
NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2016, 7 (5), P. 789–802

On resonances and bound states of Smilansky Hamiltonian

P. Exner, V. Lotoreichik, M. Tater

Nuclear Physics Institute, Czech Academy of Sciences, 25068 Řež, Czech Republic
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We consider the self-adjoint Smilansky Hamiltonian Hε in L2(R2) associated with the formal differential expression −∂2x −
1

2

(
∂2y + y2) −

√
2εyδ(x) in the sub-critical regime, ε ∈ (0, 1). We demonstrate the existence of resonances for Hε on a countable subfamily of sheets of the

underlying Riemann surface whose distance from the physical sheet is finite. On such sheets, we find resonance free regions and characterize

resonances for small ε > 0. In addition, we refine the previously known results on the bound states of Hε in the weak coupling regime

(ε→ 0+). In the proofs we use Birman-Schwinger principle for Hε, elements of spectral theory for Jacobi matrices, and the analytic implicit

function theorem.
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1. Introduction

In this paper we investigate resonances and bound states of the self-adjoint Hamiltonian Hε acting in the
Hilbert space L2(R2) and corresponding to the formal differential expression

−∂2
x −

1

2

(
∂2
y + y2)−

√
2εyδ(x) on R2, (1.1)

in the sub-critical regime, ε ∈ (0, 1). The operator Hε will be rigorously introduced in Section 1.1 below. Operators
of this type were suggested by U. Smilansky in [1] as a model of irreversible quantum system. His aim was to
demonstrate that the ‘heat bath’ need not have an infinite number of degrees of freedom. On a physical level of
rigor he showed that the spectrum undergoes an abrupt transition at the critical value ε = 1. A mathematically
precise spectral analysis of these operators and their generalizations has been performed by M. Solomyak and
his collaborators in [2–8]. Time-dependent Schrödinger equation generated by Smilansky-type Hamiltonian is
considered in [9].

By now many of the spectral properties of Hε are understood. On the other hand, little attention has been
paid so far to the fact that such a system can also exhibit resonances. The main aim of this paper is to initiate
investigation of these resonances starting from demonstration of their existence. One of the key difficulties is that
this model belongs to a class wherein the resolvent extends to a Riemann surface having uncountably many sheets.
The same complication appears e.g. in studying resonances for quantum waveguides [10–13], [14, §3.4.2] and for
general manifolds with cylindrical ends [15, 16].

In this paper, we prove the existence and obtain a characterization of resonances of Hε on a countable subfamily
of sheets whose distance from the physical sheet is finite in the sense explained below. On any such sheet we
characterize a region which is free of resonances. As ε → 0+, the resonances on such sheets are localized in the
vicinities of the thresholds νn = n + 1/2, n ∈ N. We obtain a description of the subset of the thresholds in the
vicinities of which a resonance exists for all sufficiently small ε > 0 and derive asymptotic expansions of these
resonances in the limit ε → 0+. No attempt has been made here to define and study resonances on the sheets
whose distance from the physical sheet is infinite.

As a byproduct, we obtain refined properties of the bound states of Hε using similar methods as for resonances.
More precisely, we obtain a lower bound on the first eigenvalue of Hε and an asymptotic expansion of the weakly
coupled bound state of Hε in the limit ε→ 0+.

Methods developed in this paper can also be useful to tackle resonances for the analog of Smilansky model
with regular potential which is suggested in [17] and further investigated in [18, 19].
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Notations

We use notations N := {1, 2, . . . } and N0 := N∪{0} for the sets of positive and natural integers, respectively.
We denote the complex plane by C and define its commonly used sub-domains: C× := C \ {0}, C± := {λ ∈
C : ± Imλ > 0} and Dr(λ0) := {λ ∈ C : |λ − λ0| < r}, D×r (λ0) := {λ ∈ C : 0 < |λ − λ0| < r}, Dr := Dr(0),
D×r := D×r (0) with r > 0. The principal value of the argument for λ ∈ C× is denoted by arg λ ∈ (−π, π]. The
branches of the square root are defined by:

C× 3 λ 7→ (λ)
1/2
j := |λ|1/2ei((1/2) arg λ+jπ), j = 0, 1.

