2.5) in [9]).
As a result of this analogy, even before getting into the detailed spectral analysis of the operator, we can already
anticipate that, as was pointed out in [1,9] for the spectrum of the Hamiltonian of the isotropic harmonic oscillator
perturbed by a single point impurity, also in the case of the operator introduced in Theorem 2.1 the ground state
energy for α = 0, where α = 1/β (corresponding to the limiting case of point impurities of infinite strength), is
equal to zero for any x0 > 0 (α is sometimes called, in the literature on point interactions, see e.g. [6], ‘extension
parameter’).

The ground state energy of the operator H{1/α,~x0}, denoted by E0(α;x0), can be determined for any fixed
value of x0 > 0 by solving the equation:

α

2
= E

∞∑
|~n|=0

Ψ2
2~n(~x0)

(|2~n|+ 3/2)(|2~n|+ 3/2− E)
, (2.9)

solving with respect to E, or equivalently:

α =
1

π3/2

1∫
0

(ξ
1
2−E − ξ 1

2 )
[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ. (2.9a)

The plot of E0(α;x0 = 0.2), shown below in Fig. 1, can be compared with both Fig. 1 in [1], the one of
the ground state energy of the Hamiltonian of the 3D-isotropic harmonic oscillator perturbed by a single point
impurity centered at the origin, and Fig. 3 in the same paper, the corresponding one of the ground state energy
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of the operator with the symmetrical configuration of point impurities investigated therein obtained for the same
value of the separation distance (x0 = 0.2). As was to be expected, the anticipated similarity of the ground state
energy of the Hamiltonian introduced in the above theorem with the one considered in the second section of [1]
and in [9] is rather striking: both curves intersect the vertical axis at the origin, in agreement with the spectral
requirement mentioned earlier at the end of the introduction.

The asymptotic approach to E0 = 3/2, as α = 1/β → +∞, is a straightforward consequence of the fact that
the operator converges to the Hamiltonian of the unperturbed harmonic oscillator in the norm resolvent sense.

In the graph shown below (Fig. 2), we also provide the analogous graph for the other value of the distance
between each center and the origin considered in [1], that is to say x0 = 0.4.

FIG. 1. The ground state energy E0 of
the operator H{1/α,~x0}, with x0 = 0.2,
as a function of the extension parame-
ter α = 1/β

FIG. 2. The ground state energy E0 of
the operator H{1/α,~x0}, with x0 = 0.4,
as a function of the extension parame-
ter α = 1/β

In Fig. 3, in order to make more evident the role played by the separation distance x0, we provide a visual
comparison between E0(α;x0 = 0.2) and E0(α;x0 = 1).

Finally, we show the comparison between E0(α;x0 = 0.2) and E0(α;x0 = 0)) in Fig. 4.

FIG. 3. Comparison between
E0(α;x0 = 0.2) (blue curve)
and E0(α;x0 = 1) (violet curve)

FIG. 4. Comparison between
E0(α;x0 = 0.2) (blue curve)
and E0(α;x0 = 0) (violet curve)

As can be noticed from the last two graphs, the behavior of the ground state energy E0(α;x0) as a function
of x0 changes remarkably in the vicinity of α = 0 (E = 0): whilst for positive parameter values, the energy
increases as the distance increases, conforming to the expected pattern in terms of the ‘positional disorder’ (see [1,
20]), the opposite occurs for negative values of α.
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Therefore, it is worth computing the derivative of E0(α;x0) with respect to x0 in order to get a better
understanding of this phenomenon. By means of implicit differentiation, we can write for any E < 3/2:

dE

dx0
= −

∂

∂x0

1∫
0

(ξ
1
2−E − ξ 1

2 )
[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ

∂

∂E

1∫
0

(ξ
1
2−E − ξ 1

2 )
[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ

, (2.10)

having simplified the factor 1/π3/2.
After computing the two partial derivatives (by moving the derivatives inside the integrals, using dominated

convergence) we get:

dE

dx0
= −

2x0
1∫
0

(ξ
1
2−E − ξ 1

2 )
[
1−ξ
1+ξ e

−x2
0

1−ξ
1+ξ + 1+ξ

1−ξ e
−x2

0
1+ξ
1−ξ

]
(1− ξ2)3/2

dξ

1∫
0

ξ
1
2−E

[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ

]
ln ξ

(1− ξ2)3/2
dξ

. (2.11)

Given that ln ξ ≤ 0 over the interval (0, 1], the denominator is always negative. With regard to the sign of
the numerator, we notice that for α > 0 (resp. α < 0) the energy belongs to the interval (0, 3/2) (resp. (−∞,0)),
so that the integral, and therefore the numerator, is positive (resp. negative). Hence, the whole expression on the
right hand side is positive for α > 0 and negative for α < 0.

The lowest antisymmetric eigenvalue of the operator H{1/α,~x0}, created by the twin point perturbations and
emerging out of the eigenvalue 5/2 (which stays in the spectrum but with its degeneracy lowered to two) will be
denoted by E1(α;x0) < 5/2. It can be determined for any fixed value of x0 > 0 by solving the equation:

α =
1

π3/2

1∫
0

(
ξ

1
2−E − ξ 1

2

)
e−x

2
0

1−ξ
1+ξ −

(
ξ

1
2−E + ξ

1
2

)
e−x

2
0

1+ξ
1−ξ

(1− ξ2)3/2
dξ (2.12)

with E = E1(α;x0).
The resulting graph of E1(α;x0 = 0.2) is provided below in Fig. 5.
As can be noticed, the asymptotic approach to the unperturbed antisymmetric energy level E = 5/2, as

the parameter α = 1/β → ∞, is a straightforward consequence of the fact that the operator converges to the
Hamiltonian of the unperturbed harmonic oscillator in the norm resolvent sense.

The lowest excited symmetric eigenvalue of the operator H{1/α,~x0}, created by the twin point perturbations
and emerging out of the eigenvalue 7/2 (which stays in the spectrum but with its degeneracy lowered to five) will
be denoted by E2(α;x0) < 7/2 (see [1, 9]).

By essentially mimicking again what was done in [1] to determine the equation enabling us to compute the
second symmetric eigenvalue, which was in turn based on the techniques used in [8–10, 15, 16], we get that
E2(α;x0) is the solution of the following equation:

α =
4Ee−x

2
0

3 (3− 2E)π3/2
+

1

π3/2

1∫
0

(ξ
1
2−E − ξ 1

2 )
[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ − 2e−x

2
0(1− ξ2)3/2

]
(1− ξ2)3/2

dξ (2.13)

with E = E2(α;x0).
In Fig. 6 shown below, we have plotted the three lowest eigenvalues created by the twin point perturbations,

namely E0(α; 0.2), E1(α; 0.2) and E2(α; 0.2), as well as the two other eigenvalues E = 5/2 and E = 7/2
still present in the spectrum but with their degeneracy lowered by one due to the emergence of E1(α; 0.2) and
E2(α; 0.2). The energy level E = 3/2 is no longer in the spectrum but has nevertheless been plotted since it is the
lower horizontal asymptote of E2(α; 0.2) in addition to being the upper one of the ground state energy E0(α; 0.2).

As is evident from the graph, the striking spectral feature observed in [1] for the Hamiltonian H{1/α,~x0}
studied therein, that is to say the existence of a range of values of the extension parameter for which the lowest
excited symmetric eigenstate is more tightly bound than the lowest excited antisymmetric one due to the double
level crossing between E1(α; 0.2) and E2(α; 0.2), is present also in the spectrum of our ‘regularized’ operator
H{1/α,~x0}. We avoid producing the analog of Table 1 in [1] since it would be perfectly identical apart from the
numerical values of the points αi, i = 1, 2, 3, 4. However, it is certainly worth making a comparison between the
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FIG. 5. The lowest antisymmetric
eigenvalue of the operator H{1/α,~x0},
with x0 = 0.2, as a function of the
extension parameter α = 1/β

FIG. 6. The ground state energy and
the next two eigenenergies of the
Hamiltonian H{1/α,~x0}, with x0 = 0.2,
as functions of the extension parameter
α = 1/β

interval [α2, α3] (the range of values of the parameter over which 2S < 2P , adopting the widely used notation
adopted in atomic physics, as is done in [17]), for σ

(
H{1/α,0.2}

)
investigated in [1] and for σ

(
H{1/α,0.2}

)
being

studied here: whilst in the former case the interval was approximately [−0.126478, 0.309201], here the interval has
expanded to become [−0.462637, 0.339]. We will come back to this point in the next section of this note.

On the other hand, as was the case for the operator H{1/α,~x0} studied in [1], the increase of the separation
distance between the two centers leads to the ‘disentanglement’ between the two spectral curves in the sense that
the two level crossings disappear and E1(α; 0.2) < E2(α; 0.2) for any value of the extension parameter α and any
value of x0 beyond a certain threshold X0. In Fig. 7 shown below we provide the reader with the visualization of
the latter spectral phenomenon for x0 = 0.45.

Therefore, in complete analogy with what was done in [1], it is entirely possible to determine the solution of
the system:  E1(α, x0) = E2(α, x0),

∂

∂α
E1(α, x0) =

∂

∂α
E2(α, x0).

(2.14)

in order to locate the value of x0 and the corresponding coordinates (α,E) of the point where we have the tangential
contact between the two spectral curves. The numerical solution of (2.14) is the point with coordinates E = Et
(approximately equal to 2.17509732), x0 = Xt (approximately equal to 0.31558276), and α = αt (approximately
equal to 0.04957412). The plot of the tangential contact between the two spectral curves for x0 = Xt is provided
below in Fig. 8.

FIG. 7. The ground state energy and
the next two eigenenergies of the
Hamiltonian H{1/α,~x0}, with x0 =
0.45, as functions of the extension pa-
rameter α = 1/β

FIG. 8. The curves of the two
eigenenergies E1(α,Xt) and
E2(α,Xt) (Xt being approximately
equal to 0.31558276) intersecting
each other tangentially at α = αt
(approximately equal to 0.04957412)
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We can also visualize the intersection between the two eigenenergies as three-dimensional surfaces (Fig. 9).

FIG. 9. The two eigenenergies E1(α;x0) and E2(α;x0) as three-dimensional surfaces

Before ending this section, we wish to state and prove the theorem showing that the singular double well
Hamiltonian, defined in the previous theorem, differently from the one considered in [1], behaves smoothly as the
distance between the two attractive point interactions shrinks to zero, which fully explains our extensive use of the
term ‘regularization’ throughout this note.

Theorem 2.2. The resolvents of the self-adjoint Hamiltonians

H{β,~x0}

converge, as the distance x0 → 0+ (the magnitude of the vectors giving the location of the centres of the twin
point impurities), in the norm topology of bounded operators on L2(R3) to

(H2β − E)−1 = (H0 − E)−1 +

∣∣(H0 − E)−1(·, 0)
〉〈

(H0 − E)−1(0, ·)
∣∣

(2β)
−1 − E

∞∑
|~n|=0

Ψ2
2~n(0)

(|2~n|+ 3/2)(|2~n|+ 3/2− E)

, (2.15)

namely the one of the self-adjoint Hamiltonian of the three-dimensional isotropic harmonic with an attractive
point interaction centred at the origin having double strength.

Proof. We start by noting that, because of the local nature of the limit procedure, it is not restrictive at all to
consider only those values of x0 in a suitable right neighbourhood of zero, i.e. (0, X0]. Moreover, without any
loss of generality, we may also restrict the proof to β > 0.

As shown earlier, for any β > 0, E0(β;x0) is an increasing function of x0, which implies that E0(β; 0) <
E0(β;x0). Furthermore, given that for both operators E0(+∞; 0) = 0 and E0(∞;x0) = 0, any negative E will
belong to the resolvent set of both operators.

Therefore, by referring to (2.5), what is to be shown here for all E < 0 is simply:

∥∥(H2β − E)−1 − (H{β,~x0} − E)−1
∥∥
∞ ≤

∥∥(H2β − E)−1 − (H{β,~x0} − E)−1
∥∥
p

=
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∣∣(H0 − E)−1(·, 0)

〉〈
(H0 − E)−1(0, ·)

∣∣
(2β)

−1 − E
∞∑
|~n|=0

Ψ2
2~n(0)

(|2~n|+ 3/2)(|2~n|+ 3/2− E)

−
∣∣(H0 − E)−1s (·, ~x0)

〉〈
(H0 − E)−1s (~x0, ·)

∣∣
(2β)

−1 − E
∞∑
|~n|=0

Ψ2
2~n(~x0)

(|2~n|+ 3/2)(|2~n|+ 3/2− E)



⊕
∣∣(H0 − E)−1as (·, ~x0)

〉〈
(H0 − E)−1as (~x0, ·)

∣∣
(2β)

−1
+ lim
`→+∞

 ∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3/2
−
∑̀
|~n|=0

ψ(x0)22n1+1ψ
2
2n2

(0)ψ2
2n3

(0)

2n1 + 2n2 + 2n3 + 5/2− E



∥∥∥∥∥∥∥∥∥∥∥∥
p

→ 0, (2.16)

as x0 → 0+, for any Schatten norm of index p > 3 (the fact that the resolvent of H0 belongs to any Schatten ideal
with index p > 3 is shown in [9]). Since both direct summands inside the norm are operators of finite rank, the
left hand side of (2.16) is bounded from above by:∥∥∥∥∥∥∥∥∥∥∥

∣∣(H0 − E)−1(·, 0)
〉〈

(H0 − E)−1(0, ·)
∣∣

(2β)
−1 − E

∞∑
|~n|=0

Ψ2
2~n(0)

(|2~n|+ 3/2)(|2~n|+ 3/2− E)

−
∣∣(H0 − E)−1s (·, ~x0)

〉〈
(H0 − E)−1s (~x0, ·)

∣∣
(2β)

−1 − E
∞∑
|~n|=0

Ψ2
2~n(~x0)

(|2~n|+ 3/2)(|2~n|+ 3/2− E)

∥∥∥∥∥∥∥∥∥∥∥
1

+

∥∥∥∥∥∥∥∥∥∥∥∥
∣∣(H0 − E)−1as (·, ~x0)

〉〈
(H0 − E)−1as (~x0, ·)

∣∣
(2β)

−1
+ lim
`→+∞

 ∑̀
|~n|=0

Ψ2
2~n(~x0)

|2~n|+ 3/2
−
∑̀
|~n|=0

ψ(x0)22n1+1ψ
2
2n2

(0)ψ2
2n3

(0)

2n1 + 2n2 + 2n3 + 5/2− E



∥∥∥∥∥∥∥∥∥∥∥∥
1

. (2.17)

Let us deal with the limit of the first summand. Of course, if we can prove that the second term inside the
norm converges to the first one in T1(L2(R3)) (the norm on the trace class operators acting on L2(R3)), then the
norm of their difference will necessarily converge to zero.

As can be guessed, the proof is bound to be rather similar to the one of Theorem 2.2(b) in [10] for the
one-dimensional analog of the model since the behavior of the following series will play a crucial role:

(
(H0)−1s (~x0, ·), (H0 − E)−1s (·, ~x0)

)
=

∞∑
|~n|=0

Ψ2
2~n(~x0)

(|2~n|+ 3/2)(|2~n|+ 3/2− E)
, (2.18)

∥∥(H0 − E)−1s (~x0, ·)
∥∥2
2

=

∞∑
|~n|=0

Ψ2
2~n(~x0)

(|2~n|+ 3/2− E)2
= (H0 − E)−2s (~x0, ~x0). (2.19)

As a consequence of the estimate (3.8) in [1], it is evident that, in order to take advantage of the dominated
convergence theorem, it will not be possible to use the square of the uniform norm ‖ψ2n‖2∞, as was done in the
one-dimensional case, since the latter decays only like 1/(2n)1/6 (see [21, 22]), a decay not sufficiently rapid to
ensure the convergence of

∞∑
n=0

‖ψ2n‖2∞
(2n+ 1/2)2/3

.

However, given that the limit procedure involves only those x0’s in (0, X0] for some suitable X0 > 0, we
need not use the global maximum of ψ2n in our quest for a dominating `1-sequence but rather the one over such a
right vicinity of zero. Then, we can take advantage of the estimates (21) in [23] in order to state that, by choosing
any X0 ≤

√
3− 1, we are guaranteed that there exists a constant C such that:

∞∑
n=0

ψ2
2n(x0)

(2n+ 1/2)2/3
≤ 22/3√

π
+

∞∑
n=1

C2

(2n)1/2(2n+ 1/2)2/3
<∞, (2.20)
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which ensures, together with the fact that
∞∑
n=0

ψ2
2n(0)

(2n+ 1/2)2/3
<∞,

the possibility of exploiting the dominated convergence for the three-dimensional series (2.18) and (2.19). Having
established this technical subtlety, the remainder of the proof can mimic the aforementioned one for the one-
dimensional analog almost word by word. As to the second summand of (2.17), since∥∥(H0 − E)−1as (~x0, ·)

∥∥2
2

=

∞∑
|~n|=0

ψ2
2n1+1

(x0)ψ2
2n2

(0)ψ2
2n3

(0)(
2n1 + 2n2 + 2n3 + 5

2 − E
)2 = (H0 − E)−2as (~x0, ~x0), (2.21)

it is clear that a dominating `1-sequence can be found also in this case such that:∣∣(H0 − E)−1as (·, ~x0)
〉〈

(H0 − E)−1as (~x0, ·)
∣∣→ 0+

in T1(L2(R3)) as x0 → 0+. The latter convergence to zero is further enhanced by the divergence of the denominator
since, as x0 → 0+, we have:

1∫
0

ξ
1
2

[
e−x

2
0

1−ξ
1+ξ + e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ −
1∫

0

ξ
1
2−E

[
e−x

2
0

1−ξ
1+ξ − e−x

2
0

1+ξ
1−ξ

]
(1− ξ2)3/2

dξ → 2

1∫
0

ξ
1
2

(1− ξ2)3/2
dξ = +∞,

differently from its one-dimensional counterpart which stays finite. This concludes the proof of the theorem.

3. Manifestation of the Zeldovich effect (level rearrangement)

Although we might return to the issue in a separate paper in the near future, we cannot help anticipating here
that it is possible to reinterpret the results of the spectral analysis carried out in this note from a slightly different
point of view in order to discuss the manifestation of the Zeldovich effect (see [18]) in the case of the three lowest
eigenvalues of the self-adjoint operator being analyzed in this note taking account of the results outlined in [17,19].

By citing [17], ‘in 1959, Zeldovich discovered an interesting phenomenon while considering an excited electron
in a semiconductor. The model describing the electron-hole system consists of a Coulomb attraction modified at
short-distance. A similar model is encountered in the physics of exotic atoms: if an electron is substituted by a
negatively charged hadron, this hadron feels both the Coulomb field and the strong interaction of the nucleus’.
Moreover, ‘Zeldovich and later Shapiro and his collaborators look at how the atomic spectrum evolves when
the strength of the short-range interaction is increased, so that it becomes more and more attractive. The first
surprise, when this problem is encountered, is that the atomic spectrum is almost unchanged even though the
nuclear potential at short distance is much larger than the Coulomb one. When the strength of the short-range
interaction reaches a critical value, the ground state of the system leaves suddenly the domain of typical atomic
energies, to become a nuclear state, with large negative energy. The second surprise is that, simultaneously, the
first radial excitation leaves the range of values very close to the pure Coulomb 2S energy and drops towards (but
slightly above) the 1S energy. In other words, the “hole” left by the 1S atomic level becoming a nuclear state is
immediately filled by the rapid fall of the 2S. Similarly, the 3S state replaces the 2S, etc. This is why the process
is named level rearrangement’.

In their paper, the authors extend their analysis from exotic atoms to quantum dots which are mathematically
modelled by Hamiltonians with the harmonic confinement perturbed by an attractive interaction whose action is
strong only in the short range.

Although only attractive perturbations of the 3D-isotropic harmonic oscillator represented by square wells are
considered, the authors of [17] observe, in addition to the aforementioned level rearrangement (Zeldovich effect),
the same remarkable spectral phenomenon noticed by us in this note and its predecessor [1] dealing with point
perturbations, namely the double level crossing because of which the level ordering becomes 1S < 2S < 2P over
a certain range of values of the appropriate parameter, the coupling constant (resp. the extension parameter) in the
case of [17] (resp. our model with point interactions).

Therefore, in order to investigate the manifestation of the Zeldovich effect in our model, it makes sense to plot
the curves representing the energy levels as functions of the parameter β instead of α, the extension parameter. By
citing [1], we wish to remind the reader that the latter ‘is physically characterized by being proportional to the
inverse scattering length’.

We first plot the equivalent of Fig. 2 in [1], that is to say the graph of the ground state energy and the
eigenenergy pertaining to the next symmetric bound state (2S) created by the point perturbation of the Hamiltonian
Hβ , the one of the 3D-isotropic harmonic oscillator perturbed by a single attractive point perturbation centred
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at the origin, as functions of the parameter β. Of course, if β = 0, we have the unperturbed Hamiltonian H0

of the 3D-isotropic harmonic oscillator. We have also plotted the horizontal lines E = 3/2, no longer in the
spectrum except for β = 0, and E = 5/2, the eigenenergy of the 2P state, clearly not affected by the central point
perturbation.

Furthermore, we draw the reader’s attention to the two horizontal asymptotes appearing in the plot, the lower
one for the ground state (1S) energy obviously situated at E = 0, and the upper one for the energy of the next
symmetric bound state (2S) located approximately at 2.307876 (Fig. 10(a)).

By comparing the above graph to Fig. 2 in [1], in which the energy is plotted against the extension parameter α,
we cannot refrain from pointing out the analysis carried out in [19] to the interested reader. Although the spectral
analysis therein pertains to three Hamiltonians with potentials whose range is short but different from zero (the
finite square well, the modified Poshl-Teller potential and an exponential one), the ideas put forward in that article
are relevant also in the case of point perturbations of the isotropic harmonic oscillator in three dimensions.

First of all, as is stressed in that note, from the point of view of the experimental observation of this
intriguing physical phenomenon ‘currently available experimental techniques in cold-atoms research offer an
exciting opportunity for a direct observation of the Zeldovich effect without the difficulties imposed by conventional
condensed matter and nuclear physics studies’.

It is important to remind the reader that the typical graphs used to describe the level rearrangement phenomenon
are drawn assuming the presence of the negative sign multiplying the coupling constant in the interaction term
of the Hamiltonian so that the interaction becomes increasingly attractive as the coupling goes from negative to
positive infinity, which might look a bit unusual since it is exactly the opposite of the standard plots based on the
presence of the positive sign in front of the coupling constant in the interaction term of the Hamiltonian.

By looking at the above graph, it is crucial to realize that, differently from the plots in [17, 19] and because
of our renormalization, the manifestation of the Zeldovich effect occurs in the vicinity of β = 0 whilst the left
boundary of the graph is instead β = −∞.

As stated at the beginning of this section, here, it is not our intention to dwell on an extensive discussion
of the level rearrangement phenomenon based on the ideas proposed in [19]. We simply wish to stress that we
certainly agree with the authors that the Zeldovich effect implied by the plots of the energy versus either α or β
can be better understood by adopting the cylindrical mapping based on the Cartesian product R × S1, with the
energy E drawn along the real line (the symmetry axis of the cylinder) and either parameter along the unit circle
identifying ±∞, which naturally leads them to the introduction of the denomination ‘Zeldovich spiral’.

In order to show the ‘flow’ of the spectrum along the Zeldovich spiral, we plot again the above graph with the
arrows showing that in the E vs. β plot the spectral flow goes from top to bottom vertically and counter clockwise
along S1 (Fig. 10(b)).

FIG. 10. The ground state energy and the next eigenenergy of the Hamiltonian Hβ as functions
of the strength parameter β

The analogous graph of H{β,~x0}, with x0 = 0.2, shows, in addition to similar features, the presence of the
curve pertaining to the 2P eigenenergy with its horizontal asymptote located slightly below the energy level 5/2
at approximately 2.450008. The horizontal asymptote of the curve of the 2S eigenenergy is situated instead at
approximately 2.058391.

Furthermore, as pointed out in the comments on the E vs. α plot, there is a range of values of the parameter
over which the 2S eigenenergy falls below the 2P eigenenergy, namely (−∞, β2) (with β2 = 1/α2 approximately
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equal to −2.161522) along the negative semiaxis and (β3,+∞) (with β3 = 1/α3 approximately equal to 2.949853)
along the positive one.

Hence, we can infer that, as we rotate counter clockwise along the Zeldovich spiral from the angle correspond-
ing to β3 to the one corresponding to β2, the 2S state is more tightly bound than the 2P one (Fig. 11).

FIG. 11. The ground state energy and the next two eigenenergies of the Hamiltonian H{β,~x0},
with x0 = 0.2, as functions of the parameter β

4. Final remarks

The main goal of this note has been to show that, by renormalizing the coupling constant in a way that is
dependent on x0 (the distance between each point interaction center and the origin), the self-adjoint Hamiltonian
modeling an isotropic three-dimensional harmonic oscillator perturbed by two twin attractive point interactions
symmetrically situated around the origin can be rigorously defined in such a way to avoid the problem encountered
in our previous paper [1]: the self-adjoint Hamiltonian investigated therein did not converge to the one with a
single point interaction located at the origin having double strength.

By citing [1], it is important to recall that ‘as is well known to Quantum Chemistry students, three-dimensional
interactions with a nonzero range do not manifest this singular behavior in the limit of the distance R between
the two centers shrinking to zero, as the classical textbook example of H+

2 smoothly approaching He+ in the
limit R→ 0+ clearly shows’ (see [2–4]). Hence, the regularization being proposed here should make such singular
double wells more similar to conventional double wells generated by rapidly decaying potentials.

We remind the reader that this singular behavior seems to be a general feature of models with double singular
wells represented by point interactions requiring the renormalization of the coupling constant, as has also recently
been noticed in the case of the one-dimensional Salpeter Hamiltonian studied in [5].

Furthermore, we have carried our spectral analysis not only in terms of α, the extension parameter physically
related to the inverse scattering length, but also in terms of β, the strength parameter directly involved in the
renormalization procedure. Our main motivation for this further analysis has been the fact that, following [17], the
latter parameter is the conventional one used to study the manifestation of the Zeldovich effect, known also as level
rearrangement. We have been able to show that the phenomenon, studied by the authors when the perturbation
of the three-dimensional isotropic harmonic oscillator is represented by a potential whose range is physically very
short but different from zero, does manifest itself also in the case of point perturbations.

We wish to stress that a remarkable advantage resulting from our renormalization procedure, uniquely as-
sociated to the fundamental spectral condition E0(α = 0, x0) = 0 = E0(β = +∞, x0), is that the Zeldovich
spiral, introduced by Farrell et al. in [19] by adopting the cylindrical mapping based on the Cartesian product
R × S1, with E along the real line (the symmetry axis of the cylinder) and the parameter α along the unit circle
identifying ±∞, can be visualized directly in a plot of the energy vs. β as well.

Acknowledgements

We wish to thank Prof. Igor Yu. Popov (Chair of Higher Mathematics, ITMO University, St. Petersburg,
Russian Federation) for his kind invitation to contribute to this special issue dedicated to the memory of our dear
friend Boris Pavlov. The first author had the great luck to meet him in the 80s, first during a meeting in Dubna, and
was greatly impressed by his bright mind, his contagious enthusiasm for mathematics, that he transmitted to a large



Spectral properties of a symmetric three-dimensional quantum dot 815

number of students. One of the topics we discussed was the subject of point interactions. He gave fundamental
contributions to this area and, more generally, to spectral theory. The contacts with him and his research associates
happily accompanied our further scientific life.

The second author had the privilege of meeting him in February 1991 as we were both visiting Prof. Albeverio
in Bochum. It was a great pleasure, shared also by the third author, to see him twenty-four years later in St.
Petersburg on the occasion of the international conference ‘Mathematical Challenge of Quantum Transport in
Nanosystems’, held at ITMO University, St. Petersburg, Russian Federation (9–11 September 2015). It is with
great gratitude that we acknowledge his scientific legacy and dedicate this work to his memory.

References

[1] Albeverio S., Fassari S., Rinaldi F. Spectral properties of a symmetric three-dimensional quantum dot with a pair of identical attractive
δ-impurities symmetrically situated around the origin. Nanosystems: Physics, Chemistry, Mathematics, 2016, 7 (2), P. 268–289.

[2] Schmidtke H.-H. Quantenchemie. Weinheim: VCH, 1987 (in German).
[3] Byers Brown W., Steiner E. On the electronic energy of a one-electron diatomic molecule near the united atom. Journal of Chemical

Physics, 1966, 44, P. 3934.
[4] Klaus M. On H+

2 for small internuclear separation. Journal of Physics A: Mathematical and General, 1983, 16, P. 2709–2720.
[5] Albeverio S., Fassari S., Rinaldi F. The discrete spectrum of the spinless Salpeter Hamiltonian perturbed by δ-interactions. Journal of

Physics A: Mathematical and Theoretical, 2015, 48 (18), P. 185301.
[6] Albeverio S., Gesztesy F., Høegh-Krohn R., Holden H. Solvable models in Quantum Mechanics. AMS (Chelsea Series) second edition,

2004.
[7] Albeverio S., Kurasov P. Singular Perturbations of Differential Operators: Solvable Type Operators. Cambridge University Press, 2000.
[8] Albeverio S., Fassari S., Rinaldi F. A remarkable spectral feature of the Schrödinger Hamiltonian of the harmonic oscillator perturbed

by an attractive δ′-interaction centred at the origin: double degeneracy and level crossing. Journal of Physics A: Mathematical and
Theoretical, 2013, 46 (38), P. 385305.

[9] Fassari S., Inglese G. Spectroscopy of a three-dimensional isotropic harmonic oscillator with a δ-type perturbation. Helvetica Physica
Acta, 1996, 69, P. 130–140.

[10] Fassari S., Rinaldi F. On the spectrum of the Schrödinger Hamiltonian of the one-dimensional harmonic oscillator perturbed by two
identical attractive point interactions. Reports on Mathematical Physics, 2012, 69 (3), P. 353–370.

[11] Reed M., Simon B. Fourier Analysis, Self-adjointness – Methods of Modern Mathematical Physics II, Academic Press NY, 1975.
[12] Exner P., Neidhardt H., Zagrebnov V.A. Potential approximations to δ’: an inverse Klauder phenomenon with norm resolvent convergence.

Communications in Mathematical Physics, 2001, 22, P. 4593–4612.
[13] Fassari S., Rinaldi F. On the spectrum of the Schrödinger Hamiltonian with a particular configuration of three point interactions. Reports

on Mathematical Physics, 2009, 64 (3), P. 367–393.
[14] Albeverio S., Fassari S., Rinaldi F. The Hamiltonian of the harmonic oscillator with an attractive δ’-interaction centred at the origin as

approximated by the one with a triple of attractive δ-interactions. Journal of Physics A: Mathematical and Theoretical, 2016, 49 (2),
P. 025302.

[15] Fassari S., Inglese G. On the spectrum of the harmonic oscillator with a δ-type perturbation. Helvetica Physica Acta, 1994, 67, P. 650–659.
[16] Fassari S., Inglese G. On the spectrum of the harmonic oscillator with a δ-type perturbation II. Helvetica Physica Acta, 1997, 70,

P. 858–865.
[17] Combescure M., Khare A., et al. Level rearrangement in exotic atoms and quantum dots. International Journal of Modern Physics B,

2006, 21 (22), P. 3765.
[18] Zeldovich Ya.B. Energy levels in a distorted Coulomb field. Soviet Journal Solid State, 1960, 1, P. 1497.
[19] Farrell A., MacDonald Z., van Zyl B. The Zeldovich effect in harmonically trapped, ultra-cold quantum gases. Journal of Physics A:

Mathematical and Theoretical, 2012, 45, P. 045303.
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1. An example: resonance concepts of the low-threshold field emission

In numerous recent experiments, see for instance [1–7] extremely low-threshold field emission from metallic
cathodes under carbon deposit was observed for electric fields (104 − 105V/cm). This is a surprisingly strong
effect, because the field initiating a noticeable emission (10−10 − 10−9A) from these materials is by 2-3 orders
of magnitude less than the field required for the field-emission from the traditional metals and semiconductors.
Despite an obviously unusual nature of the effect, numerous authors, see for instance [5, 6] attempted to explain
the low-threshold phenomenon trivially with use of the classical Fowler-Nordheim techniques, based on enhancing
of the field at the micro-protrusions. They assume that the local field Fs near the emitting center is calculated as
F0 = γF0, where γ is the field enhancement coefficient, defined by the micro-geometry, and F0 is the field of
the equivalent flat capacitor. This completely classical explanation of the low-threshold emission phenomenon is
not universal, and certainly non-valid for deposit, considered in our recent papers [3, 7] because the surface of the
carbon flakes, obtained by the detonation synthesis, are perfectly smooth, see the flakes (see Fig. 1) under maximal
magnifications.

with rare and relatively small protrusions. These protrusions are able to lower the threshold 5-fold, while
102 times lowering is observed in our experiments. We suggested in in [3, 7] an alternative explanation of the
threshold lowering (field enhancement) based on the dimensional (size-) quantization in the under-surface space-
charge region. The classical Fowler-Nordheim techniques for calculating the transmission coefficient T for simple

rectangular potential barrier, see [8], gives an exponentially small value T ≈ e−qa with q =
√
v − 2mEh̄−2 for the

under-barrier tunneling with v >> 2mEh̄−2 and the width of the barrier equal to a. The resonance modification
of the classical Fowler-Nordheim algorithm for calculating the transmission coefficient across a rectangular barrier,
in presence of the energy levels of the size-quantization, meets some technical complications which can be
avoided while substituting the rectangular barrier with delta-barrier supplied with an inner structure, attached to the
barrier by Datta and Das-Sarma boundary condition, see [9, 10] for discussion of this phenomenological boundary
condition and the derivation of it from the first principles in [11]. The program of resonance interpretation of the
low-threshold field emission, based on zero-range model barrier with an inner structure, is developed in [7]. Where
the zero-dimensional metal-carbon interface is substituted by the 1+0 solvable model for electron transmission
from the metallic cathode to vacuum through the 0D barrier, supplied with an inner structure, emulation of
the discrete levels of the size quantization is interpreted as the Tamm surface state. Based on this model, we
developed a resonance version of the classical Fowler-Nordheim machinery, considering the complex Tamm levels
as resonances which serve as bridges helping electrons with Fermi energy to exit from the metallic cathode into
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FIG. 1. Images of carbon Nano-clusters obtained via scanning electron microscope

vacuum across the carbon deposit. The role of the field enhancing factor in [7] was played by the small effective
mass of electron in the carbon structure. Indeed, the field is measured by the steepness of the potential slope.
But the effective steepness is calculated with respect to the De-Broghlie wavelength which is m/me times bigger
than the conventional De-Broghlie wavelength at the same energy. The corresponding formula for the transmission
coefficient was derived for the general 1D model of the space-charge region, with complex discrete spectrum of
Tamm surface levels. The presence of these resonance details in the barrier may result in much larger value of
the transmission coefficient values T for electrons with certain energy. In [7] we substitute the inner structure by a
finite matrix, which is fit based on experimental data on size quantization, emulating the barrier barrier with inner
structure by equivalent T-junction with the generalized Datta and Das Sarma boundary conditions, see [9–11]. The
1D model of the contact zone of the emitter in the form of a T-junction consisting of the cathode (1) −∞ < x < 0,
the vacuum (2) 0 < x < ∞, and the deposit (3) attached at the origin. The components us, s = 1, 2, 3 of the
wave-function of the electron satisfy on the intervals (−∞, 0), (0,∞) the Schrödinger equations with appropriate
potentials, see [7]:

u(x) =

{
u1(x) = e−ip1x +Reip1x, −∞ < x < 0

u2(x) = Te−ip2x, a < x <∞.
(1)

In [7], we model the component u3 of the wave-function on the barrier by the finite vector and, correspondingly,
substitute the barrier by a zero-range model with an inner structure, see [12, 13], defined by the finite Hermitian
matrix A. Interaction between components u1, u2, u3 is defined via imposing boundary conditions onto the
boundary data u1(0.u′1(0)) and u2(0.u′2(0)) and abstract boundary data ξc,s of the inner structure, with regard of
vanishing of the sum of corresponding boundary forms with u = u3, v = v3:

− h̄2

2m1

[
du1

dx
v̄1 − u1 dv̄

1

dx

] ∣∣∣∣
x=−0

+
h̄2

2m1

[
du2

dx
v̄2 − u2 dv̄

1

dx

] ∣∣∣∣
x=+0

+

+ξuc ξ̄
v
s − ξus ξ̄vc = J1(u1, v1) + J2(u2, v2) + J3(u, v).

see Appendix 1 and [12]. In particular, the sum vanishes while Datta-Das Sarma boundary conditions are imposed
at the contact x = 0 between the deposit and vacuum ( on the barrier). Those boundary conditions are defined,
similarly to Datta-Das Sarma, [9], by the vector parameter ~β = (β1, β2, β3) as:

u1

β1
=
u2

β2
=
ξu−
β1
,

h̄2

2m1
u′1β̄1 +

h̄2

2m2
u′2β̄2 + ξu+β̄ = 0, (2)

The quantum-mechanical meaning of the similar parameter ~β in the case of the T-junction is revealed in [11]. It
is defined by the spectral properties of the inner structure and the corresponding eigenfunction, [11]. Assuming
that the wave-function of the electron in the carbon layer and in vacuum is a scattered wave, we represent the
components of it in the deposit and in vacuum as u1 = eip1x1 + e−ip1x1R1(λ), u2 = Te−ip2x2 . Substituting this
scattering Ansatz into the above boundary conditions, we obtain an expression for the transmission coefficient T
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from the deposit into vacuum T (λ) =:

β̄1β2m
−1/2
1

|β2
1 |m1

−1/2 + |β2
2 |m2

−1/2 + i|β3|2
[
h̄M
√

2E
]−1 . (3)

In the non-resonance situation, M ≈ Const, the Datta-Das Sarma parameter (1, 1, eqa/2) defines the exponential
small transmission rate T ≈ e−aq . Then, in the resonance situation, M =M(λ) the transmission is exponentially
small on the complement of the set of poles of M, but is essentially greater at the poles λp M(λp) = ∞, where
M−1 = 0. In particular, for m1 << m2 we have at the poles, that

T =
β̄1β2m

−1/2
1

|β1|2m1
−1/2 + |β2|2m2

−1/2
≈ β2

β1
,

which can be essentially greater than exponential estimate T ≈ e−2av . Then, in the resonance situation, M =
M(λ) based on β3 ≈ evd we see the peak of the transmission coefficient at the eigenvalues of the matrix A which
play a role of the levels of the size quantization on the barrier (with special boundary conditions on the contact of
the barrier with the inner part of the deposit and the vacuum. This condition is compatible with unitarity of the
full scattering matrix on the interface deposit-vacuum, if the weights m−1

1 ,m−1
2 are taken into account.