If the branch of the square root is not explicitly specified, we understand the branch (·)1/2
0 by default. We also set

0 = (0, 0) ∈ C2.
The L2-space over Rd, d = 1, 2, with the usual inner product is denoted by (L2(Rd), (·, ·)Rd) and the L2-based

first order Sobolev space by H1(Rd), respectively. The space of square-summable sequences of vectors in a Hilbert
space G is denoted by `2(N0;G). In the case that G = C we simply write `2(N0) and denote by (·, ·) the usual
inner product on it.

For ξ = {ξn} ∈ `2(N0), we adopt the convention that ξ−1 = 0. Kronecker symbol is denoted by δnm,
n,m ∈ N0, we set en := {δnm}m∈N0 ∈ `2(N0), n ∈ N0, and adopt the convention that e−1 := {0}. We understand
by diag({qn}) the diagonal matrix in `2(N0) with entries {qn}n∈N0

and by J({an}, {bn}) the Jacobi matrix in
`2(N0) with diagonal entries {an}n∈N0

and off-diagonal entries {bn}n∈N1. We also set J0 := J({0}, {1/2}).
By σ(K), we denote the spectrum of a closed (not necessarily self-adjoint) operator K in a Hilbert space.

An isolated eigenvalue λ ∈ C of K having finite algebraic multiplicity is a point of the discrete spectrum for K;
see [23, §XII.2] for details. The set of all the points of the discrete spectrum for K is denoted by σd(K) and the
essential spectrum of K is defined by σess(K) := σ(K)\σd(K). For a self-adjoint operator T in a Hilbert space, we
set λess(T) := inf σess(T) and, for k ∈ N, λk(T) denotes the k-th eigenvalue of T in the interval (−∞, λess(T)).
These eigenvalues are ordered non-decreasingly with multiplicities taken into account. The number of eigenvalues
with multiplicities of the operator T lying in a closed, open, or half-open interval ∆ ⊂ R satisfying σess(T)∩∆ = ∅
is denoted by N (∆;T). For λ ≤ λess(T) the counting function of T is defined by Nλ(T) := N ((−∞, λ);T).

1.1. Smilansky Hamiltonian

Define the Hermite functions:

χn(y) := e−y
2/2Hn(y), n ∈ N0. (1.2)

Here, Hn(y) is the Hermite polynomial of degree n ∈ N0 normalized by the condition ‖χn‖R = 12. For more
details on Hermite polynomials see [20, Chap. 22] and also [21, Chap. 5]. As it is well-known, the family
{χn}n∈N0

constitutes an orthonormal basis of L2(R). Note also that the functions χn satisfy the three-term
recurrence relation: √

n+ 1χn+1(y)−
√

2yχn(y) +
√
nχn−1(y) = 0, n ∈ N0, (1.3)

where we adopt the convention χ−1 ≡ 0. The relation (1.3) can be easily deduced from the recurrence relation [20,
eq. 22.7.13] for Hermite polynomials. By a standard argument any function U ∈ L2(R2) admits unique expansion:

U(x, y) =
∑
n∈N0

un(x)χn(y), un(x) :=

∫
R

U(x, y)χn(y)dy, (1.4)

where {un} ∈ `2(N0;L2(R)). Following the presentation in [7], we identify the function U ∈ L2(R2) and the
sequence {un} and write U ∼ {un}. This identification defines a natural unitary transform between the Hilbert
spaces L2(R2) and H := `2(N0;L2(R)). For the sake of brevity, we denote the inner product on H by 〈·, ·〉. Note
that the Hilbert space H can also be viewed as the tensor product `2(N0)⊗ L2(R).

For any ε ∈ R, we define the subspace Dε of H as follows: an element U ∼ {un} ∈ H belongs to Dε if, and
only if

(i) un ∈ H1(R) for all n ∈ N0;

(ii) {−(u′′n,+ ⊕ u′′n,−) + νnun} ∈ H with un,± := un|R± and νn = n+ 1/2 for n ∈ N0;

1We do not distinguish between Jacobi matrices and operators in the Hilbert space `2(N0) induced by them, since in our considerations all
the Jacobi matrices are bounded, closed, and everywhere defined in `2(N0).