In our case, we have:

j = −2evF

h̄2

∫
β̄1 β2 m

−1/2
1 [f(E)− f(E + eV )] EdE

|β1|2m−1/2
1 + |β2|2m−1/2

2 + i|β2|2[h̄
√

2EM]−1
,

whereM =M(E), is the Weyl-Titchmarsh function of the inner structure, see Appendix 1. just the value of T at
the Fermi level, with a trivial coefficient.

But in fact, the estimation of the emission current requires taking into account the density of states |∂λ∂p |
−1

which requires continuity of the spectrum of surface states, while the 1D model of surface state provides only
discrete resonances.

One more competing viewpoint on field emission presented , in particular, in [14] is essentially quantum,
but not trivially spectral as one in [3, 7]. In [14], the field emission from negative electron affinity sites on the
atmosphere-GaAs interface is accompanied by optically stimulated process of oxygen adsorption. The correspond-
ing optically induced pinning of the Fermi level leads to quenching and subsequent regeneration of the emission,
which is connected in [14] with the presence of antisite defects in GaAs, formed due to the reconstruction of
gallium dangling bonds on the GaAs - atmosphere interface. A possibility of the optical manipulation (monochro-
matic irradiation) the charges of the metastable antisite defects formed by the Ga dangling bonds is an extremely
interesting aspect of the electron emission from GaAs, including enhancing the emission current due to monochro-
matic irradiation of the cathode under fixed exterior field. One may guess that the resonance optical excitation
may generate beats of the oscillation modes which may help electrons energy to overcome the limits laid by the
work function for given exterior field.

In fact, the emission current depends on the density of states |dλdp |
−1 – the inverse derivative of the energy

with respect to the quasi-momentum, which does not arise in the 1D model. Fortunately, the spectrum of the
size quantization in the quasi-2D periodic space charge layer is not discrete, but continuous, and consists of
a sequence of spectral bands dλ

dp ≈ 0 with a nontrivial dispersion. Attempting to explain the low threshold
phenomenon, we have to develop the spectral approach for 2D periodic lattices , with regard of calculation the
dispersion λ(p‖ = λ(p1, p2)) on the spectral bands responsible for the transmission electrons from the space-
charge region 3 to vacuum 2, involving, together with the orthogonal to the interface (2,3) component p⊥ of
the momentum, the tangential component p‖. Planning to develop the scattering machinery for calculation of
the corresponding transmission coefficient, we call the ultimate modification of the Fowler-Nordheim technique,
involving the continuous spectrum with 2D quasi- momentum p‖ (1 + 2), contrary to the original Fowler-Nordheim
scattering approach (1 + 0) based on scalar Schrödinger equation with 0D interface. We speculate that the continuity
of spectrum arises due to the contribution of the electron flow in the carbon layer to the ultimate current. While
the structure and period of the crystalline lattice in metal M may differ from the period and (hexagonal) structure
of the carbon (graphene) G- layer, the problem becomes too difficult mathematically. But fortunately in our
case, the metal can be considered as a bath filled with electrons, with some of natural orbitals disrupted on the
metal/carbon interface. It is known, that the disrupted orbitals – the dangling bonds, see for instance [14], are
restructured, transforming the interface into a quasi-2D lattice parallel to the GM interface, with a period defined
by the graphene (G)-lattice , see (see Fig. 2). The calculation of resulting band-gap structure for the interacting
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FIG. 2. Due to exterior electric field, the space-charge layer (SC) on the interface of the carbon
and metal is restructured into periodic quasi-2D lattice with a rectangular period, as shown. The
horizontal periodicity of the structure is not affected by the exterior electric field, normal to the
interface, but the total band-gap structure is perturbed due to interaction of two periodic lattices,
with equal periods, on the interface: one in metal M, another in carbon, G , resulting in the
arisal of flat thin spectral bands of the size quantization

quasi-2D M and G lattices requires special analytical techniques using the Dirichlet-to-Neumann map, which is
presented in section 3 below.

2. Interpretation of recent experimental findings for saturation of the field emission

Contrary to the basic (2 + 1) model of the cathode, see Fig. 2. DN formalism, see below, section 4, allows
us to calculate the dispersion function of the spectral band of the size quantization in terms of the structure of the
space-charge region and the electric field applied.

But in fact the estimation of the emission current requires taking into account the density of states |∂λ∂p |
−1,

which can’t be introduced properly in the 1D model. Fortunately, the spectrum of the size quantization in the quasi
2D periodic space charge layer is continuous, and consists of a sequence of flat spectral bands, with nontrivial
dispersion λ = λ(p). The ultimate version of explanation of the low threshold phenomenon, we suggest in this
paper, takes into account both size quantization of electrons in the space-charge layer cv due to perturbation of
the periodic structure in the space-charge layer in 1D vertical direction p⊥ and the continuity of the corresponding
spectrum due to periodicity of the quasi 2D structure in horizontal direction p‖ = (p1, p2). We call the ultimate
modification the “2+1” model of the cathode, see Fig. 1.

DN formalism, see below, section 4, allows calculation of the dispersion function of the spectral band of the
size quantization in terms of the structure of the space-charge period and electric field applied. We are able to
calculate the the gradient of the dispersion function dE = |∇pE(~p)|dp⊥ with E = p2/2m. Then, for the 2-D
system, the density of states in the 2-D is calculated as an integral on the surface S of the cathode [15]:

ρ(E) =
1

(2πh̄)2

∫
dS

|∇pE|
=

1

2πh̄2

p
∂E
∂p

=
m

2π h̄2 . (4)

Recent experiments done by our group confirm the continuity of spectrum 2D-size quantization and allow us
to estimate the effective mass m∗ and the de Broglie wavelength in space-charge region depending on electron’s

concentration nex =
1

q

τ∫
0

J(t)dt, where j = I/S, I = 80 A is the current and S ≈ 0.75 cm2 – the area of the

cathode, τ ≈ 2 × 10−9 s. Monitoring of the current density allows us to estimate the experimental density of
charges Q = 2.4× 10−7 Coul/cm2, which corresponds to density of electrons n ≈ 1.3× 1012 cm−2.

On another hand, from the size-quantization theory [15] the 2D density of electrons is estimated as:

n2D =
m∗kT

2πh̄2 ln

(
1 + exp

E0 − EF
kT

)
(5)

Here, m∗ is the effective electron mass, E0—the size-quantization level, EF—the Fermi level. In our case

E0 ≈ EF , nexp = n2D =
m∗kT

2πh̄2 ln 2 (6)

The de Broglie electron wavelength [15] in graphene flakes is:

λ =
2πh̄√

2m∗ (kT )
. (7)
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Based on the preceding Equations (6) and (7), we estimate the electron effective mass and the de Broglie
electron

m∗ =
(2πh̄)2

2(kT )
(8)

At room temperature, we have λ ≈ 18 nm, m∗ ≤ 10−2 m0.
The potential on the space-charge region of the cathode, covered with carbon flakes is defined by the electric

double layers formed by the electric field applied on the metal-carbon and carbon-vacuum interface and oriented
by the outer normal looking toward vacuum. The horizontal periodicity of the cover is not affected by the field, but
the vertical periodicity is perturbed by the potential well defined by the electric field, see Fig. 2. We assume that
the depth of penetration of the field into the carbon layer defines the width of the potential well and the steepness
of its wall. The hexagonal lattice can be represented as a periodic lattice with rectangular periods, 4 carbon atoms
in each minimal period.

3. Resonance scattering on a low-dimensional superlattice and field emission from the metal-carbon
interface

The above criticism of the resonance 0+1 scenario of the low-threshold field emission may be resolved based
on a combination of Bagraev’s findings in [14] on the periodic reconstruction of dangling bonds and recent results
of our experimentalists [16], revealing the role of the continuous spectrum of the size quantization. Hereafter,
we construct a solvable (2 + 1) model of a periodic 2D lattice on an interface of the Luttinger bath in metal
and vacuum and calculate the scattering amplitude depending on resonance properties of the lattice period. The
model can be used not only for analysis of the low-threshold emission, but also for studying the properties and
dynamics stability of electric contact as a detail of a nano-device, or, generally, a quantum network. While simplest
zero-range models of 2D lattices in 3D have been thoroughly investigated neglecting the “inner structure” see [17],
the use of similar models with inner structure allows to interpret various instabilities of the contacts based on
resonance properties of the of the inner structure.

Consider a flat 2D periodic lattice situated on the plane z = 0. Periods Ω~l =
{
al1 < x1 < al1 + a

}
×{

al2 < x2 < al2 + a
}

in model problem [17] contain a singular points in the corners. The lattice of singular

points is invariant with respect to the shifts by a~l. According to [17], the Laplacian restricted onto the domain
D0 of smooth functions vanishing near singular points

{
a~l
}

can be extended to Laplacian with singular zero-range
potential defined by a boundary condition at the singular points imposed onto elements from the union of the domain
D0 of the restricted operator A0 and deficiency elements selected as Green functions G(x, al, λ0), =λ0 6= 0 of
the Laplacian. Disregarding the inner structure, one can find the scattered waves and the waveguide eigenfunction
based on the Ansatzes:

ΨS(x, ν, λ) = eip〈p,x〉 +
∑
a~l

G(x, a~l, λ)AS~l , (9)

ΨW (x, ν, λ) =
∑
a~l

G(x, a~l, λ)AW~l . (10)

The above ansatzes possess the asymptotics at the singular points:

ΨS(x, ν, λ) = uS =
AS~l

4π|x− a~l|
+BS~l + o(1). (11)

ΨW (x, ν, λ) = uW =
AW~l

4π|x− a~l|
+BW~l + o(1). (12)

They define the boundary forms on the domain D+
0 of the adjoint operator −∆+

0 :

J(u, v) = 〈−∆+
0 u, v〉+ 〈u,∆+

0 v〉 =
∑
~l

[
〈B~l(u), A~l(v)〉 − 〈A~l(u), B~l(v)〉

]
, (13)

which vanish under “local” boundary condition, see [17] (with α = −4πG):

B~l + GA~l = 0. (14)

with an Hermitian (real) parameter G . The eigenfunctions (9, 10) are found in [17] from equations obtained via
substitution of the coefficients AS~l = f(ν, λ)eip〈ν,a~L〉, AW~l = ei〈q,a~l〉. The quasi-momentum q(λ) for flat square
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lattice a~L, see [17]:

G +
i
√
λ

4π
+
∑
~L 6=0

ei
√
λ|~La|

4π|~La|
ei〈q,a

~l〉 = 0. (15)

Similarly, the scattering amplitude is found from the Ansatz (9 substituted to the above boundary condition:

ΨS(x, ν, λ) = eip〈p,x〉 + f(ν, λ)
∑
a~l

G(x, a~l, λ)ei
√
λ〈ν,a~l〉

which implies an equation for the amplitude f :

f = −

G +
i
√
λ

4π
+
∑
~L6=0

G(x, a~l, λ)ei
√
λ〈ν,a~L〉

−1

(16)

In [17], the ultimate formulae are simplified, for flat rectangular lattices, based on the Poisson identity
∑
n∈Z e

iτn =
2π
∑
n∈Z δ(τ + 2πn) and explicit calculations of the lattice sums are involved. Notice that the resonance features

of the amplitude at the waveguide spectral bands arise when
√
λ〈ν, a~L〉 = 〈q, a~L〉. For the square flat lattices with

no inner structure, the resonance properties and effective masses on the waveguide spectral band are defined only
by the geometry of the lattice, see [17] .

In this paper, we consider flat periodic square lattice situated on the plane z = 0, with inner structure. The
presence of the inner structure defines the resonance properties of the lattice and may help to interpret instabilities
of the scattering amplitude depending of properties of atoms filling the period. Consider countable set of equivalent
finite-dimensional spaces K~l ≡ K and a virtual lattice ⊕

∑
~LA~L of equivalent operators A~L ≡ A. We use the

virtual lattice, based on operator extension procedure, to emulate the inner structure of the set of periods Ω~L.

Selecting non-overlapping deficiency subspaces
A+ iI

A− iI
Ni ≡ N−i, we introduce in the defect N ≡ Ni + N−i a

basis {W r
c ,W

r
s }r, see Appendix 1, and calculate the boundary form of the (formal) adjoint operator A+

0 in terms
of the decomposition coefficients u, v ∈ D(A+

0 ):

u = u0 +
∑
r

W r
c ξ

r
c +W r

s ξ
r
s = u0 +

∑
r

A

A− iI
Ξrc −

I

A− iI
Ξrs,

with Ξrc , Ξrs ∈ Ni, u0 ∈ D(A0) and the boundary form for u = u0+
A

A− iI
Ξuc−

I

A− iI
Ξus , v = v0+

A

A− iI
Ξvc−

I

A− iI
Ξvs :

JA(u, v) = 〈A+
0 u, v〉 − 〈u,A

+
0 v〉 = 〈Ξuc , Ξvs〉 − 〈Ξus (u), Ξvc 〉. (17)

The components of the solution u = u0 +
A

A− iI
Ξuc −

I

A− iI
Ξus of the homogeneous equation A+

0 u − λu = 0

are connected by the Weyl-Titchmarsh function M = PNi

I + λA

A− λI
PNi

:

PNi

I + λA

A− λI
PNi

Ξuc + Ξus = 0. (18)

Self-adjoint extensions of the restricted operator A0 are parametrized by Hermitian matrices G : Ni → Ni, which
define the domain of the corresponding extensions as restriction of D(A+

0 ) onto the Lagrangian plane:

LB =

{
u0 +

[
A

A− iI
Ξuc −

I

A− iI
Ξus )

]}
, where Ξs(u) + BΞc(u) = 0, (19)

see Appendix 1 and more details in [12]. The spectrum of the extension is defined from the dispersion equation:

[M−B] Ξuc = 0. (20)

Attaching the quantum dots A~l to the periods Ω~l of the lattice
{
a~l
}

we supply the lattice in L2(R3) with an inner
structure so that we could consider the corresponding resonance scattering problem in L2(R3)⊕

∑
vecLK~L, with

regard of the waveguide branch of spectrum, associated with the inner structure.
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4. Local spectral analysis of multidimensional periodic lattices: dispersion via DN-map

The Bloch function and dispersion of the one-dimensional periodic Schrödinger operator is found based on
transfer matrix constructed of standard solutions of the Cauchy problem on the period.

−χ′′ + q(x)χ = λχ, q(x+ a) = q(x), χ(x+ a) = µχ(x),

µ ≡ eipa, λ = λ(p).

χ = θ +mϕ, θ(0) = 1, θ′(0) = 0, ϕ(0) = 0, ϕ′(0) = 1.

−θ′′ + qθ = λθ, −ϕ′′ + qϕ = λϕ. (21)

The spectral bands σs are defined by the condition −1 ≤ 1
2T (λ) ≤ 1 imposed on the trace Tr T (λ) =

θ(a) + ϕ′(a) of the transfer matrix:

T =

(
θ(a) ϕ(a)

θ′(a) ϕ′(a)

)
: T

(
χ(0)

χ′(0)

)
=

(
χ(a)

χ′(a)

)
= µ

(
χ(0)

χ′(0)

)
.

The dispersion λ = λ(p) and the positions of the spectral bands σ : |µ| = 1 are defined −2 ≤ µ+ µ−1 = Tr T < 2,
see Fig. 3.

FIG. 3. The spectral bands σs of the 1D periodic problem are found from the condition −1 ≤
Tr T /2 ≤ 1.

One can also obtain Bloch solutions from analysis of a boundary problem, by considering, instead of the
standard solutions θ, ϕ of the Cauchy problem, another pair of solutions ψ0, ψa of the same Schrödinger equation
−ψ′′ + qψ = λψ, with the boundary data ψ0(0) = 1, ψ0(a) = 0 and, respectively ψa(0) = 0, ψa(a) = 1. These
solutions ψ0, ψa of the Schrödinger equation are linearly independent if λ is not an eigenvalue of the corresponding
Dirichlet problem on the period (see Fig. 4):

W (ψ0, ψa)

∣∣∣∣
0

= −ψa′(0) = W (ψ0, ψa)

∣∣∣∣
a

= ψ0
′(a) = W (ψ0, ψa)

∣∣∣∣
a

.

Then the Bloch solution can be found as a linear combination of ψ0, ψa in the form:

χ(x) = χ(0)ψ0(x) + χ(a)ψa(x) = χ(0)
[
ψ0(x) + eipaψa(x)

]
(22)

which implies:
χ′(a) = χ(0)

[
ψ′0(a) + eipaψ′a(a)

]
= eipa χ(0)

[
ψ′0(0) + eipaψ′a(0)

]
.

The quasi-momentum exponential eipa = µ is found from the quadratic equation:

[ψ′0(a) + µψ′a(a)] = µ [ψ′0(0) + µψ′a(0)]

which can be re-written as:

µ2 +
ψ′0(0)− ψ′a(a)

ψ′a(0)
µ− ψ′0(a)

ψ′a(0)
= 0. (23)

Here, the coefficient in front of −µ is equal again to the trace Tr T of the transfer-matrix:
In the multidimensional case the roles of the basic solutions ψ0, ψa of the boundary problems for the

Schrödinger equation on the square 2D period are played by solutions associated with the boundary data forming
an orthogonal basis

{
ψΓ
s

}
∈ L2(Γ) on the boundary of the period Ω : ∂Ω = Γ:

−4 ψs + qψs = λψs, ψs

∣∣∣∣
Γ

= ψΓ
s , 〈ψΓ

s , ψ
Γ
t 〉L2(Γ) = δst.
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FIG. 4. Standard solutions ψ0 (1) of the 1D boundary problem. Standard solutions ψ∆1 of the
2D boundary problem on the square.

Due to the uniqueness theorem for these elliptic equations the solutions {ψs} are linearly independent, and their
linear combinations approximate a solution of any boundary problem with the boundary data uΓ decomposed on
the boundary basis.

DN : uΓ −→
∂u

∂n

∣∣∣∣
Γ

. (24)

Then, the Green’s formula allows us to transform the matrix element into the bilinear form of the Schrödinger
operator:

〈ul,DNum〉 =

∫
Ω

[∇ūl∇um + qūl um − λūl um] dΩ. (25)

Beginning from the solution of a sequence of Neumann problems for a smooth orthogonal basis {ρs} in L2(Γ):

−4 vs + qvs = λvs,
∂vs
∂n

∣∣∣∣
Γ

= ρs,

we obtain the following expression for the matrix elements of the Neumann-to-Dirichlet map:

ND :
∂u

∂n

∣∣∣∣
Γ

−→ v

∣∣∣∣
Γ

,

〈NDρl, ρm〉 =

∫
Ω

[∇v̄l∇vm + qv̄l vm − λv̄l vm] dΩ. (26)

FIG. 5. Two-storied period of the periodic quasi-2D sandwich lattice

Consider the quasi-2D periodic lattice with a cubic period and the Schrödinger operator:

Lu = −4 u+ q(x)u, (27)

on the lattice, with periodic potential q(x1, x2) = q(x1 + ma, x2 + na), m,n = ±1,±2, . . . , zero boundary
conditions on the lower and the upper lids Γ3

0 : x3 = 0, Γ3
h : x3 = h of the lattice (see Fig. 5).
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In this way, the whole spectral problem on the lattice is reduced to the spectral problem on the period, with
the same boundary conditions on the lids Γ3

0,h, and the quasi-periodic conditions on the vertical walls Γ1,2
0,a. The

positive normal on Γ1,2
a is defined by e1, e2, and the positive normals on the walls Γ1,2

0 are −e1,−e2. The
quasi-periodic boundary conditions permit us to eliminate the boundary data u

∣∣
Γ1,2

0
, ∂u∂n

∣∣
Γ1,2

0
on the walls Γ1,2

0 :

u

∣∣∣∣
Γ1,2

0

= e−ip1,2au

∣∣∣∣
Γ1,2
a

,
∂u

∂n

∣∣∣∣
Γ1,2

0

= −e−ip1,2a
∂u

∂n

∣∣∣∣
Γ1,2
a

.

Then, the quasi-periodic boundary conditions on the walls Γ1,2
0,a are reduced to a linear system with respect to

the “independent variables” ~u =

(
u1
a, u

2
a;
∂u

∂n

∣∣∣∣
Γ1
a

,
∂u

∂n

∣∣∣∣
Γ2
a

)
, with a matrix composed of the components of the DN

on the walls: 

∂u

∂n

∣∣∣∣
Γ1

0

∂u

∂n

∣∣∣∣
Γ2

0

−e−ip1,2a
∂u

∂n

∣∣∣∣
Γ1
a

−e−ip1,2a
∂u

∂n

∣∣∣∣
Γ2
a


≡

 ∂~ua
∂n

−µ−1 ∂~ua
∂n

 = DN



u

∣∣∣∣
Γ1
a

u

∣∣∣∣
Γ2
a

e−ip1au

∣∣∣∣
Γ1
a

e−ip2au

∣∣∣∣
Γ2
a


, (28)

DN



u

∣∣∣∣
Γ1
a

u

∣∣∣∣
Γ2
a

e−ip1au

∣∣∣∣
Γ1
a

e−ip2au

∣∣∣∣
Γ2
a


≡ DN

(
~ua

µ−1 ~ua

)
. (29)

Here, µ = [µ1, µ2] = [eipia, e1p2a] is a diagonal matrix. The DN-map DN can be represented in matrix form with
2× 2 blocks DN ik

αβ connecting the Dirichlet data on Γkβ to the Neumann data on Γiα.

Matrix elements of the DN map connect the Dirichlet data on Γikα with Neumann data on Γjlα′ , α, α′ = o, a:(
DN 11

aa DN 12
aa

DN 21
aa DN 22

aa

)
≡ DN aa,

(
DN 11

a0 DN 12
a0

DN 21
a0 DN 22

a0

)
≡ DN a0.

(
DN 11

0a DN 12
0a

DN 21
0a DN 22

0a

)
≡ DN 0a,

(
DN 11

00 DN 12
00

DN 21
00 DN 22

00

)
≡ DN 00.

Then the DN-map is represented by the block-matrix:

DN =

(
DN aa DN a0

DN 0a DN 00

)
.

with blocks mapping the data ~ua, ~u0 onto the positive normal derivatives
∂~ua
∂n

,
∂~u0

∂n
.

In particular, the 0-components of the Bloch function can be eliminated based on ~u0 = µ−1~ua,
∂~u0

∂n
=

−µ−1 ∂~ua
∂n

, which implies the following linear homogeneous system for the data

(
~ua,

∂~ua
∂n

)
of the Bloch-function: ∂~ua

∂n

−µ−1 ∂~ua
∂n

 =

(
DN aa DN a0

DN 0a DN 00

)(
~ua

µ−1 ~ua

)
. (30)
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Eliminating
∂~ua
∂n

we conclude that a nontrivial solution of the equation (30) exists if and only if zero is an

eigenvalue of the operator: [
µDN 00µ

−1 + µDN 0a +DN aa +DN a0µ
−1
]
~ua = 0. (31)

Then, the Bloch function is obtained as a solution of the boundary problem for the Schrödinger equation:

−4 χ+ qχ = λχ, χ

∣∣∣∣
∆1,2

a

= u1,2
a , χ

∣∣∣∣
∆1,2

0

= e−ip1,2a u1,2
a .

Equation (31) is an analog of the quadratic equation (23), however questions on the existence of the corresponding
solution of it in the general case is not trivial, because we can’t use the classical determinant condition of existence
of non-trivial solutions of the homogeneous equation (31).

FIG. 6. 2D periodic lattice with romboidal periods

5. Examples of iso-energetic surfaces associated with solvable models of periodic lattices

Consider a typical example of a 2D lattice generated by a non-dimensional Schrödinger operator with real
periodic potential obtained via restriction of Yukawa potential on the romboidal period (see Fig. 6) framed by the
arcs of circles radius 0.05 centered on the corners of the square 1.1× 1.1 and by the central intervals Γiα length δ
on the sides of the period. We choose the contacts Γiα in form of intervals 0 < γ < δi centered at the mid-points
0iα of the corresponding sides of the square period and span the contact spaces by

√
2/δi sin lπγ/δi and use the

basic equation (31). The direction of vector ν is defined by the angle ϕ = 0, 150, 300, 450 between the orth e1 and
ν.

For strong Yukawa potential the dispersion function λ(|p|) with 3D contact spaces l = 1, 2, 3 on the on
the contacts is calculated for selected angles and is represented based on straightforward computing for the
corresponding DN-map.

Our numerical experiments showed that beginning from dim N = 3 the shape of the dispersion function in
the domain of low energy reveals clear features of stability, which gives a good reason to assume that the finite
dimension of the contact subspace already allows to construct a realistic soluble model of the Schrödinger operator
with Yukawa potential on the above square lattice (see Fig. 7, Fig. 8, Fig. 9).

Interesting resonance properties are revealed by Heine-Abarenkov potential constructed on a period as a
potential well surrounded by the thick wall. The Dirichlet problem on the “romboidal” period for the corresponding
Schrödinger operator has a single simple eigenvalue represented by an isolated pole of the DN-map plus a regular
correcting term.

The rational approximation of the corresponding DN-map bordered by the projections on the corresponding
1D contact spaces N1, N2 , spanned by

√
2/δi sin lπγ/δi, l = 1, for low temperature on the corresponding small

temperature interval centered at the lowest resonance eigenvalue λ1 has the form:

A
Q

λ− λ1
+B = A1

(
Qaa Qa0

Q0a Q00

)
λ− λ1

+

(
Baa Ba0

B0a B00

)
,

with an one-dimensional orthogonal projection Q and a constant Hermitian matrix.
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FIG. 7. Sections of the dispersion surface of the Yukawa lattice.

We select:

Qaa =
1

2

(
ν1〉 〈ν1 0

0 0

)
; Qa0 =

1

2

(
0 ν1〉 〈ν2

0 0

)
; (32)

Q0a =
1

2

(
0 0

ν2〉 〈ν1 0

)
; Q00 = e0〉 〈e0 =

1

2

(
0 0

0 ν2〉 〈ν2

)
, (33)

see Fig. 8. The regular term B depends on the upper eigenvalues and eigenfunctions.
We consider an example selecting the regular term as:

B =

(
Baa Ba0

B0a 0

)
,

where:

B00 =

(
0 0

0 0

)
, Baa =

(
1 0

0 0

)
,

Ba0 = ba0

(
0 ν1〉 〈ν2

ν2〉 〈ν1 0

)
, B0a = b0a

(
0 ν2〉 〈ν1

ν1〉 〈ν2 0

)
.

Elimination of the variables u′0, u
′
a, u0 gives an equation for the 2-vector ua:

A

λ− λD1

[
µQN0a + µQN00µ

−1 +QNaa +QNa0µ
−1
]
~ua+[

µBN0a + µBN00µ
−1 +BNaa +BNa0µ

−1
]
~ua ≡ (34)[

ADQ(λ, p)

λ− λD1
+DB(λ, p)

]
~ua = 0.

The corresponding equation (34) has a nontrivial solution ~ua if the determinant of the corresponding 2 × 2
matrix:

ADQ + (λ− λD1 )DB(λ, p),

vanishes. This condition yields the dispersion equation λ = λ(~p), with the quasi-momentum ~p defined by the
quasi-momentum exponentials µ = diag (µ1, µ2) = diag

(
eip1 , eip2

)
.

In the case when the Heine-Abarenkov potential well is deep enough, there may be several eigenvalues with
eigenfunctions localized in the well.

In particular, there is an eigenfunction symmetric with respect to reflection in the line connecting the mid
points of Γ1

0,Γ
1
a and antisymmetric with respect to reflection in the line connecting the mid-points of Γ2

0,Γ
2
a, or

vice versa. The corresponding eigenvalue is non-degenerated if the potential is not symmetric with respect to the
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FIG. 8. Sections of the dispersion surface of an abstract model emulating Heine-Abarenkov
potential with the lower resonance eigenvalue λ1 = 1 (punctured line)

change of the variables 1→ 2, 2→ 1. The corresponding DN-map is characterized by the polar term AQ with the
projection:

Q =
1

2


ν1〉 〈ν1 0 −ν1〉 〈ν1 0

0 0 0 −ν1〉 〈ν1

−ν1〉 〈ν1 0 0 0

0 −ν1〉 〈ν1 0 ν1〉 〈ν1

 .

If the correcting term is selected as above, we obtain the dispersion curves in various direction as shown one
Fig. 5:

FIG. 9. Sections of the dispersion surface of the abstract model emulating Heine–Abarenkov
potential with resonance eigenvalue λ2 > λ1

In fact, our proposal has a softer nature ( in the sense of V. Arnold), due to the freedom of selection of the
rational approximation ( probably a multi-pole- approximation) for the real material lattice or sandwich on the
resonance domain:

DN ≈
∑
s≤m

As
Qs

λ− λs
+ Pm(λ), (35)
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the choice of the contacts/contact subspaces and temperature (interval of admissible values of energy). We speculate
that this problem, although it appears to be a mathematical one, lies outside of mathematics, on the interface with
quantum chemistry, with its specific system of notions (covalent bonds, etc...) and methods.

.

Appendix 1: Lagrangian version of the operator extension algorithm

John von Neumann – nearly 90 years ago – tried to attract attention of physicists to the basic difference
between symmetric and self-adjoint operators, see [18], and proposed a geometrical solution to the most important
problem of construction of a self-adjoint extension of a symmetric operator. Unfortunately, this solution was not,
at that time, properly recognized by physicists. A few years later, E. Fermi, attempting to describe scattering of
neutrons by nuclei, considered the Laplacian on a domain of smooth L2(R3) functions with typical singularity at

the origin u =
Au

4π|x|
+Bu +O(|x|) and discovered that the boundary form of the Laplacian:

J(u, v) = lim
δ→0

∫
|x|>δ

[−∆ūv + ū∆v] d3x = ĀuBv − B̄uAv (36)

vanishes under the boundary condition B = γA with real γ. Later probably used another approach to the problem
of extending of a symmetric operator to the corresponding self-adjoint, which yields a convenient formula for
the scattered waves, see [19]. Though the conventional proof of self-adjointness of the Laplacian under the
above boundary conditions was proposed 25 years later, see [20], the approach to operator extension based on
the boundary form proved to be extremely efficient, see for instance [12, 13, 21] 1In 1970’s, it was modified
by introducing the inner structure into zero-range potential, see [12, 13], that allowed consideration of resonance
interaction, which allows admission of fitting based on asymptotics Dirichlet-to-Neumann map of the corresponding
unperturbed problem, see [22]. This approach allows one to develop an analytic perturbation technique for
embedded eigenvalues, based on two step analytic perturbation procedure - a quantum Jump-Start analog of the
corresponding classical techniques developed by Poincare [23] and, in particular, to propose a convenient solvable
model for Quantum Networks, supplied with inner structure on the nodes, see [24] 2.

Hereafter, we produce a brief review of the Lagrangian operator extension techniques for an abstract operator,
presenting the corresponding symplectic boundary form in terms of appropriate analog of boundary values, and
imposing the corresponding boundary conditions, to select a domain of the relevant self-adjoint extension as a
Lagrangian plane of the symplectic boundary form.

Consider a finite Hermitian matrix A in a finite-dimensional Hilbert space A : K → K, dim K = k. Select

a deficiency subspace Ni ∈ K, dim Ni < k/2, such that does not overlap with N−i =
A+ iI

A− iI
Ni and consider

the restriction A0 = A

∣∣∣∣
D0

onto the subspace D0 ≡ (A − iI)−1 [K 	Ni]. The restricted operator is not densely

defined, but its formal adjoint can be defined by J. von Neumann formulae on the defect N = Ni + N−i as
A+ni + ini = 0, ni ∈ Ni, A+n−i − in−i = 0, n−i ∈ N−i, see [25], where the operator extension procedure is
developed for A0. In [12,13], see also references therein, a simplectic version of the operator extension procedure
was proposed for A0, which is convenient for manufacturing zero-range perturbations with inner structure for
differential operators, see for instance [12, 13, 24]. In particular, a quantum dot attached to the star-graph Γ = ∪γl
is modeled in [24] based on zero-range potential with inner structure while reducing L → L0 the Schrödinger
operator by the condition of vanishing elements of the domain D(L0) near the knot x = 0 of the star, such that the
adjoint opeartor L+

0 has the boundary form represented as a sum over all branches γl of the star graph Γ, meeting
at the node x = 0:

Jext(u, v) =
∑
l

∫
γl

[
−ū”

l vl + ūlv
”
l

]
dx =

∑
l

[−ū′lvl + ūlv
′
l]

∣∣∣∣
0

, (37)

1I. M. Gelfand attracted attention of mathematicians to importance of development a Lagrangian approach to operator extensions, based
on selecting a Lagrangian plane in the domain of the adjoint operator, which would serve an alternative to the J. von Neumann geometrical
construction, [26].

2Notice, that I. Prigogine in 1973 formulated the hypothesis on the validity of the Poincare two-step algorithm of analytic perturbation
procedure for quantum problems, see [27], but could not prove it, because selected an incorrect anzsatz was selected for the corresponding
Intermediate operator. The hypothesis was later proved for Quantum Networks based on the correct ansatz, [22], for the intermediate operator,
presented in the form of zero-range model with an inner structure, constructed with use of Lagrangian technique of operator extension
procedure [23]
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with differentiation in an outgoing direction at the node. The boundary form of the inner Hamiltonian A is
calculated in a special representation of the boundary form J int(u, v), constructed based on an orthogonal basis
{el} ⊂ Ni:{
W l

+

}
=

{
1

2

[
el +

A+ iI

A− iI
el

]}
=

{
A

A− iI
el

}
and

{
W l
−
}

=

{
1

2

[
el −

A+ iI

A− iI
el

]}
=

{
− 1

A− iI
el

}
. (38)

Jext(u, v) =
∑
l

∫
γl

[
−ū”

l vl + ūlv
”
l

]
dx =

∑
l

[−ū′lvl + ūlv
′
l]

∣∣∣∣
0

, (39)

with differentiation in an outgoing direction at the node. The boundary form of the inner Hamiltonian A is
calculated in a special representation of the boundary form J int(u, v), constructed based on an orthogonal basis
{el} ⊂ Ni:{
W l

+

}
=

{
1

2

[
el +

A+ iI

A− iI
el

]}
=

{
A

A− iI
el

}
and

{
W l
−
}

=

{
1

2

[
el −

A+ iI

A− iI
el

]}
=

{
− 1

A− iI
el

}
. (40)

Then, each element from the defect N = Ni + N−i can be represented as u =
∑
l

A

A− iI
ξl+ −

1

A− iI
ξl− ≡

A

A− iI
~ξu+−

1

A− iI
~ξu−, and the vectors ~ξu± ∈ Ni play roles of the boundary data. The boundary form of the formal

adjoint operator A+
0 is calculated on elements u, v ∈ N from the defect as:

J int(u, v) = 〈A+u, v〉 − 〈u,A+v〉 = 〈~ξu+, ~ξv−〉 − 〈~ξu−, ~ξv+〉. (41)

The ultimate formula is valid tot only on the defect, but on the whole space K = D0 +N with A+
0 extended from

N onto D0 as A0, that is , for u = u0 + uN :

A+(u0 + uN ) = A0u0 +A+
0 uN ,

so that the addendum A0u0 does not contribute to the boundary form Jext(u, v), and Jext(u, v) = 〈A+uN , vN 〉 −
〈uN , A+vN 〉. In particular, the boundary data ξu± for a solution of the homogeneous adjoint equation:

A+(u0 + uN )− λ(u0 + uN ) = 0

are connected by the Krein function M(λ) = PNi

I + λA

A− λI

∣∣∣∣
Ni

as:

ξu− + PNi

I + λA

A− λI

∣∣∣∣
Ni

ξu+ = 0. (42)

A self-adjoint extension of the restricted operator A0 on the defect is constructed as a part of the extended
adjoint operator onto the Lagrangian plane NB in the defect, submitted to the boundary condition:

~ξu− +B~ξu+ = 0, (43)

with an Hermitian operator B : Ni → Ni The boundary form (41) vanishes on the plane. Then, the corresponding
self-adjoint extension of an original restricted operator A0 is defined as a sum A0 + AB acting according to the
von Neumann formulae respectively in D0 and in NB ⊂ N on elements:

u = u0 +
A

A− iI
~ξu+ −

I

A− iI
~ξu−

with the boundary values connected by the above boundary conditions .
The spectrum of the extension is defined by the Krein function:

PNi

I + λA

A− λI
PNi ≡M(λ), (44)

which connects the boundary values ~ξu± of the solution u of the homogeneous adjoint equation A+u− λu = 0:

~ξu− +M(λ)~ξu+ = 0. (45)

and the spectrum of the extension AB is defined by the singularities of the corresponding ratio

I

B −M(λ)
, (46)
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which serves the inner factor in the Krein formula for the resolvent of the extension:
I

AB − λI
=

I

A− λI
+
A+ iI

A− λI
PNi

I

B −M(λ)
PNi

A− iI
A− λI

. (47)

Appendix 2: Solvable models of selected one-body spectral problems

In this section we construct a one-body model of a quantum dot Ω attached to the node of a 1D quantum
star-graph Γ = Γ1 ∪ Γ2 ∪ Γ3 . . .Γn and a one-body model of 1D periodic chain. Despite selection of simplest
algebraic parameters for the corresponding solvable models, they have rich spectral propeties which can be easily
monitored due to the algebraic nature of the parameters selected. Both models are constructed via Lagrangian
version of the operator extension procedure, with regard of the symplectic boundary forms J balancing to zero on
Lagrangian planes, selected based on the corresponding boundary conditions.

Quantum dot attached to the node of a quantum graph

On a star-graph Γ = Γ1 ∪ Γ2 ∪ Γ3 . . .Γn of straight shoulders Γs attached to a compact domain Ω with a
smooth boundary, we consider a spectral problem for a the 1D Schrödinger equation LΓ = −~u′′

Γ in L2(Γ, EΓ) with
EΓ = Cn, with regard of appropriate boundary condition connecting it with the Schrödinger operator LΩuΩ =
−∆uΩ + V uΩ on the domain Ω supplied with the zero boundary condition L2(∂Ω)	 EΩ. A bond B is imposed
on the contact EΩ × EΓ with the projection PΩ ≡ PEΩ . This was done with the consideration of the boundary
forms calculated on both sides of the contact Γ ∩ ∂Ω in the corresponding contact subspaces Cn = EΓ, EΩ, with
PΩ ≡ P

EΩ :

JΓ(uΓ, vΓ) ≡ 〈~u′Γ, ~vΓ〉 − 〈~uΓ, ~v
′
Γ〉, JΩ(uΩ, vΩ) ≡ −〈∂uΩ

∂n
, PΩvΩ〉+ 〈PΩuΩ,

∂vΩ

∂n
〉, (48)

and a boundary condition imposed with an Hermitian matrix:

B =

(
0 bei
bie aii

)
,

(
~u′Γ

−PΩ ∂uΩ

∂n

)
+B

(
~uΓ

PΩuΩ

)
= 0, (49)

with an Hermitian operator aii : EΩ → EΩ and bei : EΩ → EΓ, bie = b+ei. We denote by M ≡ −PΩDNPΩ =∑
l

PΩ ∂ϕl

∂n 〉〈
∂ϕl

∂n P
Ω

λl − λ
the framed DN-map 3 of the quantum dot:

−∆uΩ + V uΩ = λuΩ, DN : uΩ →
∂uΩ

∂n

∣∣∣∣
∂Ω

,

and rewrite equation (49), for the scattering Ansatz eipx~e+ e−ipxS~e = ~u, p2 = λ:

ip(I − S)e+ beiP
ΩuΩ = 0

[M+ aii]P
ΩuΩ+ bie(I + S)e = 0.

(50)

Eliminating PΩuΩ and introducing bei 1
M+aii

bie ≡ N b(λ), we obtain an expression for the scattering matrix:

S(p) =
ip−N b

ip+N b
, with =N b =λ > 0, (51)

in terms of the framed Neumann-to-Dirichlet map N b.
Though the Dirichlet-to-Neumann map of the 3D domain Ω can be computed with standard programs, see

for instance [28], yet it is also convenient to substitute it by perturbation analysis [] using finite-dimensional
approximation, taking into account only a finite number of eigenvalues λl or substituting the quantum dot by
zero-range potential with inner structure, see [12,13]. In particular, for a 1D framed DN map, the framed ND-map
N b ≡ bei 1

M+aii
bie has generally has asymptotes at infinity λ→∞:

N b(λ) = Âλ+ Â0 +

k∑
l=1

Al
λl − λ

, (52)

with Â ≥ 0, A0 = Ā0, Al ≥ 0. It is possible to select a finite-dimensional self-adjoint operator A : K → K
and an interaction B, with non-overlapping deficiency subspaces Ni, N−i such that, being attached to node of the

3The above formal series is actually divergent, but may be properly regularized, see for instance [29].
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above star-graph Γ, plays a role of an inner Hamiltonian of a quantum dot with the scattering matrix (51) on the
star-graph, with the boundary conditions .

A solvable model of a discrete lattice

Consider a 1D periodic lattice ( a chain) of equivalent quantum dots Ω ≡ Ωl arising of equivalent finite-
dimensional operators Al ≡ A : Kl → Kl, with equivalent non-overlapping 1D deficiency subspaces N l

i , N
l
−i.

Each quantum dot is substituted by the zero-range potential with an inner structure as described in Appendix 1:

ξ+ ∼ PEuΩ

∣∣∣∣
Γ

, ξ− ∼ −PE
∂uΩ

∂n

∣∣∣∣
Γ

, ξ− +Mξ+ = 0, (53)

and a pair of infinite-dimensional vectors ~ξ+ =
∑
l ξ
l
−,

~ξ− =
∑
l ξ
l
+, which play a role of the boundary values

for the whole chain. We choose the simplest translation - invariant boundary conditions, connecting the nearest
neighbors in the chain as:

ξl− + b+ ξl−1
+ + b0 + b ξl+1

+ = 0, or, alternativelyξl+ + c− ξl−1
− + c0 + c ξl+1

− = 0. (54)

Denoting the sequence ξl shifted one step to the left as T+~ξ =
{
ξl+1

}
and, similarly the sequence shifted one step

to the right T ~ξ =
{
ξl−1

}
, we represent the above boundary conditions respectively as:

~ξ− +
[
b+T+ + b0 + bT

]
~ξ+ = 0 ≡ ~ξ− +B~ξ+,

~ξ+ +
[
c+T+ + c0 + cT

]
~ξ+ = 0 ≡ ~ξ+ + C~ξ−, (55)

Regarding the periodicity of the chain of quantum dots, the corresponding sequences of their Weyl-Titchmatsh or
Krein finctions diag M≡ ⊕

∑
Ml are also periodics:

T+diagMT = TdiagMT+ = diagM.

With 1D contact subspaces El ≡ E and the interaction B or C between the boundary data on the chain, the bound-
ary values of the relevant Bloch functions ~Ξ are quasi-periodic Ξl± = eipl Ξ0

±, with regard to the quasimomentum
p:

MΞ0
+ −

[
b+e−ip + b0 + beip

]
Ξ0

+ = 0, for the boundary codition B, and

Ξ0
+ −M

[
c+e−ip + c0 + ceip

]
Ξ0

+ = 0 (56)

for the boundary condition C. In the case of the quantum dot substituted by the zero-range boundary condition
with an inner structure, as in Appendix 1:

M = PE
I + λA

A− λI
PE = −PEAPE + PE

I +A2

A− λI
PE ≈ −PEAPE −

PE(I +A2)PE
λ

+O(1/λ)2 (57)

For a special choice of the boundary parameters −PEAPE = b0 with regards to M+ b0 → 0 or, correspondingly,
c0PEAPE = 1 with regards to I +Mc0 → 0 while λ → ∞, we get for the special choice of the boundary
parameters:

PA
I +A2

A− λ
PEΞ0

+ + 2|b| cos(p+ ϕb)Ξ
0
+ = 0, (58)

and correspondingly:

(I + c0PEAPE) Ξ0
+ − PE

(I +A2)

A− λI
PE2|c| cos(p+ ϕc)Ξ

0
+ = 0. (59)

The Nevanlinna function PA
(I+A2)
A−λ PE is invertible on real axis, and the innverse is also a Nevanlinna function

arising from a pair E,G with a finite-dimensional operator G : K → K with selected deficiency subspace Ni = E
4

−
[
PE

(I +A2)

A− λ
PE

]−1

= λ
[
PE(I +A2)PE

]−1 − PEGPE + PE
I +G2

G− λI
PE , (60)

hence first addendum in (59) multiplied by
[
PE

(I+A2)
A−λ PE

]−1

yields:

(I + c0PEAPE)

[
λ
[
PA(I +A2)PE

]−1
Ξ0

+ − PEGPE + PE
I +G2

G− λI
PE

]
Ξ0

+. (61)

4The operators A and G are connected similarly to Laplacean with Dirichlet and Neumann boundary conditions on a domain with a smooth
boundary.
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This allows one to rewrite the dispersion equation (59) as:

(I + c0PEAPE)

[
λ
[
PA(I +A2)PE

]−1
Ξ0

+ − PEGPE + PE
I +G2

G− λI
PE

]
Ξ0

+ + 2|c| cos(p+ ϕc)Ξ
0
+ = 0. (62)

The equations (58, 62) show typical dispersion functions of 1D periodic lattices.
The most important characteristics of periodic lattices are the quasimomentum and the effective mass, which are

calculated from the dispersion function as the inverse of the derivative of energy with respect to the quasimomentum[
∂λ

∂ps∂t

]−1

≡ mst . For a 1D discrete periodic chain of “quantum dots”, we calculate the effective mass in terms

of the relevant Krein function ( abstract analog of the Weyl-Titchmarsh function) and the boundary parameter β.
Assuming that the dispersion equation for the chain isM−b cos p = 0, we differentiate the dispersion equation

twice with respect to quazimomentum:

M(λ)− β cos p = 0 −→ dM
dλ

dλ

dp
+ β sin p = 0 −→

−→ d2M
dλ2

[
dλ

dp

]2

+
dM
+

dλ
d2λ

dp2
+ β cos p = 0,

and use the 1D the 1D formula for the effective mass m =

[
d2λ

dp2

]−1

. This implies:

m = −
dM
dλ

β cos p+ d2M
dλ2

(
dλ
dp

)2 .

In experiment, the effective mass is usually measured at the ends of the spectral bands sin p = 0, where
dλ

dp
= 0.

Then the second term in the denominator vanishes and we get at the ends of spectral bands:

m = −
dM
dλ

β cos p
= −

dM
dλ

M(λ)
.

Spectral structure of a 1D superlattice via analytic perturbation procedure

We consider a couple of two non-enteracting 1D discrete periodic lattices with typical dispersion equations
similar to above (58,62) and the corresponding weakly perturbed pair:

−A1

λ
e1 +B1λe1 + C1e1 − β1 cos p, e1 = 0,

2A2λ

1− λ2
e2 − β2 cos p e2 = 0

−A1

λ
e1 +B1 λ e1 + C1 e1 − cos p [β1 e1 + δ e2] = 0,

2A2λ

1− λ2
e2 − cos p [β2 e2 + δ e1] = 0. (63)

Hereafter we assume, with regard of the diagram (10) that B1 > 0, A1,2 > 0 are small, and δ1,2 > 0 are much
smaller and β1,2 > 0. The perturbed dispersion equation is reduced to the determinant condition for the above
linear system:

det

(
−A1

λ +B1 λ+ C1 − cos p β1 δ cos p

δ cos p 2A2λ
1−λ2 − cos p β2

)
= 0. (64)

The perturbed spectral bands are found from the determinant condition with regard of real quasimomentum
p : −1 < cos p < 1. The determinant condition is presented as:[

−2A1A2

1− λ2
− 2A2B1λ

2

1− rλ2

]
+ cos p

[
(
A1

λ
−B1λ)β2 − β1

2A2λ

1− λ2

]
+

+(β1 β2 − δ2) cos2 p ≡ −K0 − cos pK1 +K2 cos2 p = 0, (65)

which implies:

|K0 ±
√
K2

1 + 4K0K2| ≤ 2K0. (66)

The ultimate condition corresponds, depending on the choice of parameter, to various physical conditions and the
corresponding different physical properties of the perturbed superlattice.
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FIG. 10. The spectral structure of the perturbed superlattice with regards to quasi-crossings
of terms of the underlying unperturbed lattices. The typical quasi-crossing for terms of the
Nevanlinna-class dispersion equations. The unperturbed spetral bands are shown as thin rectangles
marked by numbers 1, 2
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1. Introduction

This paper concerns the control and inverse problems for differential equations on quantum graphs. By
quantum graphs, we understand differential operators on geometric graphs coupled by certain vertex matching
conditions. B. S. Pavlov and his former student N. I. Gerasimenko were among the first researchers to develop a
mathematically rigorous approach to differential operators on metric graphs in the 1980’s [1, 2].

Network-like structures play a fundamental role in many scientific and engineering problems. The classical
problem here that aries from applications is the problem of oscillations of the flexible structures made of strings,
beams, cables, and struts. These models describe bridges, space-structures, antennas, transmission-line posts, steel-
grid reinforcements and other typical objects of civil engineering. More recently, the applications on a much
smaller scale have come into focus. In particular, hierarchical materials like ceramic or metallic foams, percolation
networks and carbon and graphene nano-tubes, and graphene ribbons have attracted much attention.

Papers discussing differential and difference equations on graphs have been appearing in various areas of
science and mathematics since the 1930’s, but in the last two decades, their numbers have grown enormously.
Quantum graphs arise as natural models of various phenomena in chemistry (free-electron theory of conjugated
molecules), biology (genetic networks, dendritic trees), geophysics, environmental science, disease control, and
even in the internet (internet or network tomography). In physics, interest in quantum graphs arose, in particular,
from applications to nano-electronics and quantum waveguides. On the other hand, quantum graph theory gives rise
to numerous challenging problems related to many areas of mathematics from combinatorics to PDEs and spectral
theory. Work on quantum graph theory and its applications have truly interdisciplinary character, and a series of
meetings on this topic has stimulated collaboration of researchers from different areas of science, engineering and
mathematics. A number of surveys and collections of papers on quantum graphs have appeared recently, and the
first book on this topic by Berkolaiko and Kuchment [3] contains an excellent list of references.

Control and inverse theories constitute important parts of this rapidly developing area of applied mathematics
— analysis on graphs. It is tremendously important for all aforementioned applications. However, these theories
have not been sufficiently developed. Control and inverse problems for DEs on graphs appear to be much more
complicated than similar problems on an interval (see, e.g. [4, 5] and references therein).

A new effective leaf-peeling method for solving inverse problems for differential equations on graphs without
cycles has been proposed in [5] and developed further in [6, 7]. The main goal of the present paper is to extend
this method to DEs on graphs with attached point masses.

Let Γ = E ∪ V be a finite compact metric graph without cycles, where E = {ej}Nj=1 is a set of edges and

V = {νj}N+1
j=1 is a set of vertices. We recall that a graph is called a metric graph if every edge ej ∈ E is identified

with an interval (a2j−1, a2j) of the real line with a positive length lj = |a2j−1 − a2j |, and a graph is a tree if it
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has no cycles. The edges are connected at the vertices vj which can be considered as equivalence classes of the
edge end points {aj}.

Let {γ1, . . . , γm} = ∂Γ ⊂ V be the boundary vertices, i.e. if the index (or multiplicity) of a vertex, id(ν), is
the number of edges incident to it, then ∂Γ = {ν ∈ V |id(ν) = 1}. A nonnegative mass Mν is attached to each
vertex ν ∈ V \ ∂Γ.

In Fig. 1 we give an example of a star graph (a graph with one internal vertex). Such graphs play an important
role in the leaf peeling method described below in Sec. 3. A tree with m = 9 and N = 12 is presented in Fig. 2.

FIG. 1. A star graph FIG. 2. A metric tree

Let q be a continuous function on Γ. Our initial boundary value problem is:

utt − uxx + q(x)u = 0 in {Γ \ V } × (0, T ) (1.1)∑
ej∼ν ∂uj(ν, t) = Mνutt(ν, t) at each vertex ν ∈ V \ ∂Γ, and t ∈ [0, T ]

u(·, t) is continuous at each vertex, for t ∈ [0, T ]
(1.2)

u = f on ∂Γ× [0, T ] (1.3)

u|t=0 = 0 in Γ. (1.4)

In (1.2) (and below), ∂uj(ν) denotes the derivative of u at the vertex ν taken along the edge ej in the direction
outwards from the vertex. Also, ej ∼ ν means edge ej is incident to the vertex ν, and the sum is taken over all
edges incident to ν. Since ∂Γ consists of m vertices, f can be naturally identified with a function acting from
[0, T ] to Rm.

The metric graph Γ determines naturally the Hilbert space of square integrable functions H = L2(Γ). We
define the space H1 of continuous functions v on Γ such that v|e ∈ H1(e) for every e ∈ E.

The f appearing in (1.3) is the (boundary) control for the problem (1.1)-(1.4), and a solution to (1.1)-(1.4) will
be denoted uf . One can prove that for f ∈ FT := L2([0, T ];Rm), the generalized solution vf of (1.1)-(1.4) belongs
to C([0, T ];H) (see Theorem 1 below), and the control operator WT : FT → H, given by WT f := uf (·, T ) is
bounded.

The response operator (Steklov-Poincaré operator) for the system, RT = {RTij}mi,j=1, defined on FT is defined
by:

(RT f)(t) = ∂uf (·, t)|∂Γ , 0 < t < T . (1.5)

Our dynamic inverse problem is to recover the unknown coefficient q(x) on each edge of the graph from the
response operator RT . We can also recover the graph topology, all Mν , ν ∈ V \ ∂Γ, and the lengths of all the
edges. We can actually do this with the reduced operator {RTij}

m−1
i,j=1. That is, the method has the flexibility of not

needing the control and observation at one of the boundary vertices. We prove the dynamic inverse problem has a
unique solution for sufficiently large T (see Theorem 2 below) and give a constructive method for finding it.

Applying formally the Fourier–Laplace transform

g 7→
∞∫

0

g(t)eiωtdt
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to equations (1.1)–(1.3), we obtain the following boundary value problem depending on a complex parameter
λ = ω2 :

−φxx(x, λ) + q(x)φ(x, λ) = λφ(x, λ) on {Γ \ V }, (1.6)∑
ej∼ν ∂φj(ν, λ) = −λMνφ(ν, λ) at each vertex ν ∈ V \ ∂Γ,

φ(·, λ) is continuous at each vertex,
(1.7)

The system of differential equations (1.6), (1.7) with zero Dirichlet boundary condition has only a trivial solution
for λ /∈ R. Therefore, for any α ∈ Cm, this system of equations has a unique solution, φα(x, λ), satisfying
non-zero boundary conditions:

φα(γj , λ) = αj , j = 1, 2, ...,m, α = col {α1, . . . , αm}, (1.8)

The m ×m matrix M(λ) defined by M(λ)α = ∂φα|∂Γ is called the Titchmarsh–Weyl matrix function, or the
TW-function. The TW-function is also known as the (spectral) Dirichlet-to-Neumann map. The TW-functionM(λ)
known for =λ > 0 will play the role of the spectral data for solving boundary inverse problems on graphs.

2. Main results

In the case of a string with loaded masses it was noticed [8, 9] that the wave transmitted through a mass is
more regular than the incoming wave. A similar effect also occurs for networks of strings. To formulate the result,
we need the following definition. Among all paths from edge ei to the boundary vertex γj , let the degree, di, of
the edge ei be the minimal (with respect to j) number of nonzero loaded masses on the path. For the following
theorem we assume that q|ej ∈ Cdj (ej).

Theorem 1. Assume Mν > 0 for all ν. If f ∈ FT , then for any t ∈ [0, T ], uf (·, t) ∈ H and uf ∈ C([0, T ];H).
Furthermore, for each ej ∈ E, uf |ej ∈ C([0, T ];Hdj (ej)).

The proof of the theorem is based on the analysis of the waves incoming to, transmitted through and reflected
from an inner vertex, taking into account the conditions (1.2). For the simplest graph of serially connected strings
with attached masses such a result was obtained in [8].

The next theorem describes the solution of the dynamic inverse problem.

Theorem 2. Let T∗ = 2 maxj 6=m dist{γj , γm}. The operator {RTij}
m−1
i,j=1 known for T > T∗ uniquely determines

q on Γ, {Mν : ν ∈ V \ ∂Γ}, {lj : j = 1, . . . , N} and the graph topology. If the topology is known, all other
parameters can be found from the main diagonal {RTii}

m−1
i=1 of the reduced response operator.

We also extend to our networks the leaf peeling method proposed in [5] (and generalized for strings with
attached masses in [10]) and develop a constructive algorithm solving the inverse problem.

A spectral analog of Theorem 2 reads as follows.

Theorem 3. The reduced TW matrix function {Mij(λ)}m−1
i,j=1 known for =λ > 0 uniquely determines q on Γ,

{Mν : ν ∈ V \ ∂Γ}, {lj : j = 1, . . . , N} and the graph topology. If the topology is known, all other parameters
can be found from the main diagonal {Mii(λ)}m−1

i=1 of the reduced TW matrix function.

3. Proof of Theorem 3

The response operator RT and TW-function M(λ) are connected with each other by the Fourier–Laplace
transform (see, e.g. [5]). Therefore, knowledge of M(λ) allows one to find RT for all T > 0, and knowledge of
RT for all T > 0 allows one to find M(λ).

In this section, we prove Theorem 3. We will give a brief description of an algorithm which allows us to
recalculate the TW matrix function from the original graph to a smaller graph by “pruning” boundary edges.
Ultimately, doing so allows us to reduce the original inverse problem on the graph to the inverse problem on a
single interval.

Our reduction algorithm combines both spectral and dynamical approaches, i.e. uses M(λ) and RT . As we
mentioned above, the TW matrix function determines the response operator for the system (1.1)-(1.4). Therefore,
under the conditions of Theorem 3 the entries RTij , i, j = 1, . . . ,m− 1 are known for T > 0.

Step 1. Knowledge of RTjj for sufficiently large T allows one to recover the length of the edge e ∈ E incident
to γj , the potential q on e and the mass Mν , where ν ∈ V \ ∂Γ is an inner vertex to which e is incident. We can
also recover id(ν), the total number of edges incident to ν. The proof of these statements is based on the analysis
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of the waves incoming to, transmitted through and reflected from vertex ν. Similar analysis was presented in [5]
without the loaded masses; this was based on the boundary control method in inverse theory.

Step 2. We determine the boundary edges which have a common end point using the non-diagonal entries RTij
of the response operator. Since the speed of wave propagation in the system (1.1)-(1.4) equals one, two boundary
edges, say, ei and ej , incident to the boundary edges γi and γj with the lengths li and lj have a common end
point if and only if:

RTij =

{
0 for T < li + lj
6= 0, for T > li + lj .

(3.1)

Definition of a sheaf. We consider a subgraph of Γ which is a star graph consisting of all edges incident to an
internal vertex v. This star graph is called a sheaf if all but one its edges are the boundary edges of Γ. It is known
that any tree has at least two sheaves.

Step 3. Leaf peeling. We consider now a sheaf consisting, say, of several boundary edges e1, . . . , ep, p < m,
incident to boundary vertices γ1, . . . , γp are connected at the vertex νs (see, e.g. vertices γ1, γ2, γ3, ν1 on Fig. 2).
From Step 1, we know the potential on these edges, their lengths and the index of the vertex νs.

The index of the vertex νs is p+ 1 and there is exactly one internal edge incident to νs. We denote by M̃(λ)

the TW matrix function associated with the reduced graph Γ̃, i.e. the original graph Γ without the boundary edges
e1, . . . , ep and vertices γ1, . . . , γp.

We denote by M̃0i(λ), M̃i0(λ) and M̃00(λ) the entries of M̃(λ) related to the “new” boundary point νs0 of
the graph Γ̃. The other entries of M̃(λ) are denoted by M̃ij , i, j = p + 1, . . . ,m. We demonstrate now how to
find the entries of M̃(λ).

First, we recalculate the entries M̃00(λ) and M̃0i(λ), i = p+ 1, . . . ,m− 1. we choose a boundary point, say
γ1, of the star-subgraph. Let φ(x, λ) be the solution to the problem (1.6), (1.7) subject to the boundary conditions:

φ(γ1, λ) = 1, φ(γj , λ) = 0, j = 2, . . . ,m− 1,m. (3.2)

We notice that on the boundary edge e1 the function φ solves the Cauchy problem:

−φ′′ + q(x)φ = λφ, x ∈ e1, (3.3)

φ(γ1, λ) = 1, φ′(γ1, λ) =M11(λ). (3.4)

On the other edges of the star subgraph it solves

−φ′′ + q(x)φ = λφ, x ∈ ei, i = 2, . . . , p, (3.5)

φ(γi, λ) = 0, φ′(γi, λ) =M1i(λ), i = 2, . . . , p. (3.6)

Since the potential on the edges e1, . . . , ep is known, we can solve the Cauchy problems (3.3), (3.4) and (3.5),
(3.6) and use the matching conditions (1.7) at the internal vertex νs to recover the values φ(νs, λ) and φ′(νs, λ)
on the “new” boundary edge at the “new” boundary point νs. Thus we obtain:

M̃00(λ) = φ′(νs,λ)
φ(νs,λ) ,

M̃0i(λ) = M1i(λ)
φ(νs,λ) , i = p+ 1, . . . ,m.

(3.7)

We recall that here =λ 6= 0, and so, φ(νs, λ) 6= 0. Otherwise, λ would be an eigenvalue of a selfadjoint operator.
To find M̃i0(λ) and M̃ij(λ) , i = p + 1, . . . ,m − 1 we fix γi (i > p) and consider the solution ψ(x, λ) to

(1.6), (1.7) with boundary conditions

ψ(γi, λ) = 1, ψ(γj , λ) = 0, j 6= i. (3.8)

The function ψ then solves the following Cauchy problems on the edges e1, . . . , ep:

−ψ′′ + q(x)ψ = λψ, x ∈ ej , j = 1, . . . , p, (3.9)

ψ(γj , λ) = 0, ψ′(γj , λ) =Mij(λ). (3.10)

Since we know the potential on the edges e1, . . . , ep, we can solve the Cauchy problems (3.9), (3.10) and use the
conditions at the internal vertex νs to recover the values ψ(νs, λ) and ψ′(νs, λ) at the “new” boundary edge with
the “new” boundary point νs.

Now, we consider the following linear combination of the solutions φ and ψ:

ϕ(x, λ) = ψ(x, λ)− ψ(νs, λ)

φ(νs, λ)
φ(x, λ) . (3.11)
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It is easy to verify that on the subgraph Γ̃ the function ϕ satisfies the boundary conditions:

ϕ(γi, λ) = 1, ϕ(γj , λ) = 0, j 6= i . (3.12)

Thus, from (3.11), we obtain that:

M̃i0(λ) = ψ′(νs, λ)− ψ(νs, λ)M̃00(λ),

M̃ij(λ) =Mij(λ)− ψ(νs, λ)M̃0j(λ).
(3.13)

To recover all elements of the reduced TW matrix function, we need to use this procedure for all i, j = p +
1, . . . ,m− 1.

We conclude that the (reduced) TW-function for the graph Γ determines the (reduced) TW-function for the
graph Γ̃. The inverse problem is reduced to the inverse problem for a smaller graph. Since the graph Γ̃ is finite,
this procedure may be continued, but it ends after a finite number of steps.

The proofs of Theorems 1 and 2 for arbitrary tree will be presented in a forthcoming paper. The quantum
graph with the simplest topology — a network of serially connected strings — is considered in the next section.

4. Network of serially connected strings

We consider the wave equation on the interval [0, `] with N masses Mj > 0 attached at the points aj , j =
1, . . . , N, where 0 = a0 < a1 < ... < aN < aN+1 = `. This is modeled by:

ρ(x)
∂2u

∂t2
− ∂2u

∂x2
= 0, t ∈ (0, T ), x ∈ Ω := (0, a1) ∪ (a1, a2) ∪ . . . ∪ (aN , `),

u(a−j , t) = u(a+
j , t), Mj utt(aj , t) = ux(a+

j , t)− ux(a−j , t),

u(x, 0) = ut(x, 0) = 0,

u(0, t) = f(t), f ∈ FT := L2(0, T ), u(`, t) = 0.

Here ρ is a positive function on [0, `] and ρ|[aj ,aj+1] ∈ Cj+2[aj , aj+1], j = 0, . . . , N .
We show that the wave transmitted through a mass is more regular than the incoming wave. We define the

spaces W, WT :

W =
{
φ ∈ L2(0, a1)×H1(a1, a2)× ...HN (aN , `) :

φ(a−j ) = φ(a+
j ), φ′(a−j ) = φ′(a+

j )−Mj φ
′′(a+

j )/ρ(a+
j ), φ(`) = 0

}
,

WT = {φ ∈W : φ(x) = 0 for x ≥ X(T )} ,
where

T =

X(T )∫
0

√
ρ(x) dx , L =

l∫
0

√
ρ(x) dx .

The following result on the regularity of the solution of the initial boundary value problem stated above and
on the controllability of this dynamical system has been proved in [8].

Theorem 4. Suppose T ≤ L :=
l∫

0

√
ρ(x) dx. For any f ∈ FT , uf ∈ C(0, T ;WT ) and for any φ ∈ WT , there

exists a unique f ∈WT such that uf (x, T ) = φ(x). Furthermore,

‖uf (·, T )‖W � ‖f‖FT .

For T > L,

{uf (·, T ) : f ∈ L2(0, T )} = W.

Our dynamical inverse problem is to recover unknown parameters of the system from the response operator

RT : FT 7→ FT , Dom(RT ) = {f ∈ H1(0, T ), f(0) = 0},

(RT f)(t) = ufx(0, t), t ∈ (0, T ).

The main result is this section is:

Theorem 5. Let T > 2L. Given RT , one can find ρ(x), l, aj , and Mj , j = 1, . . . , N.
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We prove this theorem in several steps. First, we consider the spectral boundary value problem corresponding
our dynamical system:

−ϕ′′(x, λ) = λ2ρ(x)ϕ(x, λ), x ∈ Ω,

ϕ(0, λ) = ϕ(`, λ) = 0, ϕ(a−j , λ) = ϕ(a+
j , λ),

−Mj λ
2ϕ(aj , λ) = ϕ′(a+

j , λ)− ϕ′(a−j , λ) ∀j.
The eigenvalues λ2

n of this problem are simple and the eigenfunctions ϕn form the orthonormal basis in the space
H := L2

ρ(0, l)⊕RN with the inner product:

〈φ, ψ〉H =

l∫
0

φ(x)ψ(x)ρ(x)dx+

N∑
j=1

Mjφ(aj)ψ(aj) .

We set
HT = {φ ∈ H : φ(x) = 0 for x ≥ X(T )} .

The connecting operator is defined as:

CT : FT 7→ FT , (CT f, g)FT :=
〈
uf (·, T ), ug(·, T )

〉
H .

The connecting operator can be written in the form CT = (UT )∗(UT ) where

UT : FT 7→WT , UT f = uf (·, T ).

The exact controllability (see Theorem 4) implies that CT is bounded and boundedly invertible.
Our second step is:

Theorem 6. Operator CT can be explicitly expressed through the response operator on the double interval:
CT = − 1

2 (ST )∗I2TR2TST , where:

(ST f)(t) =

{
f(t) if t ∈ [0, T ],

−f(2T − t) if t ∈ (T, 2T ],
(I2T f)(t) =

t∫
0

f(s)ds.

Sketch of the proof of Theorem 6. Set w(s, t) :=
〈
uf (·, s), ug(·, t)

〉
H .

We notice that (CT f, g)FT = w(T, T and

wtt(s, t)− wss(s, t) =

l∫
0

[uf (x, s)ugtt(x, t)− ufss(x, s)ug(x, t)]ρ(x)dx

+
∑
j

Mj [u
f (aj , s)u

g
tt(aj , t)− ufss(aj , s)ug(aj , t)] = (using ρutt = uxx)

=
[
uf (x, s)ugx(x, t)− ufx(x, s)ug(x, t)

]l
x=0

= (Rf)(s)g(t)− f(s)(Rg)(t).

We use w(s, 0) = wt(s, 0) = w(0, t) = 0 to find w(T, T ) by D’Alembert’s formula.
The next step is the construction of special bases in spaces FT and HT . Let T ≤ L and {fn}, n ∈ N , be

a basis in FT such that:

f ∈ C2[0, T ], f(0) = f ′(0) = 0,
(
CT fk, fn

)
FT = δkn.