2This normalization means that Hn(y) is, in fact, a product of what is usually called the Hermite polynomial of degree n ∈ N0 with a
normalization constant which depends on n.
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(iii) the boundary conditions

u′n(0+)− u′n(0−) = ε
(√
n+ 1un+1(0) +

√
nun−1(0)

)
are satisfied for all n ∈ N0. For n = 0 only the first term is present on the right-hand side.

By [7, Thm. 2.1], the operator:

domHε := Dε, Hε{un} := {−(u′′n,+ ⊕ u′′n,−) + νnun}, (1.5)

is self-adjoint in H. It corresponds to the formal differential expression (1.1). Further, we provide another way of
defining Hε which makes the correspondence between the operator Hε and the formal differential expression (1.1)
more transparent. To this aim, we define the straight line Σ := {(0, y) ∈ R2 : y ∈ R}. Then, the Hamiltonain Hε,
ε ∈ (−1, 1), can be alternatively introduced as the unique self-adjoint operator in L2(R2) associated via the first
representation theorem [22, Thm. VI.2.1] with a closed, densely defined, symmetric, and semi-bounded quadratic
form:

hε[u] := ‖∂xu‖2R2 +
1

2
‖∂yu‖2R2 +

1

2
(yu, yu)R2 + ε

√
2
(

sign (y)|y|1/2u|Σ, |y|1/2u|Σ
)
R
,

dom hε :=
{
u ∈ H1(R2) : yu ∈ L2(R2), |y|1/2(u|Σ) ∈ L2(R)

}
.

(1.6)

For more details and for the proof of equivalence between the two definitions of Hε, see [7, §9]. Since Hε
commutes with the parity operator in y-variable, it is unitarily equivalent to H−ε. We remark that the case ε = 0
admits separation of variables. Thus, it suffices to study Hε with ε > 0.

In the following proposition, we collect fundamental spectral properties of Hε, ε ∈ (0, 1), which are of
importance in the present paper.

Proposition 1.1. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Then the following claims hold:

(i) σess(Hε) = [1/2,+∞);

(ii) inf σ(Hε) ≥
1− ε

2
;

(iii) 1 ≤ N1/2(Hε) <∞;

(iv) N1/2(Hε) = 1 for all sufficiently small ε > 0.

Items (i)–(iii) follow from [6, Lem 2.1] and [7, Thm. 3.1 (1),(2)]. Item (iv) is a consequence of [6, Thm. 3.2]
and [7, §10.1]. Although we only deal with the sub-critical case, ε ∈ (0, 1), we remark that in the critical case,
ε = 1, the spectrum of H1 equals to [0,+∞) and that in the sup-critical case, ε > 1, the spectrum of Hε covers
the whole real axis. Finally, we mention that in most of the existing literature on the subject not ε > 0 itself but
α =
√

2ε is chosen as the coupling parameter. We choose another normalization of the coupling parameter in order
to simplify formulae in the proofs of the main results.

1.2. Main results

While we are primarily interested in the resonances, as indicated in the introduction, we have also a claim
to make about the discrete spectrum which we present here as our first main result and which complements the
results listed in Proposition 1.1.

Theorem 1.2. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Then the following claims hold.

(i) λ1(Hε) ≥ 1−
√

1

4
+ ε4 for all ε ∈ (0, 1).

(ii) λ1(Hε) = ν0 −
ε4

16
+O(ε5) as ε→ 0+.

Theorem 1.2 (i) is proven by means of Birman–Schwinger principle. The bound in Theorem 1.2 (i) is non-trivial
for ε4 < 3/4. This bound is better than the one in Proposition 1.1 (ii) for small ε > 0.

For the proof of Theorem 1.2 (ii) we combine Birman-Schwinger principle and the analytic implicit function
theorem. We expect that the error term O(ε5) in Theorem 1.2 (ii) can be replaced by O(ε6) because the operator
Hε has the same spectral properties as H−ε for any ε ∈ (0, 1). Therefore, the expansion of λ1(Hε) must be
invariant with respect to interchange between ε and −ε. In Lemma 4.1 given in Section 4 we derive an implicit
scalar equation on λ1(Hε). This equation gives analyticity of ε 7→ λ1(Hε) for small ε. It can also be used to
compute higher order terms in the expansion of λ1(Hε). However, these computations might be quite tedious.
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Our second main result concerns the resonances of Hε. Before formulating it, we need to define the resonances
rigorously. Let us consider the sequence of functions:

rn(λ) := (νn − λ)1/2, n ∈ N0. (1.7)

Each of them has two branches rn(λ, l) := (νn − λ)
1/2
l , l = 0, 1. The vector-valued function R(λ) =

(r0(λ), r1(λ), r2(λ), . . . ) naturally defines the Riemann surface Ẑ with uncountably many sheets. With each
sheet of Ẑ we associate the set E ⊂ N0 and the characteristic vector lE defined as:

lE := {lE0 , lE1 , lE2 , . . . }, lEn :=

{
0, n /∈ E,
1, n ∈ E.

(1.8)

We adopt the convention that lE−1 = 0. The respective sheet of Ẑ is convenient to denote by ZE . Each sheet ZE
of Ẑ can be identified with the set C \ [ν0,+∞) and we denote by Z±E the parts of ZE corresponding to C±. With
the notation settled, we define the realization of R(·) on ZE as:

RE(λ) := (r0(λ, lE0 ), r1(λ, lE1 ), r2(λ, lE2 ), . . . ). (1.9)

The sheets ZE and ZF are adjacent through the interval (νn, νn+1) ⊂ R, n ∈ N0, (ZE ∼n ZF ), if their
characteristic vectors lE and lF satisfy:

lFk = 1− lEk , for k = 0, 1, 2, . . . , n

lFk = lEk , for k > n.

We set ν−1 = −∞ and note that any sheet ZE is adjacent to itself through (ν−1, ν0). In particular, the function
λ 7→ RE(λ) turns out to be componentwise analytic on the Riemann surface Ẑ.

The sequence E = {E1, E2, . . . , EN} of subsets of N0 is called a path if for any k = 1, 2, . . . , N − 1 the
sheets ZEk

and ZEk+1
are adjacent. The following discrete metric:

ρ(E,F ) := inf{N ∈ N0 : E = {E1, E2, . . . , EN}, E1 = E,EN = F}, (1.10)

turns out to be convenient. The value ρ(E,F ) equals the number of sheets in the shortest path connecting ZE
and ZF . Note that for some sheets ZE and ZF a path between them does not exist and in this case we have
ρ(E,F ) =∞. We identify the physical sheet with the sheet Z∅ (for E = ∅). A sheet ZE of Ẑ is adjacent to the
physical sheet Z∅ if ρ(E,∅) = 1 and it can be characterised by existence of N ∈ N0 such that lEn = 1 if, and
only ifn ≤ N . Also, we define the component:

Z̃ := ∪E∈EZE ⊂ Ẑ, E := {E ⊂ N0 : ρ(E,∅) <∞}, (1.11)

of Ẑ which plays a distinguished role in our considerations. Any sheet in Z̃ is located on a finite distance from the
physical sheet with respect to the metric ρ(·, ·). The component Z̃ of Ẑ in (1.11) can alternatively be characterized
as:

Z̃ = ∪F∈FZF , F := {F ⊂ N0 : sup{n ∈ N0 : lFn = 1} <∞}. (1.12)

The number of the sheets in Z̃ is easily seen to be countable. In order to define the resonances of Hε on Z̃, we
show that the resolvent of Hε admits an extension to Z̃ in a certain weak sense.

Proposition 1.3. For any u ∈ L2(R) and n ∈ N0 the function:

λ 7→ r∅n,ε(λ;u) :=
〈
(Hε − λ)−1u⊗ en, u⊗ en

〉
(1.13)

admits unique meromorphic continuation rEn,ε(·;u) from the physical sheet Z∅ to any sheet ZE ⊂ Z̃.