Due to controllability, {ufn(·, T )} is an orthonormal basis in HT .

Next, we introduce two functions: φ0(x) = 1, φ1(x) = x, x ∈ [0, l] and let φ0
T and φ1

T be their restrictions
to the interval [0, X(t)].

Theorem 7. The coefficients in the series representations of the functions φ0
T , φ

1
T with respect to the basis

{ufj (·, T )} have the form

c0n := 〈φ0, ufn(·, T )〉H = −
T∫

0

(T − t)(RT fn)(t) dt ,

c1n := 〈φ1, ufn(·, T )〉H =

T∫
0

(T − t) fn(t) dt .
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Sketch of the proof of Theorem 7. By the definition of the connection operator, we have:

〈φ0, ufn(·, T )〉H =

l∫
0

ufn(x, T )ρ(x)dx+
∑
j

Mj u
fn(aj , T )

=

T∫
0

(T − t)

 X(T )∫
0

ufntt (x, t)ρ(x)dx+
∑
j

Mj u
fn
tt (aj , t)

 dt
=

T∫
0

(T − t)

 X(T )∫
0

ufnxx(x, t)dx+
∑
j

Mj u
fn
tt (aj , t)

 dt
= −

T∫
0

(T − t)ufnx (0, t) dt = −
T∫

0

(T − t)(RT fn)(t) dt.

This proves the first statement of Theorem 7. The second one can be proved in a similar way.
Now, we are ready to complete the solution of the dynamical inverse problem. We introduce two functions:

µ(T ) =

X(T )∫
0

ρ(x)dx+
∑

j: aj<X(T )

Mj ,

ν(T ) =

X(T )∫
0

xρ(x)dx+
∑

j: aj<X(T )

Mj aj .

They can be found using the theorem:

µ(T ) = 〈φ0
T , φ

0
T 〉H =

∑
n

|c0n|2, ν(T ) = 〈φ0
T , φ

1
T 〉H =

∑
n

c0n c
1
n .

Separating the singular and regular (integral) parts, we find Mj and aj from the singular parts. From the regular
parts, we have:

µ̇r(T ) = ρ(X(T )) Ẋ(T ), ν̇r(T ) = X(T )ρ(X(T )) Ẋ(T ) .

From these relations, we find X(T ) and, finally, ρ(x).
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1. Introduction

The theory of dynamical inverse problems is a wide area of modern mathematics, by now for all or almost
all linear nonstationary equations of mathematical physics there exist an inverse theory more or less developed.
Theories mostly covers the case of continuous problems, at the same time just a few attention is paid to discrete
ones. The primary goal of the paper is to improve this situation.

Let N be the set of positive natural numbers, N0 = N ∪ {0}. We fix the infinite sequence of real num-
bers (b1, b2, . . .), which we call the potential and consider the dynamical system with discrete time which is a
natural analog of dynamical systems governed by the wave equation with potential on a semi-axis:

un,t+1 + un,t−1 − un+1,t − un−1,t + bnun,t = 0, n, t ∈ N0,

un,−1 = un,0 = 0, n ∈ N,
u0,t = ft, t ∈ N0.

(1.1)

By analogy with continuous problems [1], we treat the real sequence f = (f0, f1, . . .) as a boundary control. The
solution to (1.1) we denote by ufn,t.

Having fixed τ ∈ N, with (1.1) we associate the response operators, which maps the control f = (f0, . . . fτ−1)

to uf1,t:

(Rτf)t := uf1,t, t = 1, . . . , τ. (1.2)

The inverse problem we will be dealing with is to recover from Rτ (part of the) potential (b1, b2, . . . , bn) for some
n. This problems is a natural discrete analog of the inverse problem for the wave equation where the inverse data
is the dynamical Dirichlet-to-Neumann map, see [1].

We will be using the Boundary Control method [1] which was initially developed to treat multidimensional
dynamical inverse problems, but since then was applied to multi- and one- dimensional inverse dynamical, spectral
and scattering problems, problems of signal processing and identification problems [2, 3].

In the second section, we study the forward problem: for (1.1) we prove the analog of d’Alembert integral
representation formula. Prescribing the Dirichlet condition at n = N+1, we consider the second dynamical system
with boundary control at n = 0 (which will be an analog of the problem on the finite interval) and develop the
solution of this system in Fourier series. We analyze the dependence of two solutions on the potential, which lead
us to the natural set up of the inverse problem. In the third section, we introduce and prove the representation
formulae for the main operators of the BC method: response operator, control and connecting operators. In the
fourth section, we derive two types of equations for the inverse problem and give a characterization of the inverse
data. In the last section, we highlight the connections between the different types of inverse data.

The case of the Jacobi matrices of general type as well as the studying of the inverse spectral problem, i.e.
recovering the semi-infinite matrix from the spectral measure, will be the subject of forthcoming publications.
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2. Forward problems

We fix some positive integer T . By FT we denote the space of controls: FT := RT , f ∈ FT , f = (f0, . . . , fT−1).
First, we derive the representation formulas for the solution to (1.1) which could be considered as analogs of

known formulas for the wave equation [4].

Lemma 1. The solution to (1.1) admits the representation:

un,t = ft−n +

t−1∑
s=n

wn,sft−s−1, n, t ∈ N0. (2.1)

where wn,s satisfies the Goursat problem:
wn,t+1 + wn,t−1 − wn+1,t − wn−1,t + bnwn,t = 0, n, s ∈ N0, s > n,

wn,n = −
n∑
k=1

bk, n ∈ N,

w0,t = 0, t ∈ N0.

(2.2)

Proof. We assume that ufn,t has a form (2.1) with unknown wn,s and plug it to equation in (1.1):

0 = bnft−n +
t−1∑
s=n

bnwn,sft−s−1 +

t∑
s=n

wn,sft−s +

t−2∑
s=n

wn,sft−s−2 −
t−1∑

s=n+1

wn,sft−s−1 −
t−1∑

s=n−1
wn−1,sft−s−1.

Changing the order of summation, we get:

0 = bnft−n + wn+1,nft−n−1 − wn−1,n−1ft−n +

t−1∑
s=n

ft−s−1 (bnwn,s − wn+1,s − wn−1,s)

+

t−1∑
s=n−1

wn,s+1ft−s−1 +

t−1∑
s=n+1

wn,s−1ft−s−1 = ft−n−1(wn+1,n − wn,n−1) + bnft−n

+

t−1∑
s=n

ft−s−1 (wn,s+1 + wn.s−1 − wn+1,s − wn−1,s + bnwn,s) + ft−n(wn,n − wn−1,n−1).

Counting that wn,s = 0 when n > s and arbitrariness of f ∈ FT , we arrive at (2.1). �

We fix N ∈ N. Along with (1.1) we consider the analog of the wave equation with the potential on the
interval: we assume that (bn) is finite: n = 1, . . . , N and impose the Dirichlet condition at n = N + 1. Then for
a control f = (f0, f1, . . .) we consider:

vn,t+1 + vn,t−1 − vn+1,t − vn−1,t + bnvn,t = 0, t ∈ N0, n ∈ 0, . . . , N + 1

vn,−1 = vn,0 = 0, n = 1, 2, . . . , N + 1

v0,t = ft, vN+1,t = 0, t ∈ N0.

(2.3)

We denote the solution to (2.3) by vf .
Let φn(λ) be the solution to: {

φi+1 + φi−1 − bnφi = λφi,

φ0 = 0, φ1 = 1.
(2.4)

We introduce the Hamiltonian:

HN :=


−b1 1 0 . . . 0

1 −b2 1 . . . 0

· · · · ·
0 . . . 0 1 −bN


Let {ϕk, λk}Nk=1 be eigenvectors chosen such that ϕk1 = 1 and eigenvalues of HN . Introduce the numbers ρk by:

(ϕk, ϕl) = δklρk, (2.5)

where (·, ·)– is a scalar product in RN .
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Definition 1. The set
{λk, ρk}Nk=1 (2.6)

is called the spectral data.

On introducing vectors φn ∈ RN by the rule φni := φi(λn), n, i = 1, . . . , N, we have

Proposition 1. The solutions of φN+1(λ) = 0 are λn, n = 1, . . . , N ; and φni = ϕni , n, i = 1, . . . , N.

Proof. Take eigenvector ϕn corresponding to eigenvalue λn and compare it with φn. By the definition of ϕn and
condition in (2.4): ϕn1 = φn1 = 1. On the other hand, comparing the first line in the equation on eigenvalues
HNϕ

n = λnϕn and (2.4) for i = 1 we have:

−ϕn1 b1 + ϕn2 = λnϕ
n
1 ,

φn2 − b1φn1 = λnφ
n
1 ,

which implies ϕn2 = φn2 , for k < N comparing k−th line in HNϕ
n = λnϕn and (2.4) for i = k, we arrive at

ϕnk+1 = φnk+1. And for k = N :

−ϕnNbN + ϕnN−1 = λnϕ
n
N ,

φnN+1 + φnN−1 − bNφnN = λnφ
n
N ,

which holds if and only if φnN+1(λn) = 0. �

We take y ∈ RN , y = (y1, . . . , yN ), for each n we multiply the equation in (2.3) by yn, sum up and evaluate
the following expression, changing the order of summation:

0 =

N∑
n=1

(vn,t+1yn + vn,t−1yn − vn+1,tyn − vn−1,tyn + bnvn,tyn) =

N∑
n=1

(vn,t+1yn + vn,t−1yn − vn,t(yn−1 + yn+1) + bnvn,tyn)− vN+1,tyN − v0,ty1 + v1,ty0 + vN,tyN+1. (2.7)

Now, we choose y = ϕl, l = 1 . . . , N . On counting that ϕl0 = ϕlN+1 = 0, ϕl1 = 1, v0,t = ft, vN+1,t = 0 we
evaluate (2.7) arriving at:

0 =

N∑
n=1

(
vn,t+1ϕ

l
n + vn,t−1ϕ

l
n − vn,t

(
ϕln−1 + ϕln+1 − bnϕln

))
− ft = 0. (2.8)

Definition 2. For a, b ∈ l∞, we define the convolution c = a ∗ b ∈ l∞ by the formula:

ct =

t∑
s=0

asbt−s, t ∈ N.

We assume that the solution to (2.3) has the form:

vfn,t =


N∑
k=1

cktϕ
k
n, n = 1, . . . , N

ft, n = 0.

(2.9)

Proposition 2. The coefficients ck admits the representation:

ck =
1

ρk
T (λk) ∗ f, (2.10)

where T (2λ) = (T1(2λ), T2(2λ), T3(2λ), . . .) are Chebyshev polynomials of the second kind.

Proof. We plug (2.9) into (2.8) and evaluate, counting that ϕln−1 + ϕln+1 − bnϕln = λlϕ
l
n:

N∑
n=1

(vn,t+1 + vn,t−1 − λlvn,t)ϕln = ft,

N∑
n=1

N∑
k=1

(
ckt+1ϕ

k
n + ckt−1ϕ

k
n − λlcktϕkn

)
ϕln = ft.
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Changing the order of summation and using (2.5), we finally arrive at the following equation on ckt , k = 1, . . . , N : ckt+1 + ckt−1 − λkckt =
1

ρk
ft,

ck−1 = ck0 = 0.
(2.11)

We assume that the solution to (2.11) has the form: ck =
1

ρk
T ∗ f, or

ckt =
1

ρk

t∑
l=0

Tlft−l. (2.12)

Plugging it into (2.11), we get:

1

ρk

(
t+1∑
l=0

flTt+1−l +

t−1∑
l=0

flTt−1−l − λk
t∑
l=0

flTt−l

)
=

1

ρk
ft,

t∑
l=0

fl (Tt+1−l + Tt−1−l − λkTt−l) + ftT1 − ft−1T0 = ft.

We see that (2.12) holds if T solves: {
Tt+1 + Tt−1 − λkTt = 0,

T0 = 0, T1 = 1.

Thus Tk(2λ) are Chebyshev polynomials of the second kind.
�

3. Operators of the the BC method

As inverse data for (1.1), we use the analog of the dynamical response operator (dynamical Dirichlet-to-
Neumann map) [1].

Definition 3. For (1.1), the response operator RT : FT 7→ RT is defined by the rule(
RT f

)
t
= uf1,t, t = 1, . . . , T.

Introduce the notation: the response vector is the convolution kernel of the response operator, r = (r0, r1, . . . , rT−1) =
(1, w1,1, w1,2, . . . w1,T−1). Then, in accordance with (2.1):(

RT f
)
t
= uf1,t = ft−1 +

t−1∑
s=1

w1,sft−1−s, t = 1, . . . , T ; (3.1)(
RT f

)
= r ∗ f·−1, where r0 = 1.

For system (2.3), we introduce the response operator by:

Definition 4. For the system in (2.3) the response operator RTi : FT 7→ RT is defined by the rule:(
RTi f

)
t
= vf1,t, t = 1, . . . , T. (3.2)

The corresponding response vector we denote by (ri1, r
i
2, . . .). More information on this operator and on the

inverse spectral problem one can find in the last section.
We introduce the inner space of dynamical system (1.1) HT := RT , h ∈ HT , h = (h1, . . . , hT ). For (1.1)

The control operator WT : FT 7→ HT is defined by the rule:

WT f := ufn,T , n = 1, . . . , T.

Directly from (2.1), we deduce that:(
WT f

)
n
= ufn,T = fT−n +

T−1∑
s=n

wn,sfT−s−1, n = 1, . . . , T. (3.3)

The following statement imply the controllability of the dynamical system (1.1).
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Theorem 1. The operator WT is an isomorphism between FT and HT .

Proof. We fix some a ∈ HT and look for a control f ∈ FT such that WT f = a. To this aim we write down the
operator as:

WT f =



u1,T
u2,T
·

uk,T
·

uT,T


=



1 w1,1 w1,2 . . . . . . w1,T−1

0 1 w2,2 . . . . . . w2,T−1

· · · · · ·
0 . . . 1 wk,k . . . wk,T−1
· · · · · ·
0 0 0 0 . . . 1





fT−1
fT−2
·

fT−k−1
·
f0


(3.4)

We introduce the notations:

JT : FT 7→ FT , (JT f)n = fT−1−n, n = 0, . . . , T − 1,

K ∈ RT×T , kij = 0, i > j, kii = 1, kij = wij−1, i < j.

Then, WT = (I +K) JT . Obviously, this operator is invertible, which proves the statement of the theorem. �

For the system (2.3) the control operator WT
i : FT 7→ HN is defined by the rule:

WT
i f := vfn,T , n = 1, . . . , N.

The representation for this operator immediately follows from (2.9), (2.10).
For the system (1.1) we introduce the connecting operator CT : FT 7→ FT by the quadratic form: for arbitrary

f, g ∈ FT we define (
CT f, g

)
FT =

(
uf·,T , u

g
·,T

)
HT

=
(
WT f,WT g

)
HT . (3.5)

We observe that CT =
(
WT

)∗
WT , so CT is an isomorphism in FT . The fact that CT can be expressed in terms

of response R2T is crucial in BC-method.

Theorem 2. Connecting operator admits the representation in terms of inverse data:

CT = CTij , CTij =

T−max i,j∑
k=0

r|i−j|+2k, r0 = 1. (3.6)

CT =



1 + r2 + . . .+ r2T−2 r1 + r3 + . . .+ r2T−3 . . . rT + rT−2 rT−1
r1 + r3 + . . .+ r2T−3 1 + r2 + . . .+ r2T−4 . . . . . . rT−2

· · · · ·
rT−3 + rT−1 + rT+1 . . . 1 + r2 + r4 r1 + r3 r2

rT + rT−2 . . . r1 + r3 1 + r2 r1
rT−1 rT−2 . . . r1 1


Proof. For fixed f, g ∈ FT , we introduce the Blagoveshchensky function by:

ψn,t :=
(
uf·,n, u

g
·,t
)
HT =

T∑
k=1

ufk,nu
g
k,t.

Then, we show that ψn,t satisfies some difference equation. Indeed, we can evaluate:

ψn,t+1 + ψn,t−1 − ψn+1,t − ψn−1,t =
T∑
k=1

ufk,n

(
ugk,t+1 + ugk,t−1

)
−

T∑
k=1

(
ufk,n+1 + ufk,n−1

)
ugk,t =

T∑
k=1

ufk,n

(
ugk+1,t + ugk−1,t

)
−

T∑
k=1

(
ufk+1,n + ufk−1,n

)
ugk,t =

T∑
k=1

ugk,t

(
ufk+1,n + ufk−1,n

)
+ ug0,tu

f
1,n − u

f
0,nu

g
1,t + ugT+1,tu

f
T,n − u

f
T+1,nu

g
T,t −

T∑
k=1

ugk,t

(
ufk+1,n + ufk−1,n

)
=

gt(Rf)n − fn(Rg)t.
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So, we arrive at the following boundary problem for ψn,t:{
ψn,t+1 + ψn,t−1 − ψn+1,t − ψn−1,t = hn,t, n, t ∈ N0,

ψ0,t = 0, ψn,0 = 0,
(3.7)

hn,t = gt(Rf)n − fn(Rg)t.
We introduce the set:

K(n, t) :=
{
(n, t) ∪ {(n− 1, t− 1), (n+ 1, t− 1)} ∪ {(n− 2, t− 2), (n, t− 2), (n+ 2, t− 2)} ∪ . . .

∪{(n− t, 0), (n− t+ 2, 0), . . . , (n+ t− 2, 0), (n+ t, 0)}
}
=

t⋃
τ=0

τ⋃
k=0

(n− τ + 2k, t− τ) .

The solution to (3.7) is given by:

ψn,t =
∑

k,τ∈K(n,t−1)

h(k, τ).

We observe that ψT,T =
(
CT f, g

)
, so: (

CT f, g
)
=

∑
k,τ∈K(T,T−1)

h(k, τ). (3.8)

Notice that in the r.h.s. of (3.8) the argument k runs from 1 to 2T − 1. We extend f ∈ FT , f = (f0, . . . , fT−1) to
f ∈ F2T by:

fT = 0, fT+k = −fT−k, k = 1, 2, . . . , T − 1.

Due to this odd extension,
∑

k,τ∈K(T,T−1)

fk(R
T g)τ = 0, so (3.8) gives:

(
CT f, g

)
=

∑
k,τ∈K(T,T−1)

gτ
(
R2T f

)
k
= g0

[(
R2T f

)
1
+
(
R2T f

)
3
+ . . .+

(
R2T f

)
2T−1

]
+ g1

[(
R2T f

)
2
+
(
R2T f

)
4
+ . . .+

(
R2T f

)
2T−2

]
+ . . .+ gT−1

(
R2T f

)
T
.

Finally, we infer that:

CT f =
((
R2T f

)
1
+ . . .+

(
R2T f

)
2T−1 ,

(
R2T f

)
2
+ . . .+

(
R2T f

)
2T−2 , . . . ,

(
R2T f

)
T

)
from where the statement of the theorem follows. �

One can observe that CTij satisfies the difference boundary problem.

Corollary 1. The kernel of CT satisfy:{
CTi,j+1 + CTi,j−1 − CTi+1,j − CTi−1,j = 0,

CTi,T = rT−i, C
T
T,j = rT−j , r0 = 1.

For the system (2.3) the connecting operator CTi : FT 7→ FT is introduced in the similar way: for arbitrary
f, g ∈ FT we define: (

CTi f, g
)
FT =

(
vf·,T , v

g
·,T

)
HN

=
(
WT
i f,W

T
i g
)
HN . (3.9)

More information on CTi one can find in the final section.

4. Inverse problem

The dependence of the solution (1.1) uf on the potential (b1, b2, . . .) resembles one of the wave equation with
the potential: take some M ∈ N. From the very equation, one can see that the term ufn,t with smallest {n, t},
which depends on bM is ufM,M+1. Thus, uf1,t becomes dependent upon bM starting from t = 2M . This is an
analog of the finite wave propagation speed effect in the wave equation. Consider (2.3) with N =M . We see that
the solution to (2.3) vf1,t does not ‘feel’ the boundary condition at n = M + 1: uf1,t = vf1,t for t = 1, . . . , 2M . Or

in other words, that means that R2M = R2M
i . This leads to the following natural set up of the inverse problem:

By the given operator R2M to recover the (part) of the potential (b1, . . . , bM ). In what follows, we will be dealing
with the IP for the system (1.1), only in the last section we comment on the system (2.3).
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4.1. Krein equations

Let α, β ∈ R and y be solution to: {
yk+1 + yk−1 − bkyk = 0,

y0 = α, y1 = β.
(4.1)

We set up the following control problem: to find a control fT ∈ FT such that:(
WT fT

)
k
= yk, k = 1, . . . , T. (4.2)

Due to Theorem 1, this problem has unique solution. Let κT be a solution to{
κTt+1 + κTt−1 = 0, t = 0, . . . , T,

κTT = 0, κTT−1 = 1.
(4.3)

We show that the control fT satisfies the Krein equation:

Theorem 3. The control fT , defined by (4.2) satisfies the following equation in FT :

CT fT = βκT − α
(
RT
)∗ κT . (4.4)

Proof. Let us take fT solving (4.2). We observe that for any fixed g ∈ FT :

ugk,T =

T−1∑
t=1

(
ugk,t+1 + ugk,t−1

)
κTt . (4.5)

Indeed, changing the order of summation in the r.h.s. of (4.5), we get:

T−1∑
t=1

(
ugk,t+1 + ugk,t−1

)
κTt =

T−1∑
t=1

(
κTt+1 + κTt−1

)
ugk,t + ugk,0κ

T
1 − u

g
k,Tκ

T
T−1.

which gives (4.5) due to (4.3). Using this observation, we can evaluate:

(
CT fT , g

)
=

T∑
k=1

yku
g
k,T =

T∑
k=1

T−1∑
t=0

(
ugk,t+1 + ugk,t−1

)
κTt yk

=

T−1∑
t=0

κTt

(
T∑
k=1

(
ugk+1,tyk + ugk−1,tyk − bku

g
k,tyk

))

=

T−1∑
t=0

κTt

(
T∑
k=1

(
ugk,t(yk+1 + yk−1 − bkyk

)
+ ug0,ty1 + ugT+1,tyT − u

g
1,ty0 − u

g
T,tyT+1

)

=

T−1∑
t=0

κTt
(
βgt − α

(
RT g

)
t

)
=
(
κT , βg − α

(
RT g

))
=
(
βκT − α

((
RT
)∗ κT) , g) .

From where (4.4) follows. �

Having found fτ for τ = 1, . . . , T , we can recover the potential bn, n = 1, . . . , T − 1. Indeed: by the
constructions of fτ we have (W τfτ )τ = yτ , on the other hand, from (3.3) we can infer that (W τfτ )τ = fτ0 , thus
y (4.1) can be recovered by:

yτ = fτ0 , τ = 1, . . . , T. (4.6)

And the potential can be found by:

bn =
yn+1 + yn−1

yn
, n = 1, . . . , T − 1. (4.7)
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4.2. Factorization method

We make use the fact that matrix CT has a special structure – it is a product of triangular matrix and its

conjugate. We rewrite the operator WT =W
T
J as:

WT f =



1 w1,1 w1,2 . . . w1,T−1

0 1 w2,2 . . . w2,T−1

· · · · ·
0 . . . 1 . . . wk,T−1
· · · · ·
0 0 0 . . . 1





0 0 0 . . . 1

0 0 0 . . . 0

· · · · ·
0 . . . 1 0 0

· · · · ·
1 0 0 0 0





f0
f2
·

fT−k−1
·

fT−1


.

Using the definition (3.5) and the invertibility of WT (cf. Theorem 1), we have:

CT =
(
WT

)∗
WT , or

((
WT

)−1)∗
CT
(
WT

)−1
= I.

We can rewrite the latter equation as:((
W

T
)−1)∗

C
T
(
W

T
)−1

= I, C
T
= JCTJ. (4.8)

Here the matrix C
T

has the entries:

Cij = CT+1−j,T+1−i, C
T
=


1 r1 r2 . . . rT−1
r1 1 + r2 r1 + r3 . . . ..

r3 r1 + r3 1 + r2 + r4 . . . ..

· · · · ·

 , (4.9)

and operator
(
W

T
)−1

has the form:

(
W

T
)−1

=


1 k̃11 k̃12 . . . k̃1,T−1

0 1 k̃22 . . . ..

· · · · k̃T−1,T−1
0 . . . . . . 0 1

 , (4.10)

where k̃α,α = −wα,α, α = 1, . . . , T − 1. So we can rewrite (4.8) as:
1 0 . 0

k11 1 0 .

· · · ·
kT−1,1 . . 1



c11 .. .. c1T
.. .. .. ..

· · · ·
cT1 .. cTT



1 k11 k21 ..

0 1 k22 ..

· · · ·
0 . . . . . . 1

 =


1 0 .. 0

0 1 .. 0

· · · ·
0 0 . 1

 .

In the above equation Cij are given (see (4.9)), the entries kij of

((
W

T
)−1)∗

are unknown. We denote by

Ki := (ki1, ki2, . . . , kii, 1, 0, . . . , 0) the (i+ 1)−th row (i = 0, . . . , T − 1) in

((
W

T
)−1)∗

, then we have

KiC
T
K∗j = δi,j .

We use this equality in the form:

KiC
T
K∗j = 0, i < j. (4.11)

Notice that K0 = (1, 0, . . . , 0). The second row K1 can be recovered from K0C
T
K∗1 = 0, which is equivalent to:

c11k11 + c21 = 0, or k11 = −c21
c11

= −c21. (4.12)

The third row K2 we recover from the pair of equations K0C
T
K∗2 = 0, K1C

T
K∗2 = 0, which are equivalent to:(

1 0

k11 1

)(
c11 c12 c13
c21 c22 c23

)k21k22
1

 =

(
0

0

)
.
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Due to the invertibility of

(
1 0

k1,1 1

)
, we can rewrite the latter equation as:

(
c11 c12
c21 c22

)(
k21
k22

)
= −

(
c13
c23

)
. (4.13)

We introduce the notation, by cki we denote the i-th column in the matrix C
T

truncated by first k elements:

cki :=
(
c1i c2i . . . cki

)∗
.

Since CT is invertible, (4.13) has a unique solution, moreover, we can infer that:

k22 = −
det

(
c11 c13
c21 c23

)

det

(
c11 c12
c21 c22

) = −det(c21, c
2
3).

Assume that we have already recovered K0,K1, . . . ,Kl, to recover Kl+1 we need to consider the equations

K0C
T
K∗l+1 = 0, K1C

T
K∗l+1 = 0, . . . , KlC

T
K∗l+1 = 0, which are equivalent to:

1 0 .. 0

k11 1 0 ..

. . . .

kl1 kl2 . 1




c11 .. .. c1,l+2

.. .. .. ..

.. .. .. ..

cl+1,1 .. .. cl+1,l+2



kl+1,1

kl+1,2

..

1

 =


0

..

..

0

 .

We can rewrite the latter equation as:
c1,1 .. .. c1,l+1

.. .. .. ..

.. .. .. ..

cl+1,1 .. .. cl+1,l+1




kl+1,1

kl+1,2

..

kl+1,l+1

+


c1,l+2

c2,l+2

..

cl+1,l+2

 = 0. (4.14)

Due to the invertibility of CT the latter equation has unique solution, moreover

kl+1,l+1 = −det(cl+1
1 , cl+1

2 , . . . cl+1
l , cl+1

l+2), l = 0, . . . , T − 2. (4.15)

Having recovered kα,α = −wα,α, we recover the potential by (see (2.2)):

bn = wn−1,n−1 − wn,n = kn,n − kn−1,n−1, n = 1, . . . , T − 1. (4.16)

4.3. Gelfand–Levitan equations

If we introduce C̃T by

C
T
= I + C̃T , (4.17)

(see (3.6),(4.9)), then we can rewrite (4.14) for l = T − 2 as:

(
I + C̃T

)
KT + C̃T = 0, where KT =


kT−1,1
kT−1,2
.

kT−1,T−1

 , C̃T =


C̃T1,T
C̃T2,T
.

C̃TT−1,T


or as a system:

kT−1,β +

T−1∑
j=1

C̃Tβ,jkT−1,j + C̃Tβ,T = 0, β = 1, . . . , T − 1. (4.18)

If we pass to (more standard) entries of
(
W

T
)−1

k̃α,β = kβ,α, (4.19)
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then (4.18) can be rewritten as:

k̃β,T−1 +

T−1∑
j=1

C̃Tβ,j k̃j,T−1 + C̃Tβ,T = 0, β = 1, . . . , T − 1. (4.20)

The last equation is an analog of Gelfand-Levatan equation for continuous problem [4,5]. We conclude this section
with

Theorem 4. The kernel of the operator
(
W

T
)−1

(see (4.10)) satisfies equation (4.20), where the entries C̃Ti,j are

defined in (4.17), (3.6).

The equation in (4.18) has a unique solution due to the invertibility of CT . The potential can be recovered by
(4.16).

Now, we make some remarks on the dependence of the connecting operator CT and the solution of the inverse
problem equations (i.e. the potential) on the inverse data. As a direct consequence of (3.6) we can formulate the
following:

Remark 1. The operator CT depends on R2T−2, i.e. it depends on the potential (b1, . . . , bT−1), so the results
obtained from CT via Krein-type equations (4.4), (4.6),(4.7), factorization method (4.15), (4.16) and Gelfand-
Levitan type equations (4.20), (4.16) are the best possible.

In the subsection on the factorization method, we used the fact that detCτ = 1, τ = 2, . . . , T . More precisely,
we used it in the form det(cτ1 , c

τ
2 , . . . c

τ
τ ) = 1. That fact actually says that not all elements in the response vector

are independent. Indeed: the element k11 we recovered (see (4.12)) from c21, i.e. from r1. The element k22
we recovered from c11, c13, c21, c23, that is from r1, r2, r3. But since det(c21, c

2
2) = 1, we have that r2 = r21 ,

so in fact k22 was recovered from r1 and r3. Arguing in the same fashion, we see that r2k depends on r2l+1,
l = 0, . . . , k−1. So we recovered (k11, . . . , kT−1,T−1) from the response vector (r0, r1, . . . , r2t−2), r0 = 1, whose
components with even numbers depend in explicit form on the components with odd numbers. That observation
plays an important role in the next subsection.

4.4. Characterization of the inverse data

In the second section, we considered the forward problem (1.1), for the potential (b1, . . . , bT−1) we constructed
the matrix WT (2.1), (2.2), the response vector (1, r1, . . . , r2T−2) (see (3.1)) and the connecting operator CT by

formula (3.6). It will be more convenient for us to deal with the rotated matrix C
T

defined in (4.9). From the

representation C
T
= (W

T
)∗W

T
and triangularity of W

T
we know that

detC
l
= 1 ∀l = 1, . . . , T.

Also, we have proven that if coefficients r1, . . . , r2T−2 correspond to some potential (b1, . . . , bT−1), then we can
recover the potential using (4.15)–(4.16).

Now, we set up a question: can one determine whether a vector (1, r1, r2, . . . , r2T−2) is a response vector for
the dynamical system (1.1) with a potential (b1, . . . , bT−1) or not? The answer is the following theorem.

Theorem 5. The vector (1, r1, r2, . . . , r2T−2) is a response vector for the dynamical system (1.1) if and only if
the matrix CT (3.6) is positively definite and detCl = 1, l = 1, . . . , T .

Proof. First we observe that in the conditions of the theorem we can substitute CT by C
T

(4.9). The necessary
part of the theorem is proved in the preceding sections. We are left to prove the sufficiency of these conditions.

Let there be a vector (1, r1, . . . , r2T−2) such that the matrix C
T

constructed from it using (4.9) satisfies
conditions of the theorem. Then we can construct the potential (b1, . . . , bT−1) using (4.15)–(4.16) and consider
the dynamical system (1.1) with this potential. For this system, we construct the connecting operator CTnew and its

rotated C
T

new using (2.2), (3.1), (3.6) and (4.9). We will show that the matrices C
T

and C
T

new coincide.
First, we note that we have two matrices constructed by (4.9), one comes from the vector (1, r1, . . . , r2T−2)

and the other comes from (1, rnew1 , . . . , rnew2T−2). Also they have a common property that detC
l
= detC

l

new = 1

for all l = 1, . . . , T (one by theorem’s condition and the other by representation C
T

new = (W
T

new)
∗W

T

new).

Secondly, we note that if we calculate the potential (b1, . . . , bT−1) using (4.15)–(4.16) from any of C
T

and

C
T

new matrices, we obtain the same answer.
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Therefore we have two matrices of the type (4.9) with the unit principal minors and the property

det(cl+1
1 , . . . cl+1

l , cl+1
l+2) = det(cnew

l+1
1 , . . . cnew

l+1
l , cnew

l+1
l+2) ∀l = 0, . . . , T − 2. (4.21)

If we look at (4.21) for l = 0, we see that r1 = rnew1 . From the fact that for both matrices C
T
, C

T

new the principal
minors of the second order are equal to one, we infer that r2 = rnew2 . We continue this procedure, and from (4.21)

with l = n, we infer that r2n+1 = rnew2n+1 and from equality to one of principal minor of the order n + 2 of C
T
,

C
T

new, we can infer that r2n+2 = rnew2n+2 for all n = 2, . . . , T − 2 by induction. This finishes the proof. �

5. Spectral representation of CT and rt

In this section, we consider the inverse spectral problem and show the connection of the spectral (2.5), (2.6)
and dynamical (3.1), (3.2) inverse data. If we introduce the special control δ = (1, 0, 0, . . .), then the kernel of
response operator (3.2) is:

rit = (Riδ)t = vδ1,t, (5.1)

on the other hand, we can use (2.9), (2.10) to obtain:

vδ1,t =

N∑
k=1

1

ρk
Tt(λk). (5.2)

So on introducing the spectral function:

ρN (λ) =
∑

{k |λk<λ}

1

ρk
, (5.3)

from (5.1), (5.2) we deduce that:

rit =

∞∫
−∞

Tt(λ) dρ
N (λ), t ∈ N.

Let us evaluate (CTi f, g) for f, g ∈ FT , using the expansion (2.9):

(CTi f, g) =

N∑
n=1

vfn,T v
g
n,T =

N∑
n=1

N∑
k=1

1

ρk
TT (λk) ∗ fϕkn

N∑
l=1

1

ρl
TT (λl) ∗ gϕln

=

N∑
k=1

1

ρk
TT (λk) ∗ fTT (λk) ∗ g =

∞∫
−∞

T−1∑
l=0

TT−l(λ)fl

T−1∑
m=0

TT−m(λ)gm dρ
N (λ).

From the equality above, it is evident that (cf. (3.6)):

{CTi }l+1,m+1 =

∞∫
−∞

TT−l(λ)TT−m(λ) dρN (λ), l,m = 0, . . . , T − 1. (5.4)

Let us consider the spectral problem:{
φi+1 + φi−1 − bnφi = λφi, n = 0, . . . , N + 1,

φ0 = 0, φN+1 = 0.
(5.5)

In the second section, we construct the spectral data for this problem – eigenvalues of the corresponding Hamilton-
ian and norming coefficients (2.5), (2.6). Now we answer the question how to recover the potential (b1, . . . , bN )
from this data.

Our strategy will be to use the dynamical approach from the fourth section to treat this IP. First, we observe
that to know (2.6) is the same as to know the spectral function (5.3). Consider the system (1.1) with the same
potential bn for n = 1, . . . , N . We notice that as explained in the beginning of section four, R2N = R2N

i and
correspondingly, rt = rit, t = 1, . . . , 2N. Due to this, we deduce that CT = CTi for T = N + 1. Thus, the inverse
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problem can be solved in the following way: from the spectral data (2.6), we construct the spectral function
by (5.3). Then, we construct:

rt = rit =

∞∫
−∞

Tt(λ) dρ
N (λ), t = 1, . . . , 2N,

CTlm = {CTi }l+1,m+1 =

∞∫
−∞

TT−l(λ)TT−m(λ) dρN (λ), l,m = 0, . . . , N − 1.