The proof of Proposition 1.3 is postponed until Appendix. Now we have all the tools to define resonances of
Hε on Z̃.

Definition 1.4. Each resonance of Hε on ZE ⊂ Z̃ is identified with a pole of rEn,ε(·;u) for some u ∈ L2(R) and
n ∈ N0. The set of all the resonances for Hε on the sheet ZE is denoted by RE(ε).

Our definition of resonances for Hε is consistent with [23, §XII.6], see also [14, Chap. 2] and [24] for multi-
threshold case. It should be emphasized that by the spectral theorem for self-adjoint operators the eigenvalues of
Hε are also regarded as resonances in the sense of Definition 1.4 lying on the physical sheet Z∅. This allows us to
treat the eigenvalues and ‘true’ resonances on the same footing. Needless to say, bound states and true resonances
correspond to different physical phenomena and their equivalence in this paper is merely a useful mathematical
abstraction.
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According to Remark 2.5 below, the set of the resonances for Hε on ZE is symmetric with respect to the
real axis. Thus, it suffices to analyze resonances on Z−E . Now, we are prepared to formulate the main result on
resonances.

Theorem 1.5. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Let the sheet ZE ⊂ Z̃ of the Riemann
surface Ẑ be fixed. Define the associated set by:

S(E) :=
{
n ∈ N : (lEn−1, l

E
n , l

E
n+1) ∈ {(1, 0, 0), (0, 1, 1)}

}
.

Let RE(ε) be as in Definition 1.4 and set R−E(ε) := RE(ε) ∩ C−. Then, the following claims hold:

(i) R−E(ε) ⊂ U(ε) :=
{
λ ∈ C− : |νn−1 − λ||νn − λ| ≤ ε4n2, ∀n ∈ N

}
.

(ii) For any n ∈ S(E) and sufficiently small ε > 0 there is exactly one resonance λEn (Hε) ∈ C− of Hε on Z−E
lying in a neighbourhood of νn, with the expansion

λEn (Hε) = νn −
ε4

16

[
(2n+ 1) + 2n(n+ 1)i

]
+O(ε5), ε→ 0 + . (1.14)

(iii) For any n ∈ N \ S(E) and all sufficiently small ε, r > 0

R−E(ε) ∩ Dr(νn) = ∅.

FIG. 1.1. The region U(0.12) (for ε = 0.12) from Theorem 1.5 (i) (in grey) consists of 6
connected components. The components located in the neighbourhoods of the points ν0, ν1, ν2,
ν3, are not visible because of being too small. The plot is performed with the aid of Sagemath.

In view of Theorem 1.5 (i) for sufficiently small ε > 0, the resonances of Hε on any sheet of Z̃ are located in
some vicinity of the thresholds νn (see Figure 1.1). Such behavior is typical for problems with many thresholds;
see e.g. [11, 13] and [14, §2.4, 3.4.2]. Note also that the estimate in Theorem 1.5 (i) reflects the correct order in ε
in the weak coupling limit ε → 0+ given in Theorem 1.5 (ii). However, the coefficient of ε4 in the definition of
U(ε) can be probably improved. Observe also that R−E(ε) ⊂ U(1) for any ε ∈ (0, 1).

According to Theorem 1.5 (ii)–(iii), the existence of a resonance near the threshold νn, n ∈ N, on a sheet ZE
for small ε > 0 depends only on the branches chosen for rn−1(λ), rn(λ), rn+1(λ) on ZE . Although, one cannot
exclude that higher order terms in the asymptotic expansion (1.14) depend on the branches chosen for other square
roots. By exactly the same reason as in Theorem 1.2 (ii), we expect that the error term O(ε5) in Theorem 1.5 (ii)
can be replaced by O(ε6). Theorem 1.5 (ii)–(iii) are proven by means of the Birman-Schwinger principle and
the analytic implicit function theorem. The implicit scalar equation on resonances derived in Lemma 4.1 gives
analyticity of ε 7→ λEn (Hε) for small ε > 0 and, as in the bound state case, it can be used to compute further terms
in the expansion of λEn (Hε).

We point out that according to numerical tests that we performed, some resonances emerge from the inner
points of the intervals (νn, νn+1), n ∈ N0, as ε → 1−. The mechanism for the creation of these resonances is
unclear at the moment.

Example 1.6. Let E = {1, 2, 4, 5}. In this case lE = {0, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, . . . } and we get that S(E) =
{1, 4, 6}. By Theorem 1.5 (ii)–(iii) for all sufficiently small ε > 0 there will be exactly one resonance on Z−E near
ν1, ν4, ν6 and no resonances near the thresholds νn with n ∈ N \ {1, 4, 6}. We confirm this result by numerical
tests whose outcomes are shown in Figures 1.2 and 1.3.
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FIG. 1.2. Resonances of Hε with ε = 0.2 lying on Z−E with E = {1, 2, 4, 5} are computed
numerically with the help of Mathematica. Unique weakly coupled resonances near the thresholds
ν1 = 1.5, ν4 = 4.5, ν6 = 6.5 are located at the intersections of the curves.

To plot Figure 1.2, we used the condition on resonances in Theorem 2.4 below. The infinite Jacobi matrix
in this condition was truncated up to a reasonable finite size. Along the curves, respectively, the real and the
imaginary part of the determinant of the truncated matrix vanishes. At the points of intersection of the curves the
determinant itself vanishes. These points are expected to be close to true resonances3. We have also numerically
verified that resonances do not exist near other low-lying thresholds νn with n ∈ N \ {1, 4, 6}, which corresponds
well to Theorem 1.5. In Figure 1.3 we summarize the results of all the numerical tests.

FIG. 1.3. Resonances of Hε with ε = 0.2 lying on Z−E with E = {1, 2, 4, 5}.

Finally, we mention that no attempt has been made here to analyze the multiplicities of the resonances and to
investigate resonances lying on Ẑ \ Z̃.

Structure of the paper

Birman-Schwinger-type principles for the characterization of eigenvalues and resonances of Hε are provided
in Section 2. Theorem 1.2 (i) on a lower bound for the first eigenvalue and Theorem 1.5 (i) on resonance free
region are proven in Section 3. The aim of Section 4 is to prove Theorem 1.2 (ii) and Theorem 1.5 (ii)–(iii) on
weakly coupled bound states and resonances. The proofs of technical statements formulated in Proposition 1.3 and
Theorem 2.4 are postponed until Appendix.

2. Birman-Schwinger-type conditions

The Birman–Schwinger principle is a powerful tool for analyzing the discrete spectrum of a perturbed operator
in the spectral gaps of the unperturbed one. This principle also has other various applications. Frequently, it
can be generalized to detect resonances, defined as the poles of a meromorphic continuation of the (sandwiched)

3The analysis of convergence of the numerical method is beyond our scope.
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resolvent from the physical sheet to non-physical sheet(s) of the underlying Riemann surface. In the model under
consideration, we encounter yet another manifestation of this principle.

In order to formulate a Birman-Schwinger-type condition on the bound states for Hε, we introduce the sequence
of functions:

bn(λ) :=
n1/2

2(νn − λ)1/4(νn−1 − λ)1/4
, n ∈ N, (2.1)

and the off-diagonal Jacobi matrix:

J(λ) = J ({0}, {bn(λ)}) , λ ∈ (0, ν0) . (2.2)

Recall that we use the same symbol J(λ) for the operator in `2(N0) generated by this matrix. It is straightforward
to check that the operator J(λ) is bounded and self-adjoint. It can be easily verified that the difference J(λ)− J0 is
a compact operator. Therefore, one has σess(J(λ)) = σess(J0) = [−1, 1]. Moreover, the operator J(λ) has simple
eigenvalues ±µn, µn > 1, with the only possible accumulation points at µ = ±1.

Theorem 2.1. [6, Thm. 3.1] Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5) and let the Jacobi matrix
J(λ) be as in (2.2). Then, the relation:

N ((0, λ);Hε) = N ((1/ε,+∞); J(λ)), (2.3)

holds for all λ ∈ (0, ν0).