After we have in hands the connecting operator, we can use the methods of section four to find (b1, . . . , bN ).
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1. Introduction

Linear water wave theory is a widely used approach for describing the behavior of surface waves in the
presence of rigid boundaries. In particular, this theory is a common tool for determining sloshing frequencies
and modes in containers occupied by a homogeneous fluid, that is, having constant density. The corresponding
boundary spectral problem, usually referred to as the sloshing problem, has been the subject of a great number of
studies over more than two centuries (a historical review can be found, for example, in [1]). In the comprehensive
book [2], an advanced technique based on spectral theory of operators in a Hilbert space was presented for studying
this problem.

In the framework of the mathematical theory of linear water waves, substantial work has been done in the
past two decades for understanding the difference between the results valid for homogeneous and two-layer fluids
(in the latter case the upper fluid occupies a layer bounded above by a free surface and below by a layer of fluid
whose density is greater than that in the upper one). These results concern wave/structure interactions and trapping
of waves by immersed bodies (see, for example, [3–5] and references cited therein), but much less is known about
the difference between sloshing in containers occupied by homogeneous and two-layer fluids. To the author’s
knowledge, there is only one related paper [6] with rigorous results for multilayered fluids, but it deals only with
the spectral asymptotics in a closed container. Thus, the first aim of the present paper is to fill in this gap at least
partially.

Another aim is to consider the so-called inverse sloshing problem; that is, the problem of recovering some
physical parameters from known spectral data. The parameters to be recovered are the depth of the interface
between the two layers and the density ratio that characterizes stratification. It is demonstrated that for determining
these two characteristics for fluids occupying a vertical-walled container with a horizontal bottom, one has to
measure not only the two smallest sloshing eigenfrequencies, which must satisfy certain inequalities, but also to
analyze the corresponding free surface elevations.

1.1. Statement of the direct problem

Let two immiscible, inviscid, incompressible, heavy fluids occupy an open container whose walls and bottom
are rigid surfaces. We choose rectangular Cartesian coordinates (x1, x2, y) so that their origin lies in the mean free
surface of the upper fluid and the y-axis is directed upwards. Then, the whole fluid domain W is a subdomain of
the lower half-space {−∞ < x1, x2 < +∞, y < 0}. The boundary ∂W is assumed to be piece-wise smooth and
such that every two adjacent smooth pieces of ∂W are not tangent along their common edge. We also suppose
that each horizontal cross-section of W is a bounded two-dimensional domain; that is, a connected, open set
in the corresponding plane. (The latter assumption is made for the sake of simplicity because it excludes the
possibility of two or more interfaces between fluids at different levels.) The free surface F bounding above the
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upper fluid of density ρ1 > 0 is the non-empty interior of ∂W ∩ {y = 0}. The interface I = W ∩ {y = −h},
where 0 < h < max{|y| : (x1, x2, y) ∈ ∂W}, separates the upper fluid from the lower one of density ρ2 > ρ1.
We denote by W1 and W2 the domains W ∩ {y > −h} and W ∩ {y < −h} respectively; they are occupied by
the upper and lower fluids respectively. The surface tension is neglected and we suppose the fluid motion to be
irrotational and of small amplitude. Therefore, the boundary conditions on F and I may be linearized. With a
time-harmonic factor, say cosωt, removed, the velocity potentials u(1)(x1, x2, y) and u(2)(x1, x2, y) (they may be
taken to be real functions) for the flow in W1 and W2 respectively must satisfy the following coupled boundary
value problem:

u(j)x1x1
+ u(j)x2x2

+ u(j)yy = 0 in Wj , j = 1, 2, (1)

u(1)y = νu(1) on F, (2)

ρ
(
u(2)y − νu(2)

)
= u(1)y − νu(1) on I, (3)

u(2)y = u(1)y on I, (4)

∂u(j)/∂n = 0 on Bj j = 1, 2. (5)

Here, ρ = ρ2/ρ1 > 1 is the non-dimensional measure of stratification, the spectral parameter ν is equal to ω2/g,
where ω is the radian frequency of the water oscillations and g is the acceleration due to gravity; Bj = ∂Wj\(F̄∪Ī)
is the rigid boundary of Wj . By combining (3) and (4), we get another form of the spectral coupling condition (3):

(ρ− 1)u(2)y = ν
(
ρu(2) − u(1)

)
on I. (6)

We also suppose that the orthogonality conditions∫
F

u(1) dx = 0 and

∫
I

(
ρu(2) − u(1)

)
dx = 0, dx = dx1dx2, (7)

hold, thus excluding the zero eigenvalue of (1)–(5).
When ρ = 1, conditions (3) and (4) mean that the functions u(1) and u(2) are harmonic continuations of each

other across the interface I . Then, problem (1)–(5) complemented by the first orthogonality condition (7) (the
second condition (7) is trivial), becomes the usual sloshing problem for a homogeneous fluid. It is well-known
since the 1950s that the latter problem has a positive discrete spectrum. This means that there exists a sequence of
positive eigenvalues {νWn }∞1 of finite multiplicity (the superscript W is used here and below for distinguishing the
sloshing eigenvalues that correspond to the case, when a homogeneous fluid occupies the whole domain W , from
those corresponding to a two-layer fluid which will be denoted simply by νn). In this sequence the eigenvalues
are written in increasing order and repeated according to their multiplicity; moreover, νWn → ∞ as n → ∞. The
corresponding eigenfunctions {un}∞1 ⊂ H1(W ) form a complete system in an appropriate Hilbert space. These
results can be found in many sources, for example, in the book [2].

2. Variational principle

Let W be bounded. It is well known that the sloshing problem in W for homogeneous fluid can be cast into
the form of a variational problem and the corresponding Rayleigh quotient is as follows:

RW (u) =

∫
W

|∇u|2 dxy∫
F

u2 dx
. (8)

In order to obtain the fundamental eigenvalue νW1 one has to minimize RW (u) over the subspace of the
Sobolev space H1(W ) consisting of functions that satisfy the first orthogonality condition (7). To find νWn for
n > 1, one has to minimize (8) over the subspace of H1(W ) such that each of its element u satisfies the
first condition (7) along with the following equalities

∫
F

uuj dx = 0, where uj is either of the eigenfunctions

u1, . . . , un−1 corresponding to the eigenvalues νW1 , . . . , νWn−1.
In the case of a two-layer fluid, we assume that the usual embedding theorems hold for both subdomains Wj ,

j = 1, 2 (the theorem about traces on smooth pieces of the boundary for elements of H1 included). This imposes
some restrictions on ∂W , in particular, on the character of the intersections of F and I with ∂W ∩ {y < 0}. Then
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using (6), it is easy to verify that the Rayleigh quotient for the two-layer sloshing problem has the following form:

R(u(1), u(2)) =

∫
W1

∣∣∇u(1)∣∣2 dxdy + ρ
∫
W2

∣∣∇u(2)∣∣2 dxdy∫
F

[
u(1)

]2
dx+ (ρ− 1)−1

∫
I

[
ρu(2) − u(1)

]2
dx
. (9)

To determine the fundamental sloshing eigenvalue ν1 one has to minimize R(u(1), u(2)) over the subspace of
H1(W1) ⊕ H1(W2) defined by both orthogonality conditions (7). In order to find νn for n > 1, one has to
minimize (9) over the subspace of H1(W1) ⊕ H1(W2) such that every element

(
u(1), u(2)

)
of this subspace

satisfies the equalities:∫
F

u(1) u
(1)
j dx = 0 and

∫
I

[
ρu(2) − u(1)

] [
ρu

(2)
j − u

(1)
j

]
dx = 0, j = 1, . . . , n− 1,

along with both conditions (7). Here,
(
u
(1)
j , u

(2)
j

)
is either of the eigensolutions corresponding to ν1, . . . , νn−1.

Now we are in a position to prove the following assertion.

Proposition 1. Let νW1 and ν1 be the fundamental eigenvalues of the sloshing problem in the bounded domain
W for homogeneous and two-layer fluids respectively. Then the inequality ν1 < νW1 holds.

The restriction that W is bounded is essential as the example considered in Proposition 4 below demonstrates.

Proof. If u1 is an eigenfunction corresponding to νW1 , then

νW1 =

∫
W

|∇u1|2 dxdy∫
F

u21 dx
.

Let u(1) and u(2) be equal to the restrictions of ρu1 and u1 to W1 and W2, respectively. Then the pair
(
u(1), u(2)

)
is an admissible element for the Rayleigh quotient (9). Substituting it into (9), we obtain that:

R(ρu1, u1) =

∫
W1

|∇u1|2 dxdy + ρ−1
∫
W2

|∇u1|2 dxdy∫
F

u21 dx
.

Comparing this equality with the previous one and taking into account that ρ > 1, one finds that
R(ρu1, u1) < νW1 . Since ν1 is the minimum of (9), we conclude that ν1 < νW1 . �

3. Containers with vertical walls and horizontal bottoms

Let us consider the fluid domain W = {x = (x1, x2) ∈ D, y ∈ (−d, 0)}, where D is a piece-wise smooth
two-dimensional domain (the container’s horizontal cross-section) and d ∈ (0,∞] is the container’s constant depth.
Thus, the container’s side wall ∂D × (−d, 0) is vertical, the bottom {x ∈ D, y = −d} is horizontal, whereas the
free surface and the interface are F = {x ∈ D, y = 0} and I = {x ∈ D, y = −h} respectively, 0 < h < d.

For a homogeneous fluid occupying such a container, the sloshing problem is equivalent to the free membrane
problem. Indeed, putting

u(x, y) = v(x) cosh k(y + d)
(
u(x, y) = v(x) eky when d =∞

)
,

one reduces problem (1)–(5) with ρ = 1, complemented by the first orthogonality condition (7) to the following
spectral problem:

∇2
xv + k2v = 0 in D, ∂v/∂nx = 0 on ∂D,

∫
D

v dx = 0, (10)

where ∇x = (∂/∂x1, ∂/∂x2) and nx is a unit normal to ∂D in R2. It is clear that νW is an eigenvalue of the
former problem if and only if k2 is an eigenvalue of (10) and

νW = k tanh kd when d <∞
(
νW = k when d =∞

)
, k > 0. (11)

It is well-known that problem (10) has a sequence of positive eigenvalues {k2n}∞1 written in increasing order and
repeated according to their finite multiplicity, and such that k2n →∞ as n→∞. The corresponding eigenfunctions
form a complete system in H1(D).
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Let us describe the same reduction procedure in the case when W is occupied by a two-layer fluid and d <∞.
Putting

u(1)(x, y) = v(x) [A cosh k(y + h) +B sinh k(y + h)], (12)

u(2)(x, y) = v(x)C cosh k(y + d), (13)

where A,B and C are constants, one reduces problem (1)–(5) and (7), ρ > 1, to problem (10) combined with the
following quadratic equation:

ν2 cosh kd− νk [sinh kd+ (ρ− 1) cosh kh sinh k(d− h)]

+ k2(ρ− 1) sinh kh sinh k(d− h) = 0, k > 0. (14)

Thus ν is an eigenvalue of the former problem if and only if ν satisfies (14), where k2 is an eigenvalue of (10).
Indeed, the quadratic polynomial in ν on the left-hand side of (14) is the determinant of the following linear

algebraic system for A, B and C:

A = C
[
cosh k(d− h)− ν−1(ρ− 1) k sinh k(d− h)

]
, B = C sinh k(d− h), (15)

A (k sinh kh− ν cosh kh) + C sinh k(d− h) (k cosh kh− ν sinh kh) = 0. (16)

The latter arises when one substitutes expressions (12) and (13) into the boundary condition (2) and the coupling
conditions (3) and (4). This homogeneous system defines eigensolutions of the sloshing problem provided there
exists a non-trivial solution, and so the determinant must vanish which is expressed by (14).

Let us show that the roots ν(+) and ν(−) of (14) are real in which case

ν(±) = k
b±
√
D

2 cosh kd
> 0 , (17)

where the inequality is a consequence of the formulae:

b = sinh kd+ (ρ− 1) cosh kh sinh k(d− h), (18)

D = b2 − 4 (ρ− 1) cosh kd sinh kh sinh k(d− h). (19)

Since D is a quadratic polynomial of ρ− 1, it is a simple application of calculus to demonstrate that it attains
the minimum at

ρ− 1 =
2 cosh kd sinh kh− sinh kd cosh kh

cosh2 kh sinh k(d− h)
,

and after some algebra one finds that this minimum is equal to

4 cosh kd sinh kh sinh k(d− h)

cosh2 kh
> 0,

which proves the assertion. Thus we arrive at the following.

Proposition 2. If W is a vertical cylinder with horizontal bottom, then the sloshing problem for a two-layer fluid
occupying W has two sequences of eigenvalues{

ν(+)
n

}∞
1

and
{
ν(−)n

}∞
1

defined by (17) with k = kn > 0, where k2n is an eigenvalue of problem (10).

The same eigensolution (u(1), u(2)) corresponds to both ν(+)
n and ν(−)n , where u(1) and u(2) (sloshing modes

in W1 and W2 respectively) are defined by formulae (12) and (13) with v belonging to the set of eigenfunctions
of problem (10) that correspond to k2n; furthermore, C is an arbitrary non-zero real constant, whereas A and B
depend on C through (15).

Next, we analyze the behavior of ν(±)n as a function of ρ.

Proposition 3. For every n = 1, 2, . . . the functions ν(−)n and ν(+)
n are monotonically increasing as ρ goes from

1 to infinity. Their ranges are:

(0, kn tanh knh) and (kn tanh knd, ∞)

respectively.
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Proof. In order to prove the proposition, it is sufficient to show that:

∂(b±
√
D )

∂ρ
= sinh k(d− h)

{
cosh kh±D−1/2

[
cosh kh sinh kd

+(ρ− 1) cosh2 kh sinh k(d− h)− 2 cosh kd sinh kh
]}

> 0 . (20)

Since
∂(b+

√
D )

∂ρ

∣∣∣∣∣
ρ=1

=
2 sinh2 k(d− h)

sinh kd
> 0 and

∂(b−
√
D )

∂ρ

∣∣∣∣∣
ρ→∞

= 0 ,

inequality (20) is a consequence of the following one:

±∂
2(b±

√
D )

∂ρ2
=

4 cosh kd sinh kh sinh3 k(d− h)

D3/2
> 0 for all ρ > 1.

The second assertion immediately follows from the first one and formulae (17)–(19). �

Combining Proposition 3 and formula (11), we arrive at the following assertion.

Corollary 1. The inequalities ν(−)n < νWn < ν
(+)
n hold for each n = 1, 2, . . . and every ρ > 1.

Dividing (17) by k and letting k = kn to infinity, it is straightforward to obtain the following.

Lemma 1. For every ρ > 1, the asymptotic formula:

ν(±)n ∼ ρ+ 1± |ρ− 3|
4

kn as n→∞,

holds with the exponentially small remainder term; here k2n is an eigenvalue of (10).

In other words, there are three cases:

(i) if ρ = 3, then ν(±)n ∼ kn as n→∞;

(ii) if ρ > 3, then ν(−)n ∼ kn and ν(+)
n ∼ (ρ− 1) kn/2 as n→∞;

(iii) if ρ ∈ (1, 3), then ν(−)n ∼ (ρ− 1) kn/2 and ν(+)
n ∼ kn as n→∞.

Combining these relations and the asymptotic formula νWn ∼ kn as n → ∞ (it is a consequence of formula (11)
defining νWn when a homogeneous fluid occupies W ), we obtain the following.

Corollary 2. As n→∞, we have that ν(−)n ∼ νWn when ρ ≥ 3, whereas ν(+)
n ∼ νWn provided ρ ∈ (1, 3].

Another corollary of Lemma 1 concerns the distribution function N (ν) for the spectrum of problem (1)–(5)
and (7). This function is equal to the total number of eigenvalues νn that do not exceed ν. An asymptotic formula
for N (ν) immediately follows from Lemma 1 and the asymptotic formula for the distribution of the spectrum for
the Neumann Laplacian (see [7], Chapter 6).

Corollary 3. The distribution function N (ν) of the spectrum for the sloshing of a two-layer fluid in a vertical
cylinder of cross-section D has the following asymptotics:

N (ν) ∼
[

4

(ρ− 1)2
+ 1

]
|D| ν2

4π
as ν →∞.

Here, |D| stands for the area of D.

It should be also mentioned that in [6] the asymptotics for N (ν) was obtained for a multi-layer fluid occupying
a bounded closed container.

It follows from Lemma 1 and Corollary 2 that the asymptotic formula for the distribution function of the
spectrum

{
νWn
}∞
1

is similar to the above one, but the first term in the square brackets must be deleted. Moreover,
in the case of homogeneous fluid the same asymptotic formula (up to the remainder term) holds for arbitrarily
shaped fluid domains (see [2], Section 3.3). Since the first term in the square brackets tends to infinity as ρ→ 1,
the transition from the two-layer fluid to the homogeneous one in the asymptotic formula for N (ν) is a singular
limit in the sense described in [8]. A similar effect occurs for modes trapped by submerged bodies in two-layer
and homogeneous fluids as was noted in [4].

In conclusion of this section, it should be noted that in the case of an infinitely deep vertical cylinder it is easy
to verify that ν = k is an eigenvalue of the sloshing problem for a two-layer fluid if and only if k2 is an eigenvalue
of problem (10). Comparing this assertion with that at the beginning of this section, we obtain the following.
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Proposition 4. In an infinitely deep vertical-walled container, the sloshing problem for a two-layer fluid has the
same set of eigenvalues and the same eigenfunctions of the form v(x) eky , k > 0, as the sloshing problem for a
homogeneous fluid in the same container; here, k2 is an eigenvalue and v is the corresponding eigenfunction of
problem (10).

4. Inverse problem

Let a given container W be occupied by a two-layer fluid, but now we assume that the position of the interface
between layers and the density of the lower layer are unknown. The density of the upper layer is known because
one can measure it directly. The sequence of eigenvalues

{
νWn
}∞
1

corresponding to the homogeneous fluid is also
known because it depends only on the domain W . The inverse problem we are going to consider is to recover the
ratio of densities ρ and the depth of the interface h from measuring some sloshing frequencies on the free surface.
Thus, we let the fundamental eigenvalue ν1 be known along with the second-largest one.

The formulated inverse problem is not always solvable. Indeed, according to Proposition 4, it has no solution
when W is an infinitely deep container with vertical walls. Moreover, the inverse problem is trivial for all domains
when ν1 = νW1 . In this case, Proposition 1 implies that the fluid is homogeneous, that is, ρ = 1 and h = d.
Therefore, we restrict ourselves to the case of vertically-walled containers having a finite depth d in what follows.

4.1. Reduction to transcendental equations

In view of what was said above, the inverse problem for W = D × (−d, 0) can be stated as follows. Find
conditions that allow us to determine ρ > 1 and h ∈ (0, d) when the following two eigenvalues are known: the
fundamental one ν1 and the smallest eigenvalue νN that is greater than ν1. Thus, N is such that k2n = k21 for
all n = 1, . . . , N − 1, which means that the fundamental eigenvalue k21 of problem (10) is of multiplicity N − 1
(of course, ν1 has the same multiplicity). For example, if D is a disc, then the multiplicity of k21 is two (see [9],
Section 3.1), and so νN = ν3 in this case.

According to formula (17), we have that ν1 = ν
(−)
1 . Hence the first equation for ρ and h is as follows:

b1 −
√
D1 =

2 ν1
k1

cosh k1d. (21)

Here, b1 and D1 are given by formulae (18) and (19) respectively with k = k1.
To write down the second equation for ρ and h, we have the dilemma whether

νN = ν
(−)
N or νN = ν

(+)
1 ? (22)

Let us show that either of these options is possible. Indeed, Proposition 3 implies that νN = ν
(−)
N provided ρ− 1

is sufficiently small. On the other hand, let us demonstrate that there exists a triple (ρ, d, h) for which νN = ν
(+)
1 .

For this purpose we have to demonstrate that the inequality

ν
(−)
N = kN

bN −
√
DN

2 cosh kNd
≥ k1

b1 +
√
D1

2 cosh k1d
= ν

(+)
1

holds for some ρ, d and h. As above bj and Dj , j = 1, N , are given by formulae (18) and (19), respectively, with
k = kj .

Let h = d/2, then we have:

4 ν
(±)
j = kj

{
(ρ+ 1) tanh kjd±

[
(ρ+ 1)2 tanh2 kjd+ 8 (ρ− 1)

1− cosh kjd

cosh kjd

]1/2}
,

and so
4
[
ν
(−)
N − ν(+)

1

]
→ kN (ρ+ 1− |ρ− 3|)− k1 (ρ+ 1 + |ρ− 3|) as d→∞.

The limit is piecewise linear function of ρ, attains its maximum value 4(kN − k1) at ρ = 3 and is positive for
ρ ∈ (1 + 2 (k1/kN ), 1 + 2 (kN/k1)).

Summarizing, we arrive at the following.

Proposition 5. Let k2N be the smallest eigenvalue of problem (10) other than k21 , and let ν(−)N be the sloshing
eigenvalue defined by (17)–(19) with k = kN . Then

(i) ν(−)N < ν
(+)
1 when ρ − 1 > 0 is sufficiently small (of course, its value depends on d, h and the domain

D);

(ii) ν(−)N > ν
(+)
1 when ρ ∈ (1 + 2 (k1/kN ), 1 + 2 (kN/k1)), h = d/2 and d is sufficiently large (of course, its

value depends on ρ and D).
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Obviously, assertion (ii) can be extended to values of h that are sufficiently close to d/2.

4.2. Options for the second equation

Let us develop a procedure for determining which of the two equalities (22) can be chosen to complement
equation (21) in order to find ρ and h. Our procedure is based on an analysis of the free surface elevations
corresponding to the measured values ν1 and νN . Indeed, when a two-layer fluid oscillates at the frequency
defined by some νj , the free surface elevation is proportional to the trace u

(1)
j (x, 0) (see, for example, [10],

Section 227).

According to formula (12), the trace u(1)1 (x, 0) is a linear combination of linearly independent eigenfunctions
v1(x), . . . , vN−1(x) corresponding to the fundamental eigenvalue k21 of problem (10); of course, its multiplicity

is taken into account. By Proposition 2 the free surface elevation associated with ν
(+)
1 is also proportional to a

linear combination of v1, . . . , vN−1. Since these functions are known, one has to determine whether the measured
free-surface elevation corresponding to νN can be represented in the form of such a combination and only in such
a form. If this is the case, then νN = ν

(+)
1 < ν

(−)
N and the following equation:

b1 +
√
D1 =

2 νN
k1

cosh k1d (23)

forms the system for ρ and h together with (21).
Besides, it can occur that the measured free-surface elevation corresponding to νN is representable in two

forms, one of which is a linear combination of v1, . . . , vN−1, whereas the other one involves the function vN as
well as other eigenfunctions corresponding to the eigenvalue k2N of problem (10) along with v1, . . . , vN−1. It is

clear that this happens when νN = ν
(+)
1 = ν

(−)
N . Indeed, if all coefficients at the eigenfunctions of k2N vanish,

then the profile is represented by v1, . . . , vN−1, otherwise not. In this case, equation (21) can be complemented by
either equation (23) or the following one:

bN −
√
DN =

2 νN
kN

cosh kNd. (24)

Of course, it is better to use the system that comprises equations (21) and (23) because the right-hand side terms
in these equations are proportional.

If the measured free-surface elevation corresponding to νN cannot be represented as a linear combination of
v1, . . . , vN−1, then νN = ν

(−)
N < ν

(+)
1 , in which case the elevation is a linear combination of eigenfunctions that

correspond to the eigenvalue k2N of problem (10) the second largest after k21 . In this case, equation (21) must be
complemented by (24).

Thus, we arrive at the following procedure for reducing the inverse sloshing problem to a system of two
equations.

Procedure. Let v1, . . . , vN−1 be the set of linearly independent eigenfunctions of problem (10) corresponding to
k21 . If the observed elevation of the free surface that corresponds to the measured value νN has a representation as
a linear combination of v1, . . . , vN−1, then ρ and d must be determined from equations (21) and (23). Otherwise,
equations (21) and (24) must be used.

The simplest case is when the fundamental eigenvalue of problem (10) is simple, that is, N = 2. Then
the above procedure reduces to examining whether the free surface elevations corresponding to ν1 and ν2 are
proportional or not. In the case of proportionality, equations (21) and (23) must be used. Equations (21) and (24)
are applicable when there is no proportionality.

5. Solution of the transcendental systems

In this section, we consider the question how to solve systems (21) and (24), and (21) and (23) for finding ρ
and h.

5.1. System (21) and (23)

Equations (21) and (23) can be easily simplified. Indeed, the sum and difference of these equations are as
follows:

b1 =
νN + ν1
k1

cosh k1d and D1 =

(
νN − ν1
k1

)2

cosh2 k1d .
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Substituting the first expression into the second equation (see formulae (18) and (19)), we obtain:

(ρ− 1) sinh k1h sinh k1(d− h) =
νN ν1
k21

cosh k1d , (25)

whereas the first equation itself has the following form:

(ρ− 1) cosh k1h sinh k1(d− h) =
νN + ν1
k1

cosh k1d− sinh k1d . (26)

The last two equations immediately yield:

tanh k1h =
νN ν1

k1 (νN + ν1 − νW1 )
,

where formula (11) is applied. Thus we are in a position to formulate the following.

Proposition 6. Let ν1 and νN 6= ν1 be the smallest two sloshing eigenvalues measured for a two-layer fluid
occupying W = D × (−d, 0). Let also:

0 <
νN ν1

k1 (νN + ν1 − νW1 )
< tanh k1d ,

where k21 is the fundamental eigenvalue of problem (10) in D and νW1 is defined by formula (11) with k = k1. If
Procedure guarantees that ρ and h satisfy equations (21) and (23), then:

h =
1

k1
tanh−1

νN ν1
k1 (νN + ν1 − νW1 )

,

whereas ρ is determined either by (25) or by (26) with this h.

We recall that tanh−1 z = 1
2 ln 1+z

1−z (see [11], Section 4.6).

5.2. System (21) and (24)

Since equations (21) and (24) have the same form, we treat them simultaneously. Eliminating square roots, we
get:

(ρ− 1) sinh kj(d− h) (νj cosh kjh− kj sinh kjh) =
νj
kj

(νj cosh kjd− kj sinh kjd) , j = 1, N,

which is linear with respect to ρ− 1. Taking into account formula (11), we write this system in the form:

(ρ− 1) sinh kj(d− h) (kj sinh kjh− νj cosh kjh) =
νj
kj

(
νWj − νj

)
cosh kjd, j = 1, N, (27)

where the right-hand side term is positive in view of Corollary 1. We eliminate ρ − 1 from system (27), thus
obtaining the following equation for h:

ν1
k1

(
νW1 − ν1

)
cosh k1d sinh kN (d− h) (kN sinh kNh− νN cosh kNh)

−νN
kN

(
νWN − νN

)
cosh kNd sinh k1(d− h) (k1 sinh k1h− ν1 cosh k1h) = 0. (28)

Let us denote by U(h) the expression on the left-hand side and investigate its behaviour for h ≥ 0, because solving
equation (28) is equivalent to finding zeroes of U(h) that belong to (0, d).

It is obvious that U(d) = 0, and we have that:

U(0) = −νN ν1
(
νW1 − ν1

k1
cosh k1d sinh kNd−

νWN − νN
kN

cosh kNd sinh k1d

)
.

After applying formula (11), this takes the form:

U(0) =
(
νWN ν1 − νN νW1

) νN ν1
kN k1

cosh kNd cosh k1d , (29)

and so U(0) is positive, negative or zero simultaneously with νWN ν1 − νN νW1 .
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We have that

U ′(h) =
ν1 kN cosh k1d

k1
(νW1 − ν1) [kN sinh kN (d− 2h) + νN cosh kN (d− 2h)]

−νN k1 cosh kNd

kN
(νWN − νN ) [k1 sinh k1(d− 2h) + ν1 cosh k1(d− 2h)] ,

U ′′(h)

2
=
νN k

2
1 cosh kNd

kN
(νWN − νN ) [k1 cosh k1(d− 2h) + ν1 sinh k1(d− 2h)]

−ν1 k
2
N cosh k1d

k1
(νW1 − ν1) [kN cosh kN (d− 2h) + νN sinh kN (d− 2h)] .

Then, formula (11) yields the following asymptotic formula:

U(h) ∼ (d− h) (νWN − νN ) (νW1 − ν1)

[
ν1 kN
k1

− νN k1
kN

]
cosh kNd cosh k1d as d− h→ +0. (30)

Since equation (28) is obtained under the assumption that νN = ν
(−)
N and ν1 = ν

(−)
1 , Corollary 1 yields that each

factor in the asymptotic formula is positive except for the difference in the square brackets.
The next lemma gives a condition providing a relationship between the value U(0) and the behavior of U(h)

for h < d and sufficiently close to d.

Lemma 2. If the following inequality holds:

ν1 kN
k1

− νN k1
kN

≤ 0, (31)

then U(0) < 0 and U(h) < 0 when h < d and sufficiently close to d.

Proof. Let us prove the inequality U(0) < 0 first. Since

νWN ν1 − νN νW1 = ν1 kN tanh kNd− νN k1 tanh k1d,

according to formula (11). Furthermore, it follows from (31) that:

νWN ν1 − νN νW1 ≤ νN k21 d
[

tanh kNd

kNd
− tanh k1d

k1d

]
< 0, (32)

because z−1 tanh z is a monotonically decreasing function on (0,+∞) and k1 < kN . Then (29) implies that
U(0) < 0.

If inequality (31) is strict, then the second assertion immediately follows from the asymptotic formula (30).
In the case of equality in (31), the asymptotic formula (30) must be extended to include the second-order term

with respect to d− h (see the second derivative above). Thus we obtain that:

U(h) ∼ (d− h)2

{
νN k

2
1 cosh kNd

kN
(νWN − νN ) [k1 cosh k1d− ν1 sinh k1d]

−ν1 k
2
N cosh k1d

k1
(νW1 − ν1) [kN cosh kNd− νN sinh kNd]

}
as d− h→ +0.

Applying the equality νN = ν1 (kN/k1)2 along with formula (11), we write the expression in braces as follows:

ν1 kN k
−1
1 cosh kNd cosh k1d

[
(νWN − νN ) (k21 − ν1νW1 )− (νW1 − ν1) (k2N − νNνWN )

]
,

and we have in the square brackets:

k21 ν
W
N − k2N νW1 + νWN νW1 νN − νWN νW1 ν1 + νW1 νN ν1 − νWN νN ν1 .

Substituting νN = ν1 (kN/k1)2, we see that this expression is the following quadratic polynomial in ν1:(
νW1 − νWN

)
(kN/k1)2 ν21 + νWN νW1

[
(kN/k1)2 − 1

]
ν1 + νWN k21 − νW1 k2N .

Its first and third coefficients are negative (for the latter one this follows from formula (32) because it is equal to
the expression in the square brackets multiplied by a positive coefficient). On the other hand, the second coefficient
is positive. Therefore, the last expression is negative when ν1 > 0, which implies that the right-hand side of the
last asymptotic formula is negative. This completes the proof of the second assertion. �

The immediate consequences of Lemma 2 are the following two corollaries.
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Corollary 4. If inequality (31) holds, then equation (28) for h (and the inverse sloshing problem for a two-layer
fluid occupying W ) either has no solution or have more than one solution.

Proof. Inequality (31) implies that U(0) < 0 and U(h) < 0 for h < d, but sufficiently close to d. Hence U(h)
either has no zeroes on (0, d), or has more than one zero. �

Corollary 5. Let ν1 and νN ∈ (ν1, ν
W
N ) be the smallest two measured sloshing eigenvalues for a two-layer fluid

occupying W = D × (−d, 0). Then a necessary condition that equation (28) has a unique solution h is the
simultaneous validity of the following two inequalities:

ν1 kN
k1

− νN k1
kN

> 0 and νWN ν1 − νN νW1 < 0. (33)

Proof. Let equation (28) have a unique solution on (0, d). According to Corollary 4, inequality (31) contradicts to
this assumption, and so the first inequality (33) must hold. Then the asymptotic formula (30) implies that U(h) > 0
when h < d and is sufficiently close to d. Hence, the assumption that equation (28) has a unique solution on
(0, d) implies that either the second inequality (33) is true or νWN ν1 = νN ν

W
1 . Let us show that this equality is

impossible which completes the proof.
Indeed, according to formula (29), the latter equality means that U(0) = 0, and so

U(h) ∼ h
(
νWN νW1 − νN ν1

)(ν1 kN
k1

− νN k1
kN

)
cosh kNd cosh k1d as h→ +0.

Here, the formula for U ′ is used along with (11) and the fact that νWN ν1 = νN ν
W
1 . Since the first inequality (33)

is already shown to be true, we have that U(h) > 0 when h 6= 0, but is sufficiently close to +0. Since we also
have that U(h) > 0 when h < d and is sufficiently close to d, we arrive at a contradiction to the assumption that
equation (28) has a unique solution on (0, d). �

Now we are in a position to formulate the following

Proposition 7. Let ν1 and νN ∈ (ν1, ν
W
N ) be the smallest two sloshing eigenvalues measured for a two-layer fluid

occupying W = D × (−d, 0). If inequalities (33) hold for ν1 and νN , then either of the following two conditions
is sufficient for equation (28) to have a unique solution h ∈ (0, d) :

(i) U ′(h) vanishes only once for h ∈ (0, d);
(ii) U ′′(h) < 0 on (0, d).

Proof. Inequalities (33) and formulae (29) and (30) imply that U(0) < 0 and U(h) > 0 for h < d and sufficiently
close to d. Then, either of the formulated conditions is sufficient to guarantee that equation (28) has a unique
solution on (0, d). �

It is an open question whether equation (28) can have more than one solution (consequently, at least three
solutions), when inequalities (33) are fulfilled.

6. Conclusions

We have considered the direct and inverse sloshing problems for a two-layer fluid occupying an open container.
Several results obtained for the direct problem include:

(i) variational principle and its corollary concerning inequality between the fundamental sloshing eigenvalues
for homogeneous and two-layer fluids occupying the same bounded domain.

(ii) Analysis of the behavior of eigenvalues for containers with vertical walls and horizontal bottoms. It
demonstrates that there are two sequences of eigenvalues with the same eigenfunctions corresponding to eigenvalues
having the same number in each of these sequences. The elements of these sequences are expressed in terms of
eigenvalues for the Neumann Laplacian in the two-dimensional domain which is a horizontal cross-section of the
container.

(iii) In the particular case of infinitely deep container with vertical boundary, eigenvalues and eigenfunctions
for homogeneous and two-layer fluids are the same for any depth of the interface. This makes senseless the inverse
sloshing problem in a two-layer fluid occupying such a container.

Inverse sloshing problem for a two-layer fluid, that occupies a container of finite constant depth with vertical
walls, is formulated as the problem of finding the depth of the interface and the ratio of fluid densities from
the smallest two eigenvalues measured by observing them at the free surface. This problem is reduced to two
transcendental equations depending on the measured eigenvalues. There are two systems of such equations and to
obtain these systems one has to take into account the behavior of the observed free surface elevation. Sufficient
conditions for solubility of both systems have been found.
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1. Introduction

Rapid development of research in the field of nanostructures and complex molecules is not possible without
computer modeling and simulations. Over the last two decades, a few algorithms and codes have appeared for
computer modeling of such systems. These approaches allow researchers to predict properties of nanosystems and
to construct nanostructures and molecules with predetermined properties without expensive experimentation. Some
of the most popular programs of such type are HyperChem [1], Gamess [2], Gasussian and Molden.