Remark 2.2. A careful inspection of the proof of [6, Thm 3.1] yields that Theorem 2.1 can also be modified,
replacing (2.3) by:

N ((0, λ];Hε) = N ([1/ε,+∞); J(λ)). (2.4)

In other words, the right endpoint of the interval (0, λ) and the left endpoint of the interval (1/ε,+∞) can be
simultaneously included.

The following consequence of Theorem 2.1 and of the above remark will be useful further.

Corollary 2.3. Let the assumptions be as in Theorem 2.1. Then the following claims hold:

(i) ε 7→ λk(Hε) are continuous non-increasing functions;

(ii) dim ker (Hε − λ) = dim ker
(
I + εJ(λ)

)
for all λ ∈ (0, ν0). In particular, since the eigenvalues of J(λ) are

simple, the eigenvalues of Hε are simple as well.

Proof. (i) Let ε1 ∈ (0, 1). For λ = λk(Hε1), k ∈ N, we have by Theorem 2.1 and Remark 2.2

N ([1/ε1,+∞); J(λ)) = N ((0, λ];Hε1) ≥ k.
Hence, for any ε2 ∈ (ε1, 1), we obtain:

N ((0, λ];Hε2) = N ([1/ε2,+∞); J(λ)) ≥ N ([1/ε1,+∞); J(λ)) ≥ k.
Therefore, we get λk(Hε2) ≤ λ = λk(Hε1). Recall that Hε represents the quadratic form hε defined in (1.6).
Continuity of the eigenvalues follows from [22, Thms. VI.3.6, VIII.1.14] and from the fact that the quadratic form:

dom hε 3 u 7→ ε
√

2
(

sign y|y|1/2u|Σ, |y|1/2u|Σ
)
R
, ε ∈ (0, 1),

is relatively bounded with respect to

dom hε 3 u 7→ ‖∂xu‖2R2 +
1

2
‖∂yu‖2R2 +

1

2
(yu, yu)R2

with a bound less than one; cf. [6, Lem. 2.1].

(ii) By Theorem 2.1, Remark 2.2, and using symmetry of σ(J(λ)) with respect to the origin we get:

dim ker (Hε − λ) = N ((0, λ];Hε)−N ((0, λ);Hε)

= N ([1/ε,+∞); J(λ))−N ((1/ε,+∞); J(λ)) = dim ker
(
I + εJ(λ)

)
. �

For resonances of Hε, one can derive a Birman-Schwinger-type condition analogous to the one in Corol-
lary 2.3 (ii). For the sheet ZE ⊂ Z̃ of the Riemann surface Ẑ, we define the Jacobi matrix:

JE(λ) := J({0}, {bEn (λ)}), λ ∈ C \ [ν0,+∞), (2.5)

where

bEn (λ) :=
1

2

(
n

rn(λ, lEn )rn−1(λ, lEn−1)

)1/2

, n ∈ N. (2.6)
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The Jacobi matrix JE(λ) in (2.5) is closed, bounded, and everywhere defined in `2(N0), but in general non-
selfadjoint. For E = ∅ and λ ∈ (0, ν0) the Jacobi matrix J∅(λ) coincides with J(λ) in (2.2). In what follows it is
also convenient to set bE0 (λ) = 0. In the next theorem, we characterize resonances of Hε lying on the sheet ZE .

Theorem 2.4. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Let the sheet ZE ⊂ Z̃ be fixed,
let RE(ε) be as in Definition 1.4 and the associated operator-valued function JE(λ) be as in (2.5). Then, the
following equivalence holds:

λ ∈ RE(ε) ⇐⇒ ker (I + εJE(λ)) 6= {0}. (2.7)

For E = ∅, the claim of Theorem 2.4 follows from Corollary 2.3 (ii). The proof of the remaining part of
Theorem 2.4 is postponed until Appendix. The argument essentially relies on Krein-type resolvent formula [7] for
Hε and on the analytic Fredholm theorem [25, Thm. 3.4.2].