In most cases, codes for nanostructure calculations do not use the direct solution to the Schrödinger equation
due to difficulties (or even impossibility) of obtaining explicit formulas and numerical approach complications. Even
the use of the Hartree-Fock-Roothaan method in many cases cannot give results in a timely fashion. The complexity
of calculations growths exponentially if the number of atoms in the basic cell increases. One faces this problem
when calculating the spectrum of periodic arrays of quantum dots or nanotubes, graphene, etc.

This paper is devoted to describing the algorithm and code for the spectrum calculations of periodic nanostructures
in an homogeneous magnetic field [3], based on the operator extensions theory [4, 5]. This approach leads to an
explicitly solvable model.

2. Model construction

Let us construct a model of spinless charged particle of mass m and charge e in a 2D-periodic nanostructure
with the Bravais lattice Λ in a homogeneous magnetic field B. Let K be a set of atoms in the basic cell of Λ. The
whole structure is described by the set:

Γ = Λ +K = {κ+ λ : κ ∈ K, λ ∈ Λ}.
Consider the free particle magnetic Hamiltonian (Landau operator),

H0 =
h̄

2m

(
p− e

c
A(r)

)2
, (1)

where p = ih̄∇ is the momentum operator in R3, A(r) = 1
2B × r is the vector potential of the field B in

symmetric gauge. The Hamiltonian of the particle in 2D-periodic lattice is constructed as a perturbation of operator
(1) by zero-range potentials posed at nodes of lattice Γ. This can formally be written as:

H = H0 +
∑
λ∈Λ

∑
k∈K

α̂kδ(r− λ− k), (2)

where α̂k related to the interaction of the particle with the atom posed at k ∈ K. If the structure is homogeneous,
then α̂k = α̂ for any k ∈ K. Examples of such structures include graphene and carbon nanotubes.
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We use “restriction-extension” procedure (see, e.g., [6–8]). Consider symmetric operator S, being a restriction
of H on the space of functions from D(H0) are vanishing at γ ∈ Γ. We seek the model Hamiltonian as a self-adjoint
extension of the operator S. Resolvents of such operators are described by Krein’s formula:

RA(ζ) = R0(ζ)− Γ(ζ)[Q(ζ)−A]−1Γ∗(ζ), (3)

where Γ(ζ) is Krein Γ-function, Q(ζ) is the Q-function, correspondingly. Self-adjoint operator A, defined in the
space of boundary values (the dimension of the space coincides with the deficiency index of S), parameterize self-
adjoint extension HA of S. We choose a diagonal A Relation [9] leads to an expression of the Green function GA
of HA:

GA(r, r′; ζ) = G0(r, r′; ζ)−
∑

γ,γ′∈Γ

[Q(ζ)−A]
−1
γ,γ ′ G0(r, γ; ζ)G0(γ ′, r′; ζ) . (4)

Here:

G0(r, r ′; ζ) = Φ(r, r ′)F1(r− r ′; ζ) = Φ(r, r ′)F2(r− r ′; ζ);

Φ(r, r ′) =
m

2h̄2

√
ξ

π
exp

[
−πiξ(r× r ′)− πξ(r⊥ − r⊥

′)2/2
]
, (5)

F1(r; ζ) =

∞∑
`=0

exp
[
−
√

4πξ(`+ 1/2)− ζ|r|||
]

√
`+ 1/2− ζ/4πξ

L`(πξr
2
⊥), (6)

F2(r; ζ) =
1√
π

∞∫
0

exp
[
−πξ

(
r 2
⊥/(e

t − 1) + r 2
||/t
)]

(1− e−t) exp [(1/2− ζ/4πξ)t]
dt√
t
. (7)

In (5–7), r⊥ is a projection of r on the plane of lattice Λ, r|| = r− r⊥, L`(x) is the Laguerre polynomial, ξ is the
density of the magnetic field B flux in units of flux quanta Φ0 = 2πh̄c/|e|. The Q-function in (4) has the form of
matrix Q(ζ) = (Q(γ, γ′))γ,γ′∈Γ with entries:

Q(γ, γ ′; ζ) =


G0(γ, γ ′; ζ), γ 6= γ ′;

m

2h̄2

√
ξ

π
Z

(
1

2
,

1

2
− ζ

4πξ

)
, γ = γ ′,

(8)

where Z(s, v) Hurvitz ζ [10].
The spectrum of HA consists of two parts: the spectrum of H0 (well-known) and points in which the operator

Q(ζ)−A is not invertible or its inverse operator is bounded.
It is known ( [11]) that for rational number of the magnetic flux η = N/M values that (N ∈ Z, M ∈ N) does

not change Λ when seeking of the spectrum for HA. The spectrum is determined by:

det
[
Q̃(p; ζ)− Ã(p)

]
= 0, (9)

for each p ∈ T2
η = [0, 1/M)× [0, 1). Matrices Q̃(p; ζ) is known and:

Q̃(p;m,κ;m′, κ ′; ζ) = exp[πi(m−m′)ξ(κ× a2)]×

∞∑
λ1,λ2=−∞

Q (λ1a1 + (λ2M +m−m′)a2 + κ, κ ′; ζ)× (10)

exp
{
πiξ [κ× (λ1a1 + λ2Ma2)]− 2πi

(
λp +

η

2
λ1(λ2M +m+m′)

)}
,

κ, κ′ ∈ K и m,m′ = 0, . . .M − 1.Matrix Ã(p) is block-diagonal with identical |K| × |K| blocks. The diagonal
block is in turn diagonal with constants characterizing the point-like interactions as the diagonal entries.

For each p ∈ T2
η , equation (9) has |K|M solutions. The continuous branches of equation (9) solutions zl(p)

(l = 1, . . . , |K|M ) give one the bands of the operator spectrum. The dispersion equation can be solved numerically.
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3. Code description

The most interesting problem in the field is construction of “flux-energy” diagrams, i.e. to find the spectrum for
each magnetic flux value η. The most remarkable diagram of such type is “Hofstadter butterfly” [12]. To construct
the diagram, it is necessary to solve equation (9) for different η values. For each η, we should find |K|M bands.
Calculations for different η and different bands are independent, and can be performed simultaneously, i.e., it is
natural to use parallel computation methods. Independence of computing with respect to the data allows one to use
interface MPI [13]. Testing showed that organization of the following parallelization using of OpenMP is not useful
and leads to decreased calculation performance due to increase processor cores cache-misses.

The initial data for the code are:

• basic vectors of the Bravais lattice Λ,
• coordinates of atoms from K, belonging to basic cell of the lattice Λ,
• “interaction constants” for each atom from K,
• vector B of the applied magnetic field.

The following instruments were used: compiler Free Pascal, libraries AlgLib and MPI Chamelion. Such a choice
allows one to use clusters of various architecture, controlled by operational systems such as Microsoft Windows HPC
Server, Linux, FreeBSD.

After initiation, the code, using MPI, creates one control and a few calculating processes. The control process
reads (from an input file) values of η = N/M and the bands numbers, distributes those among calculating processes
and then collects the results. The calculating processes receive tasks from the control and send results to the control.
For data exchange, the blocking functions MPI_Send and MPI_Recv are used. Due to the small amount of data
transfer, the speed of calculations is, really, independent on the interconnection and grows linearly with respect to
the number of cores used.

The code was used for for computing the spectrum of multi-layered graphene in a magnetic field [14] and
periodic arrays of nanotubes.The results are in agreement with other models [15]. In the case of nanotube array
calculations, the code works with |K| = 224 carbon atoms in a basic cell. Using of codes analogous to HyperChem,
leads to operation with hundreds of basic cells (correspondingly,tens of thousands atoms), and it gives one only
small part of the periodic array. Our approach gives an essential acceleration but, of course, cannot simulate edges
of the real nanostructure.
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1. Introduction

This work is devoted to considering the Cauchy problem on a half-plane for some fourth-order nonstrictly
hyperbolic linear equation with constant coefficients. The operator appearing in the equation involves a composition
of first-order differential operators. The Cauchy problem for such an equation was previously considered in [1, 2]
in the case of a strictly hyperbolic equation (a Petrovskii hyperbolic equation [3, 4]). The general solution for
both strictly and nonstrictly hyperbolic equations of arbitrary order was constructed there as well. The case of a
nonstrictly hyperbolic equation with the coincidence of all characteristics was considered in [5], and the solutions
of the Cauchy problem in all cases of a nonstrictly hyperbolic third-order equation of such a form were obtained
in [6].

Unique solvability of the problem and the construction of solution for the Cauchy problem is one of the
classical problems in the theory of differential equations. Differential equations arise in the modelling of several
natural phenomena, and the Cauchy problem is one of the first and most important.

The Cauchy problem for hyperbolic partial differential equations was studied by many mathematicians for a
long time, mostly by methods of functional analysis. In this paper, we suggest the following analytical methods for
solving the Cauchy problem. First, we find the general solutions using the characteristics of the equation. Next,
from the general solution, we determine the solution which satisfies the Cauchy conditions. The latter step is the
main difficulty for the determination of the required analytical solution. The general solution of the homogeneous
equation depends on a number of arbitrary functions. To determine them, we use Cauchy differential conditions.
This leads to the corresponding system of differential equations. In each particular case, solving this system
requires a different method and approach. In addition, the solutions depend on a number of arbitrary constants. In
order to prove the uniqueness of the solution for a given Cauchy problem, it is necessary to prove that all these
arbitrary constants are cross-eliminated after substitution into the general solution.

Partial differential equations of fourth order are encountered when studying mathematical models for certain
natural and physical processes. An example of such type of equations, is the fourth-order governing differential
equation for nanorod based on nonlocal second-order strain gradient model [see [7, 8]]:

EA(ε0a)2
∂4u(t, x)

∂x4
+ EA

∂2u(t, x)

∂x2
− ρA∂

2u(t, x)

∂t2
= 0, (1)

and the flexural wave equation for an Euler-Bernoulli beam has a fourth order derivative in space and is given as
[see [9, 10]]:

EI
∂4u(t, x)

∂x4
+ ηA

∂u(t, x)

∂t
+ ρA

∂2u(t, x)

∂t2
= 0. (2)

On the plane R2 of two independent variables t and x, we introduce the half-plane Q = [0,+∞) × R on
which we consider the following partial differential equation of fourth-order, for a function u : R2 3 Q ⊃ (t, x)→
u(t, x) ∈ R :

L(4)u (t, x) =

4∏
k=1

(
∂t − a(k)∂x + b(k)

)
u (t, x) = f(t, x), (t, x) ∈ Q, (3)
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together with the initial conditions:

u|t=0 = ϕ0 (x) ,
∂u

∂t

∣∣∣∣
t=0

= ϕ1 (x) ,
∂2u

∂t2

∣∣∣∣
t=0

= ϕ2 (x) ,
∂3u

∂t3

∣∣∣∣
t=0

= ϕ3 (x) , (4)

where ∂t =
∂

∂t
, ∂x =

∂

∂x
– are the first derivatives with respect to t, x and a(k), b(k) are given real numbers,

f : Q→ R with Q = [0,+∞)× R, the closure of Q.
Consider the fourth-order homogeneous equation:

L(4)u (t, x) = 0, (t, x) ∈ Q, (5)

with

L(4) =

p∏
k=1

(
∂t − a(k)∂x + b(k)

)r(k)
, (6)

where p and r(k) are positive integers such that p ≤ 4 and r(1) + r(2) + ...+ r(p) = 4. By [2], the general solution
of Eq. (5) has the form:

u (t, x) =

p∑
k=1

e−b
(k)t

r(k)∑
s=1

ts−1f (ks)
(
x+ a(k)t

)
. (7)

In this paper, we study five cases of fourth-order non-strictly hyperbolic equations, in particular:

Case 1: r(1) = 4 and r(j) = 0, j = 2, 4.
Case 2: r(1) = 3,r(2) = 1 and r(m) = 0 with m = 3, 4.
Case 3: r(1) = 2,r(2) = 2 and r(m) = 0 with m = 3, 4.
Case 4: r(1) = 2,r(2) = 1,r(3) = 1 and r(4) = 0.
Case 5: r(i) = 1 ∀i = 1, 4.

2. Main results

In this section, we consider the some cases for fourth-order non-strictly hyperbolic equations of the form (5).

Case 1: r(1) = 4 and r(j) = 0, j = 2, 4. Assume that the coefficients of (5) satisfy a(k) = a, b(k) = b, ∀k = 1, 4.
Then, according to (7), the general solution of (5) can be written in the following form:

u (t, x) = e−bt
(
f1(x+ at) + tf2(x+ at) + t2f3(x+ at) + t3f4(x+ at)

)
. (8)

By plugging (8) into (4), after simplifying, we obtain:

f1(x) = ϕ0(x);

−bf1(x) + f2(x) + af ′1(x) = ϕ1(x);

b2f1(x) + 2f3(x)− 2b(f2(x) + af ′1(x)) + 2af ′2(x) + a2f ′′1 (x) = ϕ2(x);

−b3f1(x) + 6f4(x) + 3b2(f2(x) + af ′1(x)) + 6af ′3(x)

−3b
(
2f3(x) + 2af ′2(x) + a2f ′′1 (x)

)
+ 3a2f ′′2 (x) + a3f ′′′1 (x) = ϕ3(x);

or equivalently:

f1(x) = ϕ0(x);

f2(x) = ϕ1(x) + bϕ0(x)− aϕ′0(x);

f3(x) =
1

2

(
ϕ2(x) + b2ϕ0(x) + 2bϕ1(x)− 2aϕ′1(x)− 2abϕ′0(x) + a2ϕ′′0(x)

)
;

f4(x) =
1

6

(
ϕ3(x) + b3ϕ0(x)− 3b2(ϕ1(x) + bϕ0(x))

− 3a
(
ϕ′2(x) + 2bϕ′1(x) + b2ϕ′0(x)− 2aϕ′′1(x)− 2abϕ′′0(x) + a2ϕ′′′0 (x)

)
+ 3b

(
ϕ2(x) + b2ϕ0(x) + 2bϕ1(x)

)
− 3a2

(
ϕ′′1(x) + bϕ′′0(x)− aϕ′′′0 (x)

)
− a3ϕ′′′0 (x)

)
.
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Substituting f1(x), f2(x), f3(x), f4(x) into (8), finally we have:

u(t, x) =
1

6
e−bt((6 + 6bt+ 3b2t2 + b3t3)ϕ0(x+ at) + t(3(2 + 2bt+ b2t2)ϕ1(x+ at)

+ 3t(1 + bt)ϕ2(x+ at) + t2ϕ3(x+ at)− 6aϕ′0(x+ at)− 6abtϕ′0(x+ at)− 3ab2t2ϕ′0(x+ at)

− 6atϕ′1(x+ at)− 6abt2ϕ′1(x+ at)− 3at2ϕ′2(x+ at) + 3a2tϕ′′0(x+ at)

+ 3a2bt2ϕ′′0(x+ at) + 3a2t2ϕ′′1(x+ at)− a3t2ϕ′′′0 (x+ at)).

Case 2: The coefficients of (5) satisfy a(k) = a, b(k) = b with k = 1, 2, 3 and a(4) 6= a, b(k) – arbitrary constants.
According to (7), the general solution of equation (5) has the form:

u (t, x) = e−bt
(
f1(x+ at) + tf2(x+ at) + t2f3(x+ at)

)
+ e−b

(4)tf4(x+ a(4)t). (9)

Similarly, due to (4), we get the following system of differential equations for the functions fk(x) with k = 1, 2, 3, 4:

f1(x) + f4(x) = ϕ0(x);

−bf1(x) + f2(x)− b(4)f4(x) + af ′1(x) + a(4)f ′4(x) = ϕ1(x);

b2f1(x) + 2f3(x) + (b(4))2f4(x)− 2b(f2(x) + af ′1(x)) + 2af ′2(x)− 2a(4)b(4)f ′4(x)

+a2f ′′1 (x) + (a(4))2f ′′4 (x) = ϕ2(x);

−b3f1(x)− (b(4))3f4(x) + 3b2(f2(x) + af ′1(x)) + 6af ′3(x) + 3a(4)(b(4))2f ′4(x) + 3a2f ′′2 (x)

−3b(2f3(x)) + 2af ′2(x) + a2f ′′1 (x))− 3b(4)(a(4))2f ′′4 (x) + a3f ′′′1 (x) + (a(4))3f ′′′4 (x) = ϕ3(x).

For the sake of convenience, we introduce the following notations of differential operators: d1 = ad/dx − b,

d4 = a(4)d/dx − b(4) and dj1 = (ad/dx− b)j , dj4 =
(
a(4)d/dx− b(4)

)j
. The system of differential equations for

the unknown function f1(x), f2(x), f3(x), f4(x) becomes:

f1(x) + f4(x) = ϕ0(x);

d1f1(x) + f2(x) + d4f4(x) = ϕ1(x);

d21f1(x) + 2d1f2(x) + 2f3(x) + d24f4(x) = ϕ2(x);

d31f1(x) + 3d21f2(x) + 6d1f3(x) + d34f4(x) = ϕ3(x).

Observe that the preceding system can be reduced to the one of differential equations with diagonal matrix.
To this end, we apply the operator d4 to the first three equations in the system and subtract every other equation
of the resulting system from the preceding one. As a result, we obtain:

f1(x) + f4(x) = ϕ0(x);

(d1 − d4)f1(x) + f2(x) = ϕ1(x)− d4ϕ0(x);

(d21 − d1d4)f1(x) + (2d1 − d4)f2(x) + 2f3(x) = ϕ2(x)− d4ϕ1(x);

(d31 − d21d4)f1(x) + (3d21 − 2d1d4)f2(x) + (6d1 − 2d4)f3(x) = ϕ3(x)− d4ϕ2(x).

By continuing transformations in a similar way, we receive:

f1(x) + f4(x) = ϕ0(x);

(d1 − d4)f1(x) + f2(x) = ϕ1(x)− d4ϕ0(x);

(d21 − d1d4)f1(x) + (2d1 − d4)f2(x) + 2f3(x) = ϕ2(x)− d4ϕ1(x);

(d31 − d21d4 − (d21 − d1d4)(3d1 − d4))f1(x) + (3d21 − 2d1d4 − (2d1 − d4)(3d1 − d4))f2(x) =

ϕ3(x)− d4ϕ2(x)− (3d1 − d4)(ϕ2(x)− d4ϕ1(x)),

instead of f2(x) by f1(x), we obtain third-order ODE for f1(x)(
3d21 − 2d1d4 − (2d1 − d4)(3d1 − d4)

)
(ϕ1(x)− d4ϕ0(x)− (d1 − d4)f1(x))

+
(
d31 − d21d4 − (d21 − d1d4)(3d1 − d4)

)
f1(x) = ϕ3(x)− d4ϕ2(x)− (3d1 − d4) (ϕ2(x)− d4ϕ1(x))

or
(d1 − d4)3f1(x) = Φ(x), (10)
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where

Φ(x) = ϕ3(x)− 3d1ϕ2(x) + 3d21ϕ1(x)− d4
(
3d21 − 3d1d4 + d24

)
ϕ0(x).

After solving (10), we have:

f1(x) = e

b− b(4)

a− a(4)
x

(C1 + xC2 + x2C3) + Ψ(x), (11)

with Ψ(x) =
1

2(a− a(4))3

x∫
0

Φ(z)e
b−b(4)

a−a(4)
(x−z)

(x− z)2dz,

where C1, C2 and C3 are arbitrary integration constants. Then, using (11) and the first three equations of
system of differential equations, it is easy to find three other functions for the solution of (9):

f4(x) = ϕ0(x)− e
b−b(4)

a−a(4)
x
(C1 + xC2 + x2C3)−Ψ(x),

f2(x) = ϕ1(x)− (d1 − d4)Ψ(x)− d4ϕ0(x)− (a− a(4))e
b−b(4)

a−a(4)
x
(C2 + 2xC3),

f3(x) =
1

2

(
ϕ2(x)− d21f1(x)− 2d1f2(x)− d24f4(x)

)
=

1

2
ϕ2(x)− 1

2
(d21 − d24)Ψ(x)− 1

2
d24ϕ0(x)− d1ϕ1(x) + d1(d1 − d4)Ψ(x) + d1d4ϕ0(x)

+ e
b−b(4)

a−a(4)
x
(

(a(4))2C3 − ba(4)C2 − 2ba(4)C3x− a2C3 + ab(4)C2 + 2ab(4)C3x
)

+ e
b−b(4)

a−a(4)
x
(
−2aa(4)C3 + ba(4)C2 + 2ba(4)C3x+ 2a2C3 − ab(4)C2 − 2ab(4)C3x

)
.

Now, substituting f1(x), f2(x), f3(x), f4(x) into 9, we get the solution:

u(t, x) = e−bt (Ψ(x+ at) + t(ϕ1(x+ at)− (d1 − d4)Ψ(x+ at)− d4ϕ0(x+ at)))

+ e−btt2
(

1

2
ϕ2(x+ at)− 1

2
(d21 − d24)Ψ(x+ at)− 1

2
d24ϕ0(x+ at)

)
+ e−btt2

(
− d1ϕ1(x+ at) + d1(d1 − d4)Ψ(x+ at) + d1d4ϕ0(x+ at)

)
+ e−b

(4)t
(
ϕ0(x+ a(4)t)−Ψ(x+ a(4)t)

)
.

Case 3: We have coefficients of equation (5) satisfy a(k) = a, b(k) = b with k = 1, 2, a(k) = c, b(k) = d with
k = 3, 4, c 6= a and b, d – arbitrary constants. According to equation (7), the general solution of equation (5) in
this case has the form:

u (t, x) = e−bt (f1(x+ at) + tf2(x+ at)) + e−dt (f3(x+ ct) + tf4(x+ ct)) , (12)

we compute partial derivatives of first,second and third order in t and substitute them into the initial conditions
(4), we get the following system of differential equations on the functions fk(x) with k = 1, 2, 3, 4:

f1(x) + f3(x) = ϕ0(x);

−bf1(x) + f2(x)− df3(x) + f4(x) + af ′1(x) + cf ′3(x) = ϕ1(x);

b2f1(x) + d2f3(x)− 2bf2(x)− 2abf ′1(x) + 2af ′2(x)− 2df4(x)− 2cdf ′3(x) + 2cf ′4(x)

+a2f ′′1 (x) + c2f ′′3 (x) = ϕ2(x);

−b3f1(x)− d3f3(x) + 3b2f2(x) + 3b2af ′1(x) + 3d2f4(x) + 3d2cf ′3(x)− 6abf ′2(x)

3ba2f ′′1 (x) + 3a2f ′′2 (x)− 6cdf ′4(x)− 3dc2f ′′3 (x) + 3c2f ′′4 (x) + a3f ′′′1 (x) + c3f ′′′3 (x) = ϕ3(x).

We introduce the following notation for differential operators: d1 = ad/dx − b, d2 = cd/dx − d and
dj1 = (ad/dx− b)j , dj2 = (cd/dx− d)

j . In this notation, we rewrite system of differential equations for the
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unknown function f1(x), f2(x), f3(x), f4(x) in the form:

f1(x) + f3(x) = ϕ0(x);

d1f1(x) + f2(x) + d2f3(x) + f4(x) = ϕ1(x);

d21f1(x) + 2d1f2(x) + d22f3(x) + 2d2f4(x) = ϕ2(x);

d31f1(x) + 3d21f2(x) + d32f3(x) + 3d22f4(x) = ϕ3(x),

instead of f2(x), f3(x), f4(x) by f1(x), we obtain third-order ODE for f1(x):(
−1

2
d31 +

3

2
d2d

2
1 +

1

2
d32 −

3

2
d1d

2
2

)
f1(x) =

ϕ3(x)− 3

2
d2ϕ2(x)− 3

2
d1ϕ2(x) + 3d1d2ϕ1(x) +

1

2
d32ϕ0(x)− 3

2
d1d

2
2ϕ0(x),

or (
d31 − 3d2d

2
1 + 3d1d

2
2 − d32

)
f1(x) = Φ(x), (13)

where Φ(x) = −2ϕ3(x) + 3d2ϕ2(x) + 3d1ϕ2(x)− 6d1d2ϕ1(x)− d32ϕ0(x) + 3d1d
2
2ϕ0(x).

Solving the third-order differential equation from (13), we get:

f1(x) = e
b−d
a−cx

(
C1 + xC2 + x2C3

)
+

1

2(a− c)3

x∫
0

Φ(z)e
b−d
a−c (x−z)(x− z)2dz,

with Ψ(x) =
1

2(a− c)3

x∫
0

Φ(z)e
b−d
a−c (x−z)(x− z)2dz, we obtain:

f1(x) = e
b−d
a−cx

(
C1 + xC2 + x2C3

)
+ Ψ(x), (14)

where C1, C2 and C3 are arbitrary integration constants. Then, using function 14 and the first three equations of
system of differential equations it is easy to find three other functions for the solution of (12):

f3(x) = ϕ0(x)− e
b−d
a−cx(C1 + xC2 + x2C3)−Ψ(x),

f2(x) = C4e
b−d
a−cx − (a− c)C3e

b−d
a−cxx

+

x∫
0

(
ϕ2(z)− 2d2ϕ1(z)− (d21 − 2d2d1)Ψ(z) + d22ϕ0(z)− d22Ψ(z)

)
e

b−d
a−c (x−z)

2(a− c)
dz,

f4(x) = ϕ1(x)− d1Ψ(x)− d2ϕ0(x) + d2Ψ(x)− C4e
b−d
a−cx + (a− c)C3e

b−d
a−cxx

−
x∫

0

(
ϕ2(z)− 2d2ϕ1(z)− (d21 − 2d2d1)Ψ(z) + d22ϕ0(z)− d22Ψ(z)

)
e

b−d
a−c (x−z)

2(a− c)
dz

− (a− c)e
b−d
a−cx (C2 + 2C3x) .

Now, substitute f1(x), f2(x), f3(x), f4(x) into (12), we get the solution:

u(t, x) = e−btΨ(x+ at) + te−btΩ(x+ at) + e−dtϕ0(x+ ct)− e−dtΨ(x+ ct)

+ te−dt (−Ω(x+ ct) + ϕ1(x+ ct)− d1Ψ(x+ ct)− d2ϕ0(x+ ct) + d2Ψ(x+ ct)) ,

where

Ω(x) =

x∫
0

(
ϕ2(z)− 2d2ϕ1(z)− (d21 − 2d2d1)Ψ(z) + d22ϕ0(z)− d22Ψ(z)

)
e

b−d
a−c (x−z)

2(a− c)
dz.
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Case 4: We have coefficients of equation (5) satisfy a(k) = a, b(k) = b with k = 1, 2, a(3) = c, b(3) = d, a(4) = e,
b(4) = f , c 6= a 6= e and (b − d)(a − e) 6= (b − f)(a − c). According to equation (7), the general solution of
equation (5) in this case has the form:

u (t, x) = e−bt (f1(x+ at) + tf2(x+ at)) + e−dtf3(x+ ct) + e−ftf4(x+ et), (15)

we compute partial derivatives of first,second and third order in t and substitute them into the initial conditions
(4), we get the following system of differential equations on the functions fk(x) with k = 1, 2, 3, 4:

f1(x) + f3(x) + f4(x) = ϕ0(x);

−bf1(x) + f2(x)− df3(x)− ff4(x) + af ′1(x) + cf ′3(x) + ef ′4(x) = ϕ1(x);

b2f1(x) + d2f3(x) + f2f4(x)− 2bf2(x)− 2abf ′1(x) + 2af ′2(x)

−2cdf ′3(x)− 2eff ′4(x) + a2f ′′1 (x) + c2f ′′3 (x) + e2f ′′4 (x) = ϕ2(x);

−b3f1(x)− d3f3(x)− f3f4(x) + 3b2f2(x) + 3b2af ′1(x) + 3cd2f ′3(x) + 3ef2f ′4(x)− 6abf ′2(x)

−3ba2f ′′1 (x) + 3a2f ′′2 (x)− 3c2df ′′3 (x)− 3e2ff ′′4 (x) + a3f ′′′1 (x) + c3f ′′′3 (x) + e3f ′′′4 (x) = ϕ3(x).

We introduce the following notation of differential operators: d1 = ad/dx− b, d3 = cd/dx− d, d4 = ed/dx− f
and dj1 = (ad/dx− b)j , dj3 = (cd/dx− d)

j , dj4 = (ed/dx− f)
j . In this notation, we rewrite system of differential

equations for the unknown function f1(x), f2(x), f3(x), f4(x) in the form:

f1(x) + f3(x) + f4(x) = ϕ0(x),

d1f1(x) + f2(x) + d3f3(x) + d4f4(x) = ϕ1(x),

d21f1(x) + 2d1f2(x) + d23f3(x) + d24f4(x) = ϕ2(x),

d31f1(x) + 3d21f2(x) + d33f3(x) + d34f4(x) = ϕ3(x),

or
f1(x) + f3(x) + f4(x) = ϕ0(x),

(d1 − d4)f1(x) + f2(x) + (d3 − d4)f3(x) = ϕ1(x)− d4ϕ0(x),

(d21 − d4d1)f1(x) + (2d1 − d4)f2(x) + (d23 − d3d4)f3(x) = ϕ2(x)− d4ϕ1(x),

(d31 − d4d21)f1(x) + (3d21 − 2d4d1)f2(x) + (d33 − d4d23)f3(x) = ϕ3(x)− d4ϕ2(x),

or
f1(x) + f3(x) + f4(x) = ϕ0(x),

(d1 − d4)f1(x) + f2(x) + (d3 − d4)f3(x) = ϕ1(x)− d4ϕ0(x),

(d21 − d4d1 − d3d1 + d3d4)f1(x) + (2d1 − d4 − d3)f2(x) = ϕ2(x)− d4ϕ1(x)− d3ϕ1(x) + d3d4ϕ0(x),

(d31 − d4d21 − d3d21 + d3d4d1)f1(x) + (3d21 − 2d4d1 − 2d3d1 + d3d4)f2(x) = ϕ3(x)− d4ϕ2(x)− d3ϕ2(x) + d3d4ϕ1(x),

instead of f1(x) by f2(x), we obtain second-order ODE for f2(x):

(d21 − d4d1 − d3d1 + d3d4)f2(x) =

ϕ3(x)− d4ϕ2(x)− d3ϕ2(x) + d3d4ϕ1(x)− d1ϕ2(x) + d1d4ϕ1(x) + d1d3ϕ1(x)− d1d3d4ϕ0(x),

or
(d21 − d4d1 − d3d1 + d3d4)f2(x) = Φ(x), (16)

where

Φ(x) = ϕ3(x)− d4ϕ2(x)− d3ϕ2(x) + d3d4ϕ1(x)− d1ϕ2(x) + d1d4ϕ1(x) + d1d3ϕ1(x)− d1d3d4ϕ0(x).

Solving the second-order differential equation from (16), we get:

f2(x) = C1e
b−d
a−cx + C2e

b−f
a−ex +

x∫
0

Φ(z)
(
e

b−d
a−c (x−z) − e

b−f
a−e (x−z)

)
b(c− e) + d(e− a) + f(a− c)

dz,

with Ω(x) =

x∫
0

Φ(z)
(
e

b−d
a−c (x−z) − e

b−f
a−e (x−z)

)
b(c− e) + d(e− a) + f(a− c)

dz, we obtain:

f2(x) = C1e
b−d
a−cx + C2e

b−f
a−ex + Ω(x), (17)
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Then, using function (17), we find three other functions for the solution of (15):

f1(x) = C3e
b−d
a−cx + C4e

b−f
a−ex −

x∫
0

(2d1 − d4 − d3)Ω(z)
(
e

b−d
a−c (x−z) − e

b−f
a−e (x−z)

)
b(c− e) + d(e− a) + f(a− c)

dz

+

x∫
0

(ϕ2(z)− d4ϕ1(z)− d3ϕ1(z) + d3d4ϕ0(z))
(
e

b−d
a−c (x−z) − e

b−f
a−e (x−z)

)
b(c− e) + d(e− a) + f(a− c)

dz

−
x∫

0

(
(a− e)C1e

b−d
a−c z − (a− c)C2e

b−f
a−e z

)(
e

b−d
a−c (x−z) − e

b−f
a−e (x−z)

)
(a− c)(a− e)

dz

= Θ(x) + C3e
b−d
a−cx + C4e

b−f
a−ex −

x∫
0

(
(a− e)C1e

b−d
a−c z − (a− c)C2e

b−f
a−e z

)(
e

b−d
a−c (x−z) − e

b−f
a−e (x−z)

)
(a− c)(a− e)

dz

with

Θ(x) = −
x∫

0

(2d1 − d4 − d3)Ω(z)
(
e

b−d
a−c (x−z) − e

b−f
a−e (x−z)

)
b(c− e) + d(e− a) + f(a− c)

dz

+

x∫
0

(ϕ2(z)− d4ϕ1(z)− d3ϕ1(z) + d3d4ϕ0(z))
(
e

b−d
a−c (x−z) − e

b−f
a−e (x−z)

)
b(c− e) + d(e− a) + f(a− c)

dz,

and

f3(x) = C5e
d−f
c−e x +

x∫
0

(ϕ1(z)− d4ϕ0(z)− (d1 − d4)f1(z)− f2(z)) e
d−f
c−e (x−z)

(c− e)
dz

= C5e
d−f
c−e x +

x∫
0

(ϕ1(z)− d4ϕ0(z)− (d1 − d4)Θ(z)− Ω(z)) e
d−f
c−e (x−z)

(c− e)
dz

−
x∫

0

(
C1e

b−d
a−c z + C2e

b−f
a−e z − (b− f)(C3e

b−d
a−c z + C4e

b−f
a−e z

)
e

d−f
c−e (x−z)

(c− e)
dz

−
x∫

0

z∫
0

(b− f)
(

(a− e)C1e
b−d
a−c t − (a− c)C2e

b−f
a−e t

)(
e

b−d
a−c (z−t) − e

b−f
a−e (z−t)

)
e

d−f
c−e (x−z)

(a− c)(a− e)(c− e)
dtdz

−
x∫

0

(
(a− e)

(
b−d
a−cC3e

b−d
a−c z + b−f

a−eC4e
b−f
a−e z

))
e

d−f
c−e (x−z)

(c− e)
dz

+

x∫
0

z∫
0

(
(a− e)C1e

b−d
a−c t − (a− c)C2e

b−f
a−e t

)(
b−d
a−ce

b−d
a−c (z−t) − b−f

a−ee
b−f
a−e (z−t)

)
e

d−f
c−e (x−z)

(a− c)(c− e)
dtdz,
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f4(x) = ϕ0(x)−Θ(x)−
x∫

0

(ϕ1(z)− d4ϕ0(z)− (d1 − d4)Θ(z)− Ω(z)) e
d−f
c−e (x−z)

(c− e)
dz

+

x∫
0

(
(a− e)C1e

b−d
a−c z − (a− c)C2e

b−f
a−e z

)(
e

b−d
a−c (x−z) − e

b−f
a−e (x−z)

)
(a− c)(a− e)

dz

+

x∫
0

(
C1e

b−d
a−c z + C2e

b−f
a−e z − (b− f)(C3e

b−d
a−c z + C4e

b−f
a−e z

)
e

d−f
c−e (x−z)

(c− e)
dz

+

x∫
0

z∫
0

(b− f)
(

(a− e)C1e
b−d
a−c t − (a− c)C2e

b−f
a−e t

)(
e

b−d
a−c (z−t) − e

b−f
a−e (z−t)

)
e

d−f
c−e (x−z)

(a− c)(a− e)(c− e)
dtdz

+

x∫
0

(
(a− e)

(
b−d
a−cC3e

b−d
a−c z + b−f

a−eC4e
b−f
a−e z

))
e

d−f
c−e (x−z)

(c− e)
dz

−
x∫

0

z∫
0

(
(a− e)C1e

b−d
a−c t − (a− c)C2e

b−f
a−e t

)(
b−d
a−ce

b−d
a−c (z−t) − b−f

a−ee
b−f
a−e (z−t)

)
e

d−f
c−e (x−z)

(a− c)(c− e)
dtdz

− C3e
b−d
a−cx − C4e

b−f
a−ex − C5e

d−f
c−e x.

After substitution of f1(x), f2(x), f3(x), f4(x) into equation (15), we get a solution of the Cauchy problem in
this case :

u(t, x) = e−btΘ(x+ at) + te−btΩ(x+ at) + e−ftϕ0(x+ et)− e−ftΘ(x+ et)

+ e−dt
x+ct∫
0

(ϕ1(z)− d4ϕ0(z)− (d1 − d4)Θ(z)− Ω(z)) e
d−f
c−e (x+ct−z)

(c− e)
dz

− e−ft
x+et∫
0

(ϕ1(z)− d4ϕ0(z)− (d1 − d4)Θ(z)− Ω(z)) e
d−f
c−e (x+et−z)

(c− e)
dz.

Case 5: We have coefficients of equation (5) satisfy a(i) 6= a(j) with ∀i, j = 1, 4 and (b(1) − b(2))(a(1) − a(3)) 6=
(b(1) − b(3))(a(1) − a(2)), (b(1) − b(2))(a(1) − a(4)) 6= (b(1) − b(4))(a(1) − a(2)). According to equation (7), the
general solution of equation (5) in this case has the form:

u (t, x) = e−b
(1)tf1(x+ a(1)t) + e−b

(2)tf2(x+ a(2)t) + e−b
(3)tf3(x+ a(3)t) + e−b

(4)tf4(x+ a(4)t), (18)

we compute partial derivatives of first,second and third order in t and substitute them into the initial conditions (4),
we get the following system of differential equations on the functions fk(x) with k = 1, 2, 3, 4 and we introduce

the following notation for differential operators: di = a(i)d/dx − b(i), and dji =
(
a(i)d/dx− b(i)

)
with i = 1, 4

and j = 1, 3. In this notation, we rewrite the system of differential equations for the unknown function f1(x),
f2(x), f3(x), f4(x) in the form:

f1(x) + f2(x) + f3(x) + f4(x) = ϕ0(x);

d1f1(x) + d2f2(x) + d3f3(x) + d4f4(x) = ϕ1(x);

d21f1(x) + d22f2(x) + d23f3(x) + d24f4(x) = ϕ2(x);

d31f1(x) + d32f2(x) + d33f3(x) + d34f4(x) = ϕ3(x);

or

f1(x) + f2(x) + f3(x) + f4(x) = ϕ0(x);

(d1 − d4)f1(x) + (d2 − d4)f2(x) + (d3 − d4)f3(x) = ϕ1(x)− d4ϕ0(x);

(d21 − d1d4 − d3d1 + d3d4)f1(x) + (d22 − d2d4 − d3d2 + d3d4)f2(x) = ϕ2(x)− d4ϕ1(x)− d3ϕ1(x) + d3d4ϕ0(x),
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instead of f2(x) by f1(x), we obtain third-order ODE for f1(x)

(d31 − d4d21 − d3d21 + d3d1d4)f1(x) + (d32 − d4d32 − d3d22 + d3d2d4)f2(x) =

ϕ3(x)− d4ϕ2(x)− d3ϕ2(x) + d3d4ϕ1(x);

(d31 − d4d21 − d3d21 + d3d1d4 − d2d21 + d2d1d4 + d2d3d1 − d2d3d4)f1(x) =

ϕ3(x)− d4ϕ2(x)− d3ϕ2(x) + d3d4ϕ1(x)− d2ϕ2(x) + d2d4ϕ1(x) + d2d3ϕ1(x)− d2d3d4ϕ0(x);

where

Φ(x) = ϕ3(x)− d4ϕ2(x)− d3ϕ2(x) + d3d4ϕ1(x)− d2ϕ2(x) + d2d4ϕ1(x) + d2d3ϕ1(x)− d2d3d4ϕ0(x).

After solving this equation, we receive

f1(x) = C1e
b(1)−b(2)

a(1)−a(2)
x

+ C2e
b(1)−b(3)

a(1)−a(3)
x

+ C3e
b(1)−b(4)

a(1)−a(4)
x

+

4∑
k=2

x∫
0

Φ(z)e
b(1)−b(k)

a(1)−a(k)
(x−z)

P ′
(
b(1)−b(k)

a(1)−a(k)

)
(a(1) − a(2))(a(1) − a(3))(a(1) − a(4))

dz

= C1e
b(1)−b(2)

a(1)−a(2)
x

+ C2e
b(1)−b(3)

a(1)−a(3)
x

+ C3e
b(1)−b(4)

a(1)−a(4)
x

+ Ω(x),

where P (λ) =

(
λ− b(1) − b(2)

a(1) − a(2)

)(
λ− b(1) − b(3)

a(1) − a(3)

)(
λ− b(1) − b(4)

a(1) − a(4)

)
and

Ω(x) =

4∑
k=2

x∫
0

Φ(z)e
b(1)−b(k)

a(1)−a(k)
(x−z)

P ′
(
b(1)−b(k)

a(1)−a(k)

)
(a(1) − a(2))(a(1) − a(3))(a(1) − a(4))

dz.

Then, using function f1(x), we find three other functions for the solution of (18):

f2(x) = Ψ(x) + C4e
b(2)−b(3)

a(2)−a(3)
x

+ C5e
b(2)−b(4)

a(2)−a(4)
x

−
4∑
k=2

x∫
0

(a(1) − a(3))(a(1) − a(4))Ck−1(b(1) − b(k))2Π(x, z)

(a(1) − a(k))2(a(4)(b(2) − b(3)) + a(2)(b(3) − b(4)) + a(3)(b(4) − b(2)))
dz

+

4∑
k=2

x∫
0

(b(1) − b(3))(a(1) − a(4))Ck−1(b(1) − b(k))Π(x, z)

(a(1) − a(k))(a(4)(b(2) − b(3)) + a(2)(b(3) − b(4)) + a(3)(b(4) − b(2)))
dz

+

4∑
k=2

x∫
0

(b(1) − b(4))(a(1) − a(3))Ck−1(b(1) − b(k))Π(x, z)

(a(1) − a(k))(a(4)(b(2) − b(3)) + a(2)(b(3) − b(4)) + a(3)(b(4) − b(2)))
dz

−
4∑
k=2

x∫
0

(b(1) − b(4))(b(1) − b(3))Ck−1Π(x, z)

(a(4)(b(2) − b(3)) + a(2)(b(3) − b(4)) + a(3)(b(4) − b(2)))
dz,

f3(x) =

x∫
0

(ϕ1(z)− d4ϕ0(z)− (d1 − d4)f1(z)− (d2 − d4)f2(z))e
b(3)−b(4)

a(3)−a(4)
(x−z)

a(3) − a(4)
dz + C6e

b(3)−b(4)

a(3)−a(4)
x
,

f4(x) = ϕ0(x)− f0(x)− f1(x)− f2(x)− f3(x),

where

Ψ(x) = −
x∫

0

((d21 − d1d4 − d3d1 + d3d4)Ω(z))

(
e

b(2)−b(4)

a(2)−a(4)
(x−z) − e

b(2)−b(3)

a(2)−a(3)
(x−z)

)
a(4)(b(2) − b(3)) + a(2)(b(3) − b(4)) + a(3)(b(4) − b(2))

dz

+

x∫
0

(ϕ2(z)− d4ϕ1(z)− d3ϕ1(z) + d3d4ϕ0(z))

(
e

b(2)−b(4)

a(2)−a(4)
(x−z) − e

b(2)−b(3)

a(2)−a(3)
(x−z)

)
a(4)(b(2) − b(3)) + a(2)(b(3) − b(4)) + a(3)(b(4) − b(2))

dz,
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Π(x, z) = e
b(1)−b(k)

a(1)−a(k)
z
(
e

b(2)−b(4)

a(2)−a(4)
(x−z) − e

b(2)−b(3)

a(2)−a(3)
(x−z)

)
.

After substitution of f1(x), f2(x), f3(x), f4(x) into equation (18), we get a solution of the Cauchy problem
in this case:

u(t, x) = e−b
(1)tΩ(x+ a(1)t) + e−b

(2)tΨ(x+ a(2)t)

+ e−b
(3)t

x+a(3)t∫
0

(ϕ1(z)− d4ϕ0(z))e
b(3)−b(4)

a(3)−a(4)
(x+a(3)t−z)

a(3) − a(4)
dz

− e−b
(3)t

x+a(3)t∫
0

((d1 − d4)Ω(z) + (d2 − d4)Ψ(z))e
b(3)−b(4)

a(3)−a(4)
(x+a(3)t−z)

a(3) − a(4)
dz

+ e−b
(4)t
(
ϕ0(x+ a(4)t)− Ω(x+ a(4)t)−Ψ(x+ a(4)t)

)
− e−b

(4)t

x+a(4)t∫
0

(ϕ1(z)− d4ϕ0(z))e
b(3)−b(4)

a(3)−a(4)
(x+a(4)t−z)

a(3) − a(4)
dz

+ e−b
(4)t

x+a(4)t∫
0

((d1 − d4)Ω(z) + (d2 − d4)Ψ(z))e
b(3)−b(4)

a(3)−a(4)
(x+a(4)t−z)

a(3) − a(4)
dz.

We obtain the following theorem:

Theorem 2.1. The Cauchy problem (4) – (5) has a unique classical solution in C4(Q) for arbitrary functions
ϕj(j = 0, 3) in the class C3−j(R), j = 0, 3.

Now, consider the Cauchy problem for the inhomogeneous equation. Since the considered problem is linear,
it follows that its solution u can be represented as the sum of two functions u = u + v, where u is a solution of
problem (4) – (5), and v is a solution of following equations:

L(4)v (t, x) = f(t, x), (t, x) ∈ Q, (19)

with the homogeneous Cauchy conditions:

v|t=0 = 0,
∂v

∂t

∣∣∣∣
t=0

= 0,
∂2v

∂t2

∣∣∣∣
t=0

= 0,
∂3v

∂t3

∣∣∣∣
t=0

= 0. (20)

We define the function v(t, x) via the function w(t, τ, x) with a parameter τ ∈ [0,∞) by the relation:

v (t, x) =

t∫
0

ω (t− τ, τ, x)dτ.

The function w treated as a function of the independent variables t and x is a solution of the homogeneous
equation (5) with the Cauchy conditions:

ω|t=τ = 0,
∂ω

∂t

∣∣∣∣
t=τ

= 0,
∂2ω

∂t2

∣∣∣∣
t=τ

= 0,
∂3ω

∂t3

∣∣∣∣
t=τ

= f (τ, x) .

Indeed, we have:

v|t=0 =

0∫
0

ω (−τ, τ, x)dτ = 0,

∂v

∂t

∣∣∣∣
t=0

= ω(0, 0, x) +

0∫
0

∂ω (t− τ, τ, x)

∂t
dτ = 0,

∂2v

∂t2

∣∣∣∣
t=0

=
∂ω(0, 0, x)

∂t
+

0∫
0

∂2ω (t− τ, τ, x)

∂t2
dτ = 0,
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∂3v

∂t3

∣∣∣∣
t=0

=
∂2ω(0, 0, x)

∂t2
+

0∫
0

∂3ω (t− τ, τ, x)

∂t3
dτ = 0,

L(4)v (t, x) =

4∏
k=1

(
∂t − a(k)∂x + b(k)

)
v (t, x) = f(t, x) +

t∫
0

(
L(4)ω (t− τ, τ, x)

)
dτ = f(t, x).

Theorem 2.2. If the right-hand side of Eq. (3) belongs to the set C0,4(Q) and the functions ϕj(j = 0, 3)

occurring in condition (4) belong to the class C3−j(R), then for such arbitrary functions, there exists a unique
classical solution u = u+ v of problem (3), (4) in the class C4(Q), where u is the classical solution for problem
(4), (5) and v is the solution for problem (19), (20).
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1. Introduction

Lattice two-particle Hamiltonians have been investigated in [1–3]. In [1], the problem of the two-particle
bound states for the transfer-matrix in a wide class of Gibbs fields on the lattices in the high temperature domains
of (t � 1), as well in [2] the appearance of bound state levels standing in a definite distance from the essential
spectrum has been shown for some quasi-momenta values. The spectral properties of the two-particle operator
depending on total quasi-momentum have been studied in [3].

In [4], it was proven that if the operator h(0) has a virtual level at the lower edge of essential spectrum, then
the discrete spectrum of h(k) lying below the essential spectrum is always nonempty for any k ∈ Td \ {0}. In [5],
assuming that dispersion relations ε1(·) and ε2(·) are linearly dependent, it was proven that the positivity of h(0)
implies the positivity of h(k) for all k.

In recent work [6], conditions were obtained for the discrete two-particle Schrödinger operator with zero-range
attractive potential to have an embedded eigenvalue in the essential spectrum depending on the dimension of the
lattice. In [7], the discrete spectra of one-dimensional discrete Laplacian with short range attractive perturbation
were studied.

In [8], a system of two arbitrary particles in a three-dimensional lattice with some dispersion relation was
considered. Particles interact via an attractive potential only on the neighboring knots of lattice. The existence
and absence of eigenvalues of the family h(k) depending on the energy of interaction and quasi-momentum
k ∈ T3 (T3 – three dimensional torus) have been investigated. Moreover, depending on the interaction energy, the
conditions were found for h(0) to have a simple, two-fold, or three-fold virtual level at 0. In [9], the two-particle
Schrödinger operator h(k), k ∈ T3, associated with a system of two particles on the three-dimensional lattice, was
considered. Here, some 6N -dimensional integral operator is taken as the potential and the dispersion relation is
chosen depending on N . In this work, the existence or absence of eigenvalues has also been studied for the family
h(k) depending on the interaction energy and total quasi-momentum k. Moreover, dependending on the interaction
energy, conditions were found for the operator h(0) that has 3N -fold eigenvalue and a 3N -fold virtual level.

The current work is a generalization of [8]. In this work, we consider the system of two arbitrary quantum
particles moving on the d-dimensional lattice and interacting via an attractive potential. For all values of k ∈ Td
(Td – d-dimensional torus) the dependence of the number of eigenvalues of the family h(k) on the interaction
energy is studied. The conditions for that h(0) has simple or multifold virtual level (eigenvalue) at 0 are found for
d = 3, 4 (d ≥ 5).

2. Statement of the Main Result

Let L2(Td) be the Hilbert space of square-integrable functions defined on d-dimensional lattice Td.
Consider the two-particle Schrödinger operator h(k), k ∈ Td, associated with the direct integral expansion of

Hamiltonian of the system of two arbitrary particles, interacting via short-range pair potential [8], acting in L2(Td)
as

h(k) = h0(k)− v,
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here h0(k) – multiplication operator by a function:

Ek(p) = ε1(p) + ε2(k − p)

and v is an integral operator with kernel

v(p− s) = µ0 +

d∑
α=1

µα cos(pα − sα), µα > 0.

Assumption 1. Additionally, we assume that εl, l = 1, 2 are real-valued, continuous, even and periodic functions
with period π in every variable.

Please note that the Weyl theorem on the essential spectrum [10] implies that the essential spectrum σess(h(k))
of the operator h(k) coincides with the spectrum of the unperturbed operator h0(k):

σess(h(k)) = σ(h0(k)) = [m(k),M(k)],

where m(k) = min
p∈Td

Ek(p), M(k) = max
p∈Td

Ek(p).

Since v ≥ 0, one has:

sup(h(k)f, f) ≤ sup(h0(k)f, f) = M(k)(f, f), f ∈ L2(Td),

and, thus, h(k) does not have eigenvalues lying above the essential spectrum:

σ(h(k)) ∩ (M(k),+∞) = ∅.

We set:

µ±i (k; z) =
ci(k; z) + si(k; z)±

√
(ci(k; z)− si(k; z))2 + 4ξ2i (k; z)

2[ci(k; z)si(k; z)− ξ2i (k; z)]
,

where

ci(k; z) =

∫
Td

cos2 si ds

Ek(s)− z
, si(k; z) =

∫
Td

sin2 si ds

Ek(s)− z
,

ξi(k; z) =

∫
Td

sin si cos si ds

Ek(s)− z
, z ≤ m(k).

Recall that ci(k; z)si(k; z)− ξ2i (k; z) ≥ 0.
There exist (finite or infinite) limits:

lim
z→m(k)−0

b(k; z), lim
z→m(k)−0

ci(k; z), lim
z→m(k)−0

si(k; z), lim
z→m(k)−0

ξ2i (k; z),

where

b(k; z) =

∫
Td

ds

Ek(s)− z
.

Lemma 1. For any k ∈ Td there exists finite limits:

µ0(k) = lim
z→m(k)−0

1

b(k; z)
, (2.1)

µ±i (k) = lim
z→m(k)−0

µ±i (k; z), i = 1, . . . , d. (2.2)

Moreover,
µ−i (k) ≤ µ+

i (k) for all k ∈ Td, i = 1, . . . , d.

Let us define the functions:

α(µ; k) =

{
0 if µ0 ∈ (0;µ0(k)],

1 if µ0 ∈ (µ0(k);∞),
(2.3)

βi(µ; k) =


0 if µi ∈ (0;µ−i (k)],

1 if µi ∈ (µ−i (k);µ+
i (k)],

2 if µi ∈ (µ+
i (k);∞)

(2.4)

for all i = 1, . . . , d.
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Theorem 1. Let µ = (µ0, · · · , µd) ∈ Rd+1
+ . Then, counting multiplicity, h(k) has exactly:

α(µ; k) +

d∑
i=1

βi(µ; k)

eigenvalues below the essential spectrum.

Assumption 2. Assume that m(0) = min
p∈Td

E0(p) = 0 and

M = {p ∈ Td : m(0) = 0} = {p1, · · · , pn}, n <∞.
Moreover, assume that around points of M E0(p) is of order ρ > 0:

c|p− pl|ρ ≤ E0(p) ≤ c1|p− pl|ρ as p→ pl, l = 1, . . . , n.

Let C(Td) be a Banach space of continuous periodic functions on Td and G(k; z) denote the (Birman-
Schwinger) integral operator in L2(Td) with the kernel:

G(k; z; p, q) = v(p− q)(Ek(q))−1, p, q ∈ Td.
Definition 1. We say that the operator h(0) has a virtual level at 0 (lower edge of essential spectrum) if 1 is an
eigenvalue of G(0; 0) with some associated eigenfunction ψ ∈ L2(Td) satisfying:

ψ(·)
E0(·)

∈ L1(Td) \ L2(Td).

The number of such linearly independent vectors ψ is called the multiplicity of virtual level of h(0).

We set:

µ0
α = min

{
1

cα(0; 0)
,

1

sα(0; 0)

}
, α = 1, . . . , d.

We define the following sets depending on cα(0; 0) and sα(0; 0):

Lα1 =

{
µ0
α :

1

cα(0; 0)
> µ0

α

}
,

Lα2 =

{
µ0
α :

1

cα(0; 0)
= µ0

α, p
α
i =

π

2
or pαi = −π

2
for all i = 1, · · · , n

}
,

Lα3 =

{
µ0
α :

1

cα(0; 0)
= µ0

α, p
α
i 6=

π

2
or pαi 6= −

π

2
at least one i = 1, . . . , n

}
,

Mα1 =

{
µ0
α :

1

sα(0; 0)
> µ0

α

}
,

Mα2 =

{
µ0
α :

1

sα(0; 0)
= µ0

α, p
α
i = 0 or pαi = π for all i = 1, . . . , n

}
,

Mα3 =

{
µ0
α :

1

sα(0; 0)
= µ0

α, p
α
i 6= 0 or pαi 6= π at least one i = 1, . . . , n

}
,

where pαi – α-th coordinate of minimum point pi of E0(·).
Let us define the following functions:

β(µ0) =

{
0 if µ0 ∈ (0;µ0(0)),

1 if µ0 = µ0(0),

γ(α) =

{
0 if µα ∈ (0;µ0

α) orµα ∈ Lα1 ∪ Lα2,
1 if µα ∈ Lα3,

γ(α) =

{
0 if µα ∈ (0;µ0

α) or µα ∈ Lα1 ∪ Lα3,
1 if µα ∈ Lα2,

η(α) =

{
0 if µα ∈ (0;µ0

α) or µα ∈Mα1 ∪Mα2,

1 if µα ∈Mα3,

η(α) =

{
0 if µα ∈ (0;µ0

α) or µα ∈Mα1 ∪Mα3,

1 if µα ∈Mα2.
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Theorem 2. (i) Let ρ = 2, µ0 ∈ (0;µ0(0)], µα ∈ (0, µ0
α], α = 1, . . . , d. Then

1) if d = 3, 4, then 0 is

β(µ0) +

d∑
α=1

[γ(α) + η(α)]

– fold virtual level of h(0). In addition, if
d⋃

α=1

Lα2 ∩Mα2 6= ∅, then 0 is simultaneously

d∑
α=1

[γ̄(α) + η̄(α)]

– fold eigenvalue of h(0).
2) if d ≥ 5, then 0 is

β(µ0) +

d∑
α=1

[γ(α) + η(α)]

– fold eigenvalue of h(0).

(ii) Let ρ ∈ (
d

2
, d), d > 3, µ0 ∈ (0;µ0(0)], µα ∈ (0, µ0

α], α = 1, . . . , d. Then 0 is at least

β(µ0) +

d∑
α=1

[γ(α) + η(α)]

-fold virtual level of h(0).

Remark 1. 1) By definition of sets Lα2 and Mα2 for each α = 1, . . . , d one has Lα3 ∪Mα3 6= ∅. Moreover, in
this case, the multiplicity of the virtual level of h(0) is always not less than d if µα = µ0

α, α = 1, . . . , d.
2) For ρ = 2 the function

E0(·) = E0(p) = ε1(p) + ε2(p), ε1(p) = ε2(p) = cos2 p1 +

d∑
i=1

(1 + cos 2pi)

satisfies the assumptions of Theorem 2 with
d⋃

α=1

Lα2 ∩Mα2 6= ∅. In addition, L12 6= ∅.

3) For ρ ∈
(
d

2
, d

)
the function:

E0(p) = ε1(p) + ε2(p), ε1(p) = ε2(p) =

(
d∑
i=1

(1− cos 2pi)

)ρ/2
satisfies the assumptions of Theorem 2.

3. Eigenvalues of h(k)

Proof of Lemma 1. Note that proof of (2.1) is obvious.
By definition µ−α (k; z) < µ+

α (k; z) for any z < m(k) and k ∈ Td. Notice that:

cα(k; z)sα(k; z)− ξ2α(k; z) =

∫
Td

cos2 sαds

Ek(s)− z

∫
Td

sin2 tαdt

Ek(t)− z
−
∫
Td

sin sα cos sαds

Ek(s)− z

∫
Td

sin tα cos tαdt

Ek(t)− z

=

∫
Td

∫
Td

1
2 cos2 sα sin2 tαdsdt

(Ek(s)− z)(Ek(t)− z)
−
∫
Td

∫
Td

sin sα cos sα sin tα cos tαdsdt

(Ek(s)− z)(Ek(t)− z)
+

∫
Td

∫
Td

1
2 cos2 tα sin2 sαdsdt

(Ek(s)− z)(Ek(t)− z)

=
1

2

∫
Td

∫
Td

sin2(sα − tα)dsdt

(Ek(s)− z)(Ek(t)− z)
. (3.1)

Hence, cα(k; z)sα(k; z)− ξ2α(k; z) > 0 for all z < m(k) and k ∈ Td.
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The function µ+
α (k; z) we estimate as follows:

µ+
α (k; z) =

cα(k; z) + sα(k; z) +
√

(cα(k; z)− sα(k; z))2 + 4ξ2α(k; z)

2[cα(k; z)sα(k; z)− ξ2α(k; z)]

=
cα(k; z) + sα(k; z) +

√
(cα(k; z) + sα(k; z))2 − 4[cα(k; z)sα(k; z)− ξ2α(k; z)]

2[cα(k; z)sα(k; z)− ξ2α(k; z)]

<
cα(k; z) + sα(k; z)

cα(k; z)sα(k; z)− ξ2α(k; z)
. (3.2)

Since
sin2(sα − tα)

Ek(t)− z
> 0 for any z < m(k) and for a.e. k, s, t ∈ Td, there exists δ > 0 such that:

min
k,z

∫
Td

sin2(sα − tα)dsdt

Ek(t)− z
≥ δ.

From here and from (3.1) we get:

cα(k; z)sα(k; z)− ξ2α(k; z) >
δ

2

∫
Td

ds

Ek(s)− z
.

Since

cα(k; z) + sα(k; z) =

∫
Td

ds

Ek(s)− z

from (3.2) we get uniform upper estimate:

µ+
α (k; z) <

1

2δ
.

From here we get (2.2).
Lemma is proved.

Lemma 2. z < m(k) is an eigenvalue of h(k) if and only if ∆(k; z) = 0, where

∆(k; z) = (1− µ0b(k; z))

d∏
α=1

(
[1− µαcα(k; z)][1− µαsα(k; z)]− µ2

αξ
2
α(k; z)

)
. (3.3)

Proof. Let z < m(k) be an eigenvalue of h(k) with associated eigenfunction f 6= 0. Then h(k)f = zf and
so:

f = r0(z)vf, (3.4)

where r0(z) is a resolvent of h0(k). Introduce the following notations:

ϕ0 =

∫
Td

f(s)ds, (3.5)

ϕα =

∫
Td

cos sαf(s)ds, (3.6)

ψα =

∫
Td

sin sαf(s)ds, α = 1, 2, 3, ...d. (3.7)

Then, (3.4) is rewritten as:

f(p) =
µ0ϕ0

Ek(p)− z
+

1

Ek(p)− z

d∑
α=1

µα[cos pαϕα + sin pαψα]. (3.8)

From the π-periodicity of Ek(·) in each argument, it follows that:∫
Td

cos sαds

Ek(s)− z
=

∫
Td

cos sα cos sβds

Ek(s)− z
=

∫
Td

cos sα sin sβds

Ek(s)− z
=

∫
Td

sin sα sin sβds

Ek(s)− z
= 0, α 6= β. (3.9)
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Putting (3.8) in the relations (3.5)–(3.7) and using (3.9), we get that ϕ0, ϕ1, ..., ϕd, ψ1, ψ2, ..., ψd satisfy the system
of (2d+ 1)-linear equations:

ϕ0 = µ0b(k; z)ϕ0,

ϕα = µαcα(k; z)ϕα + µαξα(k; z)ψα, α = 1, ..., d

ψα = µαξα(k; z)ϕα + µαsα(k; z)ψα, α = 1, ..., d.

(3.10)

This system of equations has a nonzero solution (ϕ0, . . . , ϕd, ψ1, . . . ψd) if and only if its determinant is zero,
i.e. detD(k; z) = 0. It is easy to see that detD(k; z) = ∆(k; z).

Conversely, let ∆(k; z) = 0, z < m(k). Then, at least one of the equalities 1 − µ0b(k; z) = 0, [1 −
µαcα(k; z)][1 − µαsα(k; z)] − µ2

αξ
2
α(k; z) = 0, α ∈ {1, . . . , d} holds. Thus, the vector c = (c0, · · · , c2d) where

c0 = 1, cα = ϕα, cd+α = ψα, is a solution of (3.10). Consequently, one of the functions:

1

Ek(p)− z
,

1

Ek(p)− z
µα[ϕα cos pα + ψα sin pα]

is an eigenfunction of h(k) associated with eigenvelue z < m(k).
Observe that ∆(k; ·) is the Fredholm determinant of the operator I − r0(z)v, i.e. ∆(k; z) = det(I − r0(z)v).

Moreover, it is well-known [11] that geometric multiplicity of eigenvalue 1 of r0(z)v coincides with the multiplicity
of zero z of ∆(k; ·). Since the multiplicities of eigenvalues 1 and z of operators respectively r0(z)v and h(k)
are the same, we get that multiplicity of zeros of ∆(k; ·) is equal to the multiplicity of eigenvalues of h(k). The
lemma is thus proved.

Proof of Theorem 1. Notice that the function:

∆α(k; z) = [1− µαcα(k; z)][1− µαsα(k; z)]− µ2
αξ

2
α(k; z),

is a Fredholm determinant associated with the operator I− r0(z)vα, where vα – is an integral operator with kernel
vα(p− s) = µα cos(pα − sα).

Since vα is a two-dimensional operator, number of zeros βα(µ; k) with multiplicities of the function ∆α(k; ·),
lying below m(k), is not more than 2. Function ∆α(k; ·) can be represented as:

∆α(k; z) = [cα(k; z)sα(k; z)− ξ2α(k; z)]
(
µα − µ−α (k; z)

)(
µα − µ+

α (k; z)
)
. (3.11)

Since:
lim

z→m(k)−0
µ±α (k; z) = µ±α (k) <∞,

one has:

µα − µ±α (k;m(k)) =

{
≥ 0 if µα ∈ (0, µ±α (k)],

< 0 if µα ∈ (µ±α (k),∞).

Consequently, from (3.11) and (3.1) it can be deduced that:

βα(µ; k) =


0 if µα ∈ (0, µ−α (k)],

1 if µα ∈ (µ−α (k), µ+
α (k)],

2 if µα ∈ (µ+
α (k),∞).

Observe that the function 1 − µ0b(k; ·) is monotonously decreasing in (∞,m(k)). Thus for the number of
zeros α(µ; k) of the function ∆α(k; ·) below m(k) it holds:

α(µ; k) =

{
0 if µ0 ∈ (0;µ0(k)],

1 if µ0 ∈ (µ0(k);∞).

If µ0(k) = 0, then lim
z→m(k)−0

b(k; z) = +∞. Obviously, in this case α(µ; k) = 1 for any µ0 > 0.

The aforementioned facts imply that if: µ = (µ0, µ1, . . . , µd) ∈ Rd+1
+ , then the function ∆(k; ·) has exactly:

α(µ; k) +

d∑
i=1

βi(µ; k)

zeros (counting multiplicities) below m(k).
Then, from Lemma 1, we get that for µ = (µ0, µ1, . . . , µd) ∈ Rd+1

+ the operator h(k) exactly:

α(µ; k) +

d∑
i=1

βi(µ; k)
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zeros (counting multiplicities) below m(k).
This finishes the proof.
Proof of Theorem 2. We shall study the equation:

G(0; 0)ϕ = ϕ.

Notice that the function ∆(k; z), defined as (3.3) is the Fredholm determinant of I −G(k; z). From Hypothesis 2,
the function ∆(k; z) is defined for k = 0, m(0) = 0. Since E0(·) is even, the function

ξi(0; z) =

∫
Td

sin si cos sids

E0(s)− z
= 0, z ≤ 0.

Consequently, the function ∆(0; z) can be represented as:

∆(0; z) = (1− µ0b(0; z))

d∏
α=1

(
[1− µαcα(0; z)][1− µαsα(0; z)]

)
.

The following lemma can be proved analogously to Lemma 2.

Lemma 3. The number λ = 1 is an eigenvlue of G(0; 0) if and only if ∆(µ) = ∆(0; 0) = 0. In this case if

1 − µ0b(0; 0) = 0
(

1 − µαcα(0; 0) = 0 or 1 − µαsα(0; 0) = 0
)
, then the function ϕ0 = 1

(
ϕα(p) = cos pα or

ψα(p) = sin pα

)
is an eigenfucntion of the operator G(0; 0), associated with 1.

Obviously, ∆(µ) > 0 if µ0 ∈ (0;µ0(0)), µα ∈ (0;µ0
α), α = 1, . . . , d. By Lemma 3 λ = 1 is not eigenvalue of

G(0; 0). Hence 0 is not an eigenvalue of h(0) for µ0 ∈ (0;µ0(0)), µα ∈ (0;µ0
α), α = 1, . . . , d.

Further, consider the equation G(0; 0)ϕ = ϕ for µ0 = µ0(0), µα = µ0
α, α = 1, . . . , d.

(i) a) Let ρ = 2, µ0 = µ0(0).
According to Lemma 3, λ = 1 is an eigenvalue of G(0; 0), with associated eigenfunction ϕ0(p) = 1.
It is easy to check that if d = 3, 4, then:

F0(·) ∈ L1(Td) \ L2(Td),
and if d ≥ 5, then:

F0(·) ∈ L2(Td),
where

F0(p) =
1

E0(p)
.

It means that z = 0 is virtual level of h(0) for d = 3, 4, and eigenvalue for d ≥ 5.
b) Let µα = µ0

α, α = 1, . . . , d. Then µα belongs one and only one of the sets Lα1, Lα2, Lα3 Mα1, Mα2,
Mα3.

If µα ∈ Lα1
(
µα ∈ Mα1

)
, then 1 − µαcα(0; 0) > 0

(
1 − µαsα(0; 0) > 0

)
. If µα ∈ Lα2

(
µα ∈ Mα2

)
, then

cos p
(α)
i = 0

(
sin p

(α)
i = 0

)
for all i = 1, . . . , d. In this case

Fα(·) ∈ L2(Td),
(

Φα(·) ∈ L2(Td)
)
, d ≥ 3,

where

Fα(p) =
cos pα
E0(p)

, Φα(p) =
sin pα
E0(p)

, α = 1, ..., d,

and, so, z = 0 is not virtual level of h(0) for d ≥ 3, but is an eigenvalue of this operator.

If µα ∈ Lα3
(
µα ∈Mα3

)
, then cos p

(α)
i 6= 0

(
sin p

(α)
i 6= 0

)
at least one of i = {1, . . . , d}. Consequently,

Fα(·) ∈ L1(Td) \ L2(Td),
(

Φα(·) ∈ L1(Td) \ L2(Td)
)

for d = 3, 4,

Fα(·) ∈ L2(Td),
(

Φα(·) ∈ L2(Td)
)

for d > 4,

i.e. z = 0 is a virtual level (eigenvalue) of the operator h(0) for d = 3, 4 (d > 4).
From a) and b) we deduce the following:
if µ0 = µ0(0), then z = 0 is virtual level (eigenvalue) of h(0) for d = 3, 4 (d > 4);
if µα ∈ Lα1 ∪ Lα2, then z = 0 is not virtual level of h(0) for d ≥ 3;
if µα ∈ Lα3, then z = 0 is virtual level (eigenvalue) of the operator h(0) for d = 3, 4 (d > 4);
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if µα ∈ Lα2, then z = 0 is eigenvalue of the operator h(0) for d ≥ 3;
if µα ∈Mα1 ∪Mα2, then z = 0 is not virtual level of h(0) for d ≥ 3;
if µα ∈Mα3, then z = 0 is a virtual level (eigenvalue) of h(0) for d = 3, 4 (d > 4);
if µα ∈Mα2, then z = 0 is eigenvalue of h(0) for d ≥ 3.
Part (i) of Theorem 2 is proved.
Part (ii) of Theorem 2 is proved analogously.
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1. Introduction

The method used for the description of Gibbs measures on Cayley trees is the method of Markov random
field theory and recurrent equations of this theory, however, the modern theory of Gibbs measures on trees uses
new tools such as group theory, information flows on trees, node-weighted random walks, contour methods on
trees, nonlinear analysis. A very recently published book [1] discusses all above-mentioned methods for describing
Gibbs measures on trees. In the configuration of physical system is located on a lattice (in our case on the graph
of a group), then the configuration can be considered as a function defined on the lattice. There are many works
devoted to several kind of partitions of groups (lattices) (see e.g. [1–5, 7]).

One of the central problems in the theory of Gibbs measures is to study periodic Gibbs measures corresponding
to a given Hamiltonian. For any normal subgroups H of the group Gk, we define H-periodic Gibbs measures.

In Chapter 1 of [1] several normal subgroups were constructed for the group representation of the Cayley
tree. In [6], we found full description of normal subgroups of index four and six for the group. In this paper, we
continue this investigation and construct all normal subgroups of index eight and ten for the group representation
of the Cayley tree.