Remark 2.5. Thanks to compactness of the difference JE(λ)−J0 we get by [23, Lem. XIII.4.3] that σess(εJE(λ)) =
σess(εJ0)) = [−ε, ε]. Therefore, the equivalence (2.7) can be rewritten as:

λ ∈ RE(ε) ⇐⇒ −1 ∈ σd(εJE(λ)).

Identity JE(λ)∗ = JE(λ) combined with [22, Rem. III.6.23] and with Theorem 2.4 yields that the set RE(ε) is
symmetric with respect to the real axis.

3. Localization of bound states and resonances

In this section we prove Theorem 1.2 (i) and Theorem 1.5 (i). The idea of the proof is to estimate the norm of
JE(λ) and to apply Corollary 2.3 (ii) and Theorem 2.4.

Proof of Theorem 1.2 (i) and Theorem 1.5 (i). The square of the norm of the operator JE(λ) in (2.5) can be esti-
mated from above by:

‖JE(λ)‖2 ≤ sup
ξ∈`2(N0),‖ξ‖=1

‖JE(λ)ξ‖2 ≤ sup
ξ∈`2(N0),‖ξ‖=1

( ∑
n∈N0

|bEn (λ)ξn−1 + bEn+1(λ)ξn+1|2
)

≤ sup
ξ∈`2(N0),‖ξ‖=1

(
2
∑
n∈N0

(
|bEn (λ)|2|ξn−1|2 + |bEn+1(λ)|2|ξn+1|2

))
≤ 4 sup

n∈N0

|bEn (λ)|2 sup
ξ∈`2(N0),‖ξ‖=1

‖ξ‖2 = 4 sup
n∈N
|bEn (λ)|2,

(3.1)

where bEn (λ), n ∈ N0, are defined as in (2.6).
If ‖εJE(λ)‖ < 1 holds for a point λ ∈ C−, then the condition ker (I+ εJE(λ)) 6= {0} is not satisfied. Thus, λ

cannot by Theorem 2.4 be a resonance of Hε lying on Z−E in the sense of Definition 1.4. In view of estimate (3.1)
and of (2.6) to fulfil ‖εJE(λ)‖ < 1, it suffices to satisfy:

n

|νn−1 − λ|1/2|νn − λ|1/2
<

1

ε2
, ∀ n ∈ N,

or, equivalently,
|νn − λ| · |νn−1 − λ| > ε4n2, ∀ n ∈ N.

Thus, the claim of Theorem 1.5 (i) is proven. If ‖εJ∅(λ)‖ < 1 holds for a point λ ∈ (0, 1/2) then the condition
ker (I + εJ∅(λ)) 6= {0} is not satisfied. Thus, by Corollary 2.3 (ii), λ is not an eigenvalue of Hε. In view of (3.1)
and (2.6) to fulfil ‖εJ∅(λ)‖ < 1, it suffices to satisfy:(

νn−1 − λ
)(
νn − λ

)
= λ2 − 2nλ+ n2 − 1/4 > n2ε4, ∀ n ∈ N. (3.2)

The roots of the equation λ2 − 2nλ + n2 − 1/4 − n2ε4 = 0 are given by λ±n (ε) = n ±
√

1/4 + n2ε4. Since
λ+
n (ε) > 1/2 for all n ∈ N, the condition (3.2) yields λ1(Hε) ≥ min

n∈N
λ−n (ε). For n ∈ N we have:

λ−n+1(ε)− λ−n (ε) = 1− (2n+ 1)ε4(
1
4 + n2ε4

)1/2
+
(

1
4 + (n+ 1)2ε4

)1/2 ≥ 1− (2n+ 1)ε4

(2n+ 1)ε2
= 1− ε2 > 0.

Hence, min
n∈N

λ−n (ε) = λ−1 (ε) and the claim of Theorem 1.2 (i) follows. �
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4. The weak coupling regime: ε→ 0+

In this section, we prove Theorem 1.2 (ii) and Theorem 1.5 (ii)–(iii). Intermediate results of this section given
in Lemmata 4.1 and 4.3 are of an independent interest