Cayley tree. A Cayley tree (Bethe lattice) Γk of order k ≥ 1 is an infinite homogeneous tree, i.e., a graph
without cycles, such that exactly k + 1 edges originate from each vertex. Let Γk = (V,L) where V is the set of
vertices and L that of edges (arcs).

A group representation of the Cayley tree. Let Gk be a free product of k + 1 cyclic groups of the second
order with generators a1, a2, ...ak+1, respectively.

A one to one correspondence is known to exist between the set of vertices V of the Cayley tree Γk and the
group Gk(see [1]).

To obtain this correspondence, we fix an arbitrary element x0 ∈ V and let it correspond to the unit element e of
the group Gk. Using a1, ..., ak+1, we numerate the nearest-neighbors of element e, moving by positive direction.
Next, we give the numeration for the nearest-neighbors of each ai, i = 1, ..., k + 1 by aiaj , j = 1, ..., k + 1.
Since all ai have the common neighbor e, we give to it aiai = a2

i = e. Other neighbors are numerated starting
from aiai by the positive direction. We numerate the set of all the nearest-neighbors of each aiaj by words
aiajaq, q = 1, ..., k + 1, starting from aiajaj = ai by the positive direction. Iterating this argument, one gets a
one-to-one correspondence between the set of vertices V of the Cayley tree Γk and the group Gk.

Any(minimally represented) element x ∈ Gk has the following form: x = ai1ai2 ...ain , where 1 ≤ im ≤
k+ 1,m = 1, ..., n. The number n is called the length of the word x and is denoted by l(x). The number of letters
ai, i = 1, ..., k + 1, that enter the non-contractible representation of the word x is denoted by wx(ai).

Proposition 1. [8] Let ϕ be homomorphism of the group Gk with the kernel H. Then H is a normal subgroup
of the group Gk and ϕ(Gk) ' Gk/H, (where Gk/H is a quotient group) i.e., the index |Gk : H| coincides with
the order |ϕ(Gk)| of the group ϕ(Gk).

Let H be a normal subgroup of a group G. The natural homomorphism g from G onto the quotient group
G/H is given by the formula g(a) = aH for all a ∈ G. Then, Kerϕ = H .
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Definition 1. Let M1,M2, ...,Mm be some sets and Mi 6= Mj , for i 6= j. We call the intersection ∩mi=1Mi

contractible if there exists i0(1 ≤ i0 ≤ m) such that:

∩mi=1Mi =
(
∩i0−1
i=1 Mi

)
∩
(
∩mi=i0+1Mi

)
.

Let Nk = {1, ..., k + 1}. The following Proposition describes several normal subgroups of Gk.

Put

HA =

{
x ∈ Gk |

∑
i∈A

ωx(ai) is even

}
, A ⊂ Nk. (1.1)

Proposition 2. [1] For any ∅ 6= A ⊆ Nk, the set HA ⊂ Gk satisfies the following properties: (a) HA is a normal
subgroup and |Gk : HA| = 2;
(b) HA 6= HB , for all A 6= B ⊆ Nk;
(c) Let A1, A2, ..., Am ⊆ Nk. If ∩mi=1HAi

is non-contractible, then it is a normal subgroup of index 2m.

Theorem 1. [6]
1. The group Gk does not have normal subgroups of odd index ( 6= 1).
2. The group Gk has a normal subgroups of arbitrary even index.

2. New normal subgroups of finite index

2.1. The case of index eight

Definition 2. A group G is called a dihedral group of degree 4 (i.e.,D4) if G is generated by two elements a
and b satisfying the relations:

o(a) = 4, o(b) = 2, ba = a3b.

Definition 3. A group G is called a quaternion group (i.e., Q8) if G is generated by two elements a, b satisfying
the relation:

o(a) = 4, a2 = b2, ba = a3b.

Remark 1. [8] D4 is not isomorph to Q8.

Definition 4. A commutative group G is called a Klein 8-group (i.e.,K8) if G is generated by three elements
a, b and c satisfying the relations: o(a) = o(b) = o(c) = 2.

Proposition 3. [8] There exist (up to isomorphism) only two noncommutative nonisomorphic groups of order 8

Proposition 4. Let ϕ be a homomorphism of the group Gk onto a group G of order 8. Then, ϕ(Gk) is isomorph
to either D4 or K8.

Proof. Case 1 Let ϕ(Gk) be isomorph to any noncommutative group of order 8. By Proposition 1, ϕ(Gk)
is isomorph to either D4 or Q8. Let ϕ(Gk) ' Q8 and eq be an identity element of the group Q8. Then,
eq = ϕ(e) = ϕ(a2

i ) = (ϕ(ai))
2 where ai ∈ Gk, i ∈ Nk. Hence, for the order of ϕ(ai), we have o(ϕ(ai)) ∈ {1, 2}.

It is easy to check there are only two elements of the group Q8 which order of element less than two. This is
contradict.

Case 2 Let ϕ(Gk, ∗) be isomorph to any commutative group (G, ∗1) of order 8. Then, there exist distinct
elements a, b ∈ G such that o(a) = o(b) = 2. Let H = {e, a, b, ab}. It’s easy to check that (H, ∗1) is a normal
subgroup of the group (G, ∗1). For c /∈ H we have H 6= cH (cH = c ∗1 H). Hence ϕ(Gk, ∗) is isomorph to only
one commutative group (cH ∪H, ∗1). Clearly (cH ∪H, ∗1) ' K8. �

The group G has finit generators of the order two and r is the minimal number of such generators of the
group G and without loss of generality, we can take these generators to be b1, b2, ...br. Let e1 be an identity
element of the group G. We define homomorphism from Gk onto G. Let Ξn = {A1, A2, ..., An} be a partition
of Nk\A0, 0 ≤ |A0| ≤ k + 1− n. Then, we consider homomorphism un : {a1, a2, ..., ak+1} → {e1, b1..., bm} as

un(x) =

{
e1, if x = ai, i ∈ A0

bj , if x = ai, i ∈ Aj , j = 1, n.
(2.1)
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For b ∈ G, we denote that Rb[b1, b2, ..., bm] is a representation of the word b by generators b1, b2, ..., br, r ≤ m.
We define the homomorphism γn : G→ G by the formula

γn(x) =


e1, if x = e1

bi, if x = bi, i = 1, r

Rbi [b1, ..., br], if x = bi, i 6= 1, r

(2.2)

We set:

H
(p)
Ξn

(G) = {x ∈ Gk| l(γn(un(x))) is divisible by 2p}, 2 ≤ n ≤ k − 1. (2.3)

Let γn(un(x))) = x̃. We introduce the following equivalence relation on the set Gk : x ∼ y if x̃ = ỹ. This
relation is readily confirmed to be reflexive, symmetric and transitive.

Proposition 5. Let Ξn = {A1, A2, ..., An} be a partition of Nk\A0, 0 ≤ |A0| ≤ k+ 1− n. Then H(p)
Ξp

(G) is a
normal subgroup of index 2p of the group Gk.

Proof. For x = ai1ai2 ...ain ∈ Gk it’s sufficient to show that x−1H
(p)
Ξn

(G) x ⊆ H(p)
Ξn

(G). Suppose that there exist
y ∈ Gk such that l(ỹ) ≥ 2p. Let ỹ = bi1bi2 ...biq , q ≥ 2p and S = {bi1 , bi1bi2 , ..., bi1bi2 ...biq}. Since S ⊆ G
there exist x1, x2 ∈ S such that x1 = x2. But this contradicts ỹ, which is a non-contractible. Thus we have
proved that l(ỹ) < 2p. Hence, for any x ∈ H

(p)
Ξn

(G) we have x̃ = e1. Next, we take any element z from the

set x−1H
(p)
Ξn

(G) x. Then, z = x−1h x for some h ∈ H(p)
Ξn

(G). We have z̃ = γn(vn(z)) = γn
(
vn(x−1h x)

)
=

= γn
(
vn(x−1)vn(h)vn(x)

)
= γn

(
vn(x−1)

)
γn (vn(h)) γn (vn(x)) . From γn (vn(h)) = e1, we get z̃ = e1 i.e.,

z ∈ H(p)
Ξn

(G). This completes the proof. �

Since A1, A2, A3 ⊂ Nk and ∩3
i=1HAi

is non-contractible we denote the following set:

< = {∩3
i=1HAi

| A1, A2, A3 ⊂ Nk}.

Theorem 2. For the group Gk, the following statement is hold:

{H| H is a normal subgroup of Gk with |Gk : H| = 8} =

= {H(4)
C0C1C2

(D4)| C1, C2 is a partition of Nk \ C0} ∪ <.

Proof. Let φ be a homomorphism with |Gk : Kerφ| = 8. Then by Proposition 2 we have φ(Gk) ' K8 and
φ(Gk) ' D4.

Let φ : Gk → K8 be an epimorphism. For any nonempty sets A1, A2, A3 ⊂ Nk, we give a one to one
correspondence between
operatornameKerφ| φ(Gk) ' K8} and <. Let ai ∈ Gk, i ∈ Nk. We define following homomorphism corre-
sponding to the set A1, A2, A3:

φA1A2A3
(ai) =



a, if i ∈ A1 \ (A2 ∪A3)

b, if i ∈ A2 \ (A1 ∪A3)

c, if i ∈ A3 \ (A1 ∪A2)

ab, if i ∈ (A1 ∩A2) \ (A1 ∩A2 ∩A3)

ac, if i ∈ (A1 ∩A3) \ (A1 ∩A2 ∩A3)

bc, if i ∈ (A2 ∩A3) \ (A1 ∩A2 ∩A3)

abc, if i ∈ A1 ∩A2 ∩A3

e, if i ∈ Nk \ (A1 ∪A2 ∪A3).

If i ∈ ∅, then we’ll accept that there is no index i ∈ Nk for which that condition is not satisfied. It is easy to
check KerφA1A2A3

= HA1
∩HA2

∩HA3
. Hence {Kerφ| φ(Gk) ' K8} = <.

Now, we’ll consider the case φ(Gk) ' D4. Let φ : Gk → D4 be epimorphisms. Put

C0 = {i| φ(ai) = e}, C1 = {i| φ(ai) = b}, C2 = {i| φ(ai) = ab}.
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One can construct following homomorphism (corresponding to C0, C1, C2)

φC0C1C2
(x) =



e, if x̃ = e

a, if x̃ = b2b1
a2, if x̃ = b2b1b2b1
a3, if x̃ = b2b1b2b1b2b1
b, if x̃ = b1
ab, if x̃ = b2
a2b, if x̃ = b2b1b2
a3b, if x̃ = b2b1b2b1b2.

Immediately, we conclude Ker(φC0C1C2) = H
(4)
C0C1C2

(D4). We have constructed all homomorphisms φ on the
group Gk which |Gk : Kerφ| = 8. Thus by Proposition 1, one gets:

{H| |Gk : H| = 8} ⊆ {H(4)
C0C1C2

(D4)| C1, C2 is a partition of Nk \ C0} ∪ <.

By Proposition 2 and Proposition 5, we can easily see that:

< ∪ {H(4)
C0C1C2

(D4)| C1, C2 is a partition of Nk \ C0} ⊆ {H| |Gk : H| = 8}.

The theorem is proved. �

Corollary 1. The number of all normal subgroups of index 8 for the group Gk is equal to: 8k+1 − 6 · 4k+1 +
3k+1 + 9 · 2k+1 − 5.

Proof. Number of elements of the set HA ⊂ Gk, ∅ 6= A ⊂ Nk is 2k+1−1. Then |<| = (2k+1)(2k+1−2)(2k+2−3).
Let C0 ⊂ Nk be a fixed set and |C0| = p. If C1, C2 is a partition of Nk \ C0 then there are 2k−p+1 − 2 ways to

choose the sets C1 and C2. Hence the cardinality of {H(4)
C0C1C2

(D4)| C1, C2 is a partition of Nk \ C0} is equal to

(2k+1 − 2)C0
k+1 + (2k − 2)C1

k+1 + ...+ 2Ck−1
k+1 = 3k+1 − 2k+2 + 1.

Since < and {H(4)
C0C1C2

(D4)}| C1, C2 ⊂ Nk are disjoint sets, the cardinality of the union of these sets is 8k+1 −
6 · 4k+1 + 3k+1 + 9 · 2k+1 − 5. �

2.2. Case of index ten

Let the group R10 be generated by the permutations:

π1 = (1, 2)(3, 4)(5, 6), π2 = (2, 3)(4, 5).

Proposition 6. Let ϕ be a homomorphism of the group Gk onto a group G of order 10. Then, ϕ(Gk) is isomorph
to R10.

Proof. Let (G, ∗) be a group and |G| = 10. Suppose there exist an epimorphism from Gk onto G. It is easy to
check that there are at least two elements a, b ∈ Gk such that o(a) = o(b) = 2. If a ∗ b = b ∗ a, then (H, ∗) is a
subgroup of the group (G, ∗), where H = {e, a, b, a∗b}. Then, by Lagrange’s theorem, |G| is divided by |H| but 10
is not divided by 4. Hence, a∗b 6= b∗a. We have {e, a, b, a∗b, b∗a} ⊂ G If G is generated by three elements, then
there exist an element c such that c /∈ {e, a, b, a∗b, b∗a}. Then, the set {e, a, b, a∗b, b∗a, c, c∗a, c∗b, c∗a∗b, c∗b∗a}
must be equal to G. Since G is a group, we get a ∗ b ∗ a = b but from o(a) = 2 the last equality is equivalent to
a ∗ b = b ∗ a. This is a contradiction. Hence, by Lagrange’s theorem it is easy to see:

G = {e, a, b, a ∗ b, b ∗ a, a ∗ b ∗ a, b ∗ a ∗ b, a ∗ b ∗ a ∗ b, b ∗ a ∗ b ∗ a, a ∗ b ∗ a ∗ b ∗ a},

where o(a ∗ b) = 5. Namely G ' R10. This completes the proof. �

Theorem 3. For the group Gk, the following statement is holds:

{H| | H is a normal subgroup of Gk with |Gk : H| = 10} =

= {H(5)
B0B1B2

(R10)| B1, B2 is a partition of the set Nk \B0}.
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Proof. Let φ be a homomorphism with |Gk : Kerφ| = 10. By Proposition 6 φ(Gk) ' R10 and by Proposition 5
we can easily see:

{H(5)
B0B1B2

(R10)| B1, B2 is a partition of the set Nk \B0} ⊂ {H| |Gk : H| = 10}.
Let ϕ : Gk → R10 be epimorphisms. We denote:

B0 = {i| ϕ(ai) = e}, B1 = {i| ϕ(ai) = a, B2 = {i| ϕ(ai) = b}.
Then, we can show this homomorphism (corresponding to B1, B2, B3), i.e.,

φB0B1B2
(x) =



e, if x̃ = e

a, if x̃ = b1
b, if x̃ = b2
a ∗ b, if x̃ = b1b2
b ∗ a, if x̃ = b2b1
a ∗ b ∗ a, if x̃ = b1b2b1
b ∗ a ∗ b, if x̃ = b2b1b2
a ∗ b ∗ a ∗ b, if x̃ = b1b2b1b2
b ∗ a ∗ b ∗ a, if x̃ = b2b1b2b1
a ∗ b ∗ a ∗ b ∗ a, if x̃ = b1b2b1b2b1.

We have constructed all homomorphisms φ on the group Gk which |Gk : Kerφ| = 10. Hence:

{Kerφ| |Gk : Kerφ| = 10} ⊂ {H(5)
B0B1B2

(R10)| B1, B2 is a partition of the set Nk \B0}.
By Proposition 1:

{H| |Gk : H| = 10} = {H(5)
B0B1B2

(R10)| B1, B2 is a partition of the set Nk \B0}.
The theorem is proved. �

Corollary 2. The number of all normal subgroups of index 10 for the group Gk is equal to 3k+1 − 2k+2 + 1.

Proof. The proof of this Corollary is similar to proof of Corollary 1. �
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1. Introduction

One of the central problems in the theory of Gibbs measures is to describe infinite-volume (or limiting) Gibbs
measures corresponding to a Hamiltonian. The existence of such measures for a wide class of Hamiltonians was
established in the ground-breaking work of Dobrushin. However, complete analysis of a set of limiting GMs for a
specific Hamiltonian is quite often a difficult problem.

In [1,2,6,9–11,14–16] for several models on Cayley tree Γk with the order k, using the Markov random field
theory, Gibbs measures are described. These papers are devoted to models with a finite set of spin values. In [8],
the Potts model with a countable set of spin values on a Cayley tree Γk is considered and it was shown that the
set of translation-invariant splitting Gibbs measures of the model contains at most one point, independently on
parameters of the Potts model with countable set of spin values on the Cayley tree. This is a crucial difference
from the models with a finite set of spin values, since those may have more than one translation-invariant Gibbs
measure.

In [12], a Hamiltonian with an uncountable set (a set with continuum cardinality) of spin values (with the set
[0, 1] of spin values) on a Cayley tree Γk is considered and it was shown that: the existence translation-invariant
splitting Gibbs measure of the Hamiltonian is equivalent to the existence a positive fixed point of some nonlinear
integral operator. For k = 1, the model with the continuous potential function was shown to have a unique
translation-invariant splitting Gibbs measure. In the case k ≥ 2, some models which have the unique splitting
Gibbs measure were constructed. In the paper [4], sufficient conditions were found for the potential function
of the model on a Cayley tree Γk with an uncountable set of spin values under which the model had unique
translation-invariant splitting Gibbs measure. In [3, 5], several models were constructed, of which these models
had at least two translational-invariant Gibbs measures, i.e the existence of phase transition for some models on a
Cayley tree Γk (k ≥ 2) was proven.

This paper is a continuation of previous investigations [3–5, 12]. We shall construct model with a logarithmic
potential on a Cayley tree Γk. We reduced the studying of translation-invariant Gibbs measures to a description of
the fixed points for some nonlinear operator on R2. In the case k = 2, 3, we shall prove that, for the Hamiltonian
on a Cayley tree Γk with logarithmic potential, there is a unique translation-invariant splitting Gibbs measure. In
the case k = 4, we show that, for the model on Γ4 with the logarithmic potential there are three translation-invariant
Gibbs measures, i.e. there is a phase transition.

2. Preliminaries

A Cayley tree Γk = (V,L) of order k ∈ N is an infinite homogeneous tree, i.e., a graph without cycles, with
exactly k + 1 edges incident to each vertex. Here, V is the set of vertices and L that of edges (arcs).

Consider models where the spin takes values in the set [0, 1], and is assigned to the vertices of the tree. For
A ⊂ V , a configuration σA on A is an arbitrary function σA : A → [0, 1]. We denote ΩA = [0, 1]A the set of all
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configurations on A. A configuration σ on V is then defined as a function x ∈ V 7→ σ(x) ∈ [0, 1]; the set of all
configurations is [0, 1]V . The Hamiltonian of the model is :

H(σ) = −J
∑
〈x,y〉∈L

ξσ(x),σ(y), σ ∈ ΩV , (2.1)

where J ∈ R \ {0} and ξ : (u, v) ∈ [0, 1]2 → ξuv ∈ R is a given bounded, measurable function. As usual, 〈x, y〉
represents the nearest neighbor vertices.

Let λ be the Lebesgue measure on [0, 1]. On the set of all configurations on A, the a priori measure λA is
introduced as the |A| fold product of the measure λ. Here and subsequently, |A| denotes the cardinality of A.
Below, Wm represents a ‘sphere’ and Vm for a ‘ball’ on the tree, of radius m = 1, 2, . . ., centered at a fixed vertex
x0 (an origin):

Wm = {x ∈ V : d(x, x0) = m}, Vm = {x ∈ V : d(x, x0) ≤ m};
and

Lm = {〈x, y〉 ∈ L : x, y ∈ Vm}.
Here, distance d(x, y), x, y ∈ V , is the length of (i.e. the number of edges in) the shortest path connecting x
with y. ΩVn

is the set of configurations in Vn (and ΩWn
that in Wn; see below). Furthermore, σ

∣∣
Vn

and ω
∣∣
Wn+1

denote the restrictions of configurations σ, ω ∈ Ω to Vn and Wn+1, respectively. Next, σn : x ∈ Vn 7→ σn(x) is a
configuration in Vn. For each σn ∈ ΩVn

, we define:

H (σn) = −J
∑

〈x,y〉∈Ln

ξσn(x),σn(y).

We write x < y if the path from x0 to y goes through x. Call vertex y a direct successor of x if y > x
and x, y are nearest neighbors. We denote by S(x) the set of direct successors of x. We observe that any vertex
x 6= x0 has k direct successors and x0 has k + 1.

Let h : x ∈ V 7→ hx = (ht,x, t ∈ [0, 1]) ∈ R[0,1] be mapping of x ∈ V \ {x0}. Given n = 1, 2, . . ., consider
the probability distribution µ(n) on ΩVn defined by

µ(n)(σn) = Z−1
n exp

(
−βH(σn) +

∑
x∈Wn

hσ(x),x

)
, (2.2)

where β =
1

T
, T > 0 is temperature. Here, as before, σn : x ∈ Vn 7→ σ(x) and Zn is the corresponding partition

function:

Zn =

∫
ΩVn

exp

(
−βH(σ̃n) +

∑
x∈Wn

hσ̃(x),x

)
λVn

(dσ̃n). (2.3)

The probability distributions µ(n) are compatible [12] if for any n ≥ 1 and σn−1 ∈ ΩVn−1
:∫

ΩWn

µ(n)(σn−1 ∨ ωn)λWn
(d(ωn)) = µ(n−1)(σn−1). (2.4)

Here, σn−1 ∨ ωn ∈ ΩVn
is the concatenation of σn−1 and ωn. In this case, there exists [12] a unique measure µ

on ΩV such that, for any n and σn ∈ ΩVn , µ

({
σ
∣∣∣
Vn

= σn

})
= µ(n)(σn).

The measure µ is called the splitting Gibbs measure corresponding to Hamiltonian (2.1) and function x 7→ hx,
x 6= x0.

Proposition 2.1. [12] The probability distributions µ(n)(σn), n = 1, 2, . . ., in (2.2) are compatible iff for any
x ∈ V \ {x0} the following equality holds:

f(t, x) =
∏

y∈S(x)

∫ 1

0
exp(Jβξtu)f(u, y)du∫ 1

0
exp(Jβξ0u)f(u, y)du

. (2.5)

Here, and below f(t, x) = exp(ht,x − h0,x), t ∈ [0, 1] and du = λ(du) is the Lebesgue measure.
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From Proposition 2.1, it follows that for any h = {hx ∈ R[0,1], x ∈ V } satisfying (2.5) there exists a unique
Gibbs measure µ and vice versa. However, the analysis of solutions to (2.5) is not easy. Let ξtu be a continuous
function. We put

C+[0, 1] = {f ∈ C[0, 1] : f(x) ≥ 0}, C+
0 [0, 1] = C+[0, 1] \ {θ ≡ 0}.

We define the operator Rk : C+
0 [0, 1]→ C+

0 [0, 1] by

(Rkf)(t) =

(∫ 1

0
K(t, u)f(u)du∫ 1

0
K(0, u)f(u)du

)k
, k ∈ N,

where K(t, u) = exp(Jβξtu), f(t) > 0, t, u ∈ [0, 1].
We will solve the equation (2.5) in the class of translational-invariant functions f(t, x), i.e f(t, x) = f(t) for

any x ∈ V . For such functions, equation (2.5) can be written as:

Rk(f)(t) = f(t). (2.6)

Note that equation (2.6) is not linear for any k ∈ N. For every k ∈ N we consider Hammerstein’s integral
operator Hk acting in the cone C+[0, 1] as

(Hkf)(t) =

1∫
0

K(t, u)fk(u)du, k ∈ N.

We denote
M0 = {f ∈ C+[0, 1] : f(0) = 1}.

Lemma 2.2. [4] Let k ≥ 2. The equation

Rkf = f, f ∈ C+
0 [0, 1] (2.7)

has a nontrivial positive solution iff the Hammerstein’s equation

Hkf = λf, f ∈ C+[0, 1] (2.8)

has a positive solution in M0 for some λ > 0.

Let k ≥ 2. Then, we can easily verify that: if the number λ0 > 0 is eigenvalue of the operator Hk, then an
arbitrary positive number is an eigenvalue of the operator Hk (see [4]). Consequently, we obtain:

Lemma 2.3. Let k ≥ 2. The equation (2.7) has a nontrivial positive solution iff the Hammerstein’s operator Hk

has a nontrivial positive fixed point. Moreover, the number of nontrivial positive fixed points of the operator Rk
is equal to the number of nontrivial positive fixed points of the Hammerstein’s operator Hk.

Note, that if there is more than one nontrivial positive fixed point for the the Hammerstein’s operator, Hk,
then there is more than one translation-invariant Gibbs measure for the model (2.1) corresponding to these fixed
points. We say that a phase transition occurs for the model (2.1), if the Hammerstein’s operator Hk has more than
one nontrivial positive fixed point. The number of the fixed points depends on the parameters of the model (2.1)
and the order of Cayley tree Γk.

3. A model on Cayley tree with logarithmic potential

We consider Hamiltonian H on the Cayley tree Γk by rule:

H(σ) = −
∑
〈x,y〉∈L

ln
(
1 + 4θ

(
σ(x)− 1

2

) (
σ(y)− 1

2

))
β

, σ ∈ ΩV , (3.1)

where θ is a coupling constant and 0 < θ < 1, i.e. in the (2.1) function of potential is defined by the formula:

ξt,u =
ln
(
1 + 4θ

(
t− 1

2

) (
u− 1

2

))
Jβ

.

The main aim of this paper is to study translation-invariant Gibbs measures for model (3.1) on the Cayley
tree Γk. We define Hammerstein’s operator Hk on C[0, 1] by the equality:

(Hkf)(t) =

1∫
0

(
1 + 4θ

(
t− 1

2

)(
u− 1

2

))
fk(u)du. (3.2)
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We set:

k1 =

{
k, if k is even,
k − 1, if k is odd,

and

k2 =

{
k, if k is odd,
k − 1, if k is even.

We define operator P on R2 by the rule:

P (x, y)→ (x′, y′),

where

x′ =

k1/2∑
j=0

(2θ)2j

2j + 1
A2j
k x

k−2jy2j ,

y′ =

(k2+1)/2∑
j=1

(2θ)2j−1

2(2j + 1)
A2j−1
k xk−2j+1y2j−1.

Here

Amn =
n!

m!(n−m)!
.

Lemma 3.1. Let k ≥ 2. The Hammerstein’s operator Hk (3.2) has a nontrivial positive fixed point iff the operator

P has a fixed point (x0, y0), such that x0 > 0 and f0(t) = x0 + 4θy0

(
t− 1

2

)
> 0 for all t ∈ [0, 1], moreover

the function f0(t) = x0 + 4θy0

(
t− 1

2

)
is a positive fixed point of the Hammerstein’s operator Hk.

Proof. Necessity. We set:

c1 =

1∫
0

fk(u)du (3.3)

and

c2 =

1∫
0

(
u− 1

2

)
fk(u)du. (3.4)

It is clear, that c1 > 0. Let the Hammerstein’s operator Hk (3.2) has a positive fixed point f(t). Then, for the
function f(t), the equality:

f(t) = c1 + 4θc2

(
t− 1

2

)
(3.5)

is holds.
Consequently, for the parameter c1, from the equality (3.3), we have:

c1 =

1∫
0

(
c1 + 4θc2

(
u− 1

2

))k
du =

k∑
j=0

Ajkc
k−j
1 (4θc2)j

1∫
0

(
u− 1

2

)j
du =

=

k∑
j=0

Ajkc
k−j
1 (4θc2)j

1/2∫
−1/2

ujdu =

k1/2∑
j=0

(2θ)2j

2j + 1
A2j
k c

k−2j
1 c2j2 .

Analogously, for the parameter c2, by equality (3.4), we get:

c2 =

1∫
0

(
u− 1

2

)(
c1 + 4θc2

(
u− 1

2

))k
du =

k∑
j=0

Ajkc
k−j
1 (4θc2)j

1∫
0

(
u− 1

2

)j+1

du

=

k∑
j=0

Ajkc
k−j
1 (4θc2)j

1/2∫
−1/2

uj+1du =

(k2+1)/2∑
j=1

(2θ)2j−1

2j + 1
A2j−1
k ck−2j+1

1 c2j−1
2 .
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Therefore, the point (c1, c2) is a fixed point of the operator P .
Sufficiency. We assume that x0 > 0 and the point (x0, y0) is a fixed point of the operator P, i.e. the following

equalities for numbers x0 and y0 numbers are satisfied:
k1/2∑
j=0

(2θ)2j

2j + 1
A2j
k x

k−2j
0 y2j

0 = x0,

(k2+1)/2∑
j=1

(2θ)2j−1

2(2j + 1)
A2j−1
k xk−2j+1

0 y2j−1
0 = y0.

We can simply prove that the function f0(t) = x0 + 4θy0

(
t− 1

2

)
is a fixed point of the Hammerstein’s

operator Hk, i.e. Hkf0 = f0. This completes the proof. �

Proposition 3.2. For each k ∈ N, the function f0(t) ≡ 1 is a fixed point of the Hammerstein’s operator Hk.

Proof. One can clearly see that:

(Hk)f0(t) =

1∫
0

(
1 + 4θ

(
t− 1

2

)(
u− 1

2

))
du ==

1∫
0

du+ 4θ

(
t− 1

2

) 1/2∫
−1/2

udu = 1 = f0(t).

�

4. Uniqueness of translation-invariant Gibbs measures for the model (3.1)

In [12], a Hamiltonian with an uncountable set of spin values (with the set [0, 1] of spin values) on the Cayley
tree Γk was considered for a continuous potential ξt,u. For k = 1, it was shown that the model (2.1) with the
continuous potential function has a unique translation-invariant splitting Gibbs measure. This statement holds for
the model (3.1). We study translation-invariant splitting Gibbs measure for the model (3.1) for the case k ≥ 2.

Theorem 4.1. The model H (3.1) on the Cayley tree of order two has a unique translation-invariant Gibbs
measure.

Proof. Let be k = 2. Then, the operator P assumes the following simple form:

P (x, y) =

(
x2 +

4

3
y2,

2

3
θxy

)
.

For a fixed point (x, y) of the operator P , we have the following system of algebraic equations:
x2 +

4

3
y2 = x,

2

3
θxy = y.

It follows that, the operator P has a unique nontrivial fixed point (1, 0), as θ ∈ (0, 1). By lemma 3.1, the
Hammerstein’s operator H2 has a unique nontrivial positive fixed point f0(t) ≡ 1. Therefore, by lemma 2.3, the
model H (3.1) on the Cayley tree of order two has a unique translation-invariant Gibbs measure. �

Theorem 4.2. The model H (3.1) on the Cayley tree of order three has the unique translation-invariant Gibbs
measure.

Proof. Let k = 3. Then, the operator P assumes the following form:

P (x, y) =

(
x3 + 4θ2xy2, θx2y +

4

5
θ3y3

)
.

For a fixed point (x, y) of the operator P , we have the following system of algebraic equations: x3 + 4θ2xy2 = x,

θx2y +
4

5
θ3y3 = y.

It follows that, the point (1, 0) is a fixed point of the operator P . Consequently, by lemma 3.1, the function
f0(t) ≡ 1 is a fixed point of the Hammerstein’s operator H3. Conversely, for the case x > 0, y 6= 0, the last
system of algebraic equations is equivalent to the following system of algebraic equations: x2 + 4θ2y2 = 1,

θx2 +
4

5
θ3y2 = 1.
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We find x2 = 1− 4θ2y2. Hence, for y, we have:(
1− 4θ2y2

)
θ +

4

5
θ3y2 = 1,

i.e.

y2 =
5(θ − 1)

16θ3
.

This is impossible, as θ ∈ (0, 1).
Thus, the operator P has a unique nontrivial fixed point (1, 0). Therefore, by lemmas 3.1 and 2.3, the

model H (3.1) on the Cayley tree of order three has a unique translation-invariant Gibbs measure. �

5. A phase transition for the model (3.1)

In this section, we consider the model (3.1) on the Cayley tree Γ4. In the case k = 4, the operator P is acting
on R2 by the rule:

P (x, y) =

(
x4 + 8θ2x2y2 +

16

5
θ4y4,

4

3
θx3y +

16

5
θ3xy3

)
.

Theorem 5.1. Let k = 4. Then:
(a) for all θ ∈ (0, 3/4] the model H (3.1) on the Cayley tree Γk has a unique translation-invariant Gibbs

measure;
(b) for all θ ∈ (3/4, 1) the model H (3.1) on the Cayley tree Γk has three translation-invariant Gibbs

measures.

Proof. Let k = 4. For a fixed point (x, y) of the operator P , we have the following system of algebraic equations:
x4 + 8θ2x2y2 +

16

5
θ4y4 = x,

4

3
θx3y +

16

5
θ3xy3 = y.

In the case x > 0, y = 0, the above system of algebraic equations has the solution (1, 0). We assume that
y 6= 0. Then, we have x 6= 0 and from the second equation of the last system of equations, we obtain:

y2 =
5(3− 4θx3)

48θ3x
. (5.1)

This means that:

0 < x <
3

√
3

4θ
. (5.2)

From the first equation of the system of equations, for a fixed point of the operator P , we obtain:

16

9
x6 +

3θ − 5

3θ
x3 − 5

16θ2
= 0. (5.3)

We set z = x3. Then, z > 0 and for the unknown variable z, by the equality (5.3), we have the quadratic
equation:

16

9
z2 +

3θ − 5

3θ
z − 5

16θ2
= 0. (5.4)

One clearly sees that equation (5.4) has two roots:

z1 = z1(θ) =
−1 + 5

3θ −
√
D

32
9

< 0, z2 = z2(θ) =
−1 + 5

3θ +
√
D

32
9

> 0,

where

D = D(θ) =

(
1− 5

3θ

)2

+
20

9θ2
.

Therefore, for x, by the lemma 3.1 and the inequality (5.2), we obtain x = x1 = x1(θ), where

x1(θ) = 3
√
z2(θ) <

3

√
3

4θ
.
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The question then arises: does the inequality (5.2) hold for x1(θ) for all values of the parameter θ ∈ (0, 1)?

To this end, we consider the inequality x1(θ) <
3

√
3

4θ
. This is equivalent to the inequality:

−1 + 5
3θ +

√
D

32
9

<
3

√
3

4θ
. (5.5)

Hence, it follows that
√
D < 1 +

1

θ
. It means(

1− 5

3θ

)2

+
20

9θ2
<

(
1 +

1

θ

)2

.

From the last inequality, we get θ >
3

4
. Thus, for the case

3

4
< θ < 1, by equality (5.1), the operator P has

three fixed points:
(1, 0), (x1(θ), y1(θ)) , (x1(θ),−y1(θ)) ,

where

y1(θ) =
1

4θ

√
5(3− 4θx3

1(θ))

3θx1(θ)
> 0.

We note that if 0 < θ ≤ 3

4
, then the operator P has a unique fixed point: (1, 0). Consequently, by lemmas 2.3

and 3.1, for all θ ∈
(

0,
3

4

]
the model H (3.1) on the Cayley tree Γ4 has a unique translation-invariant Gibbs

measure. In the case
3

4
< θ < 1 by the lemma 3.1, the Hammerstein’s operator H4 has three positive fixed points:

f0(t) ≡ 1, f1(t) = x1(θ) + 4θy1(θ)

(
t− 1

2

)
, f2(t) = x1(θ)− 4θy1(θ)

(
t− 1

2

)
.

Because fi(t) > 0 for all t ∈ [0, 1], where i = 1, 2. Therefore, By lemma 2.3 for all θ ∈ (3/4, 1) the
model H (3.1) on the Cayley tree Γ4 has three translation-invariant Gibbs measures. This completes the proof. �

Finally we note that in the case θ ∈
(

3

4
, 1

)
for the model H (3.1) on the Cayley tree Γ4 there is a phase

transition.
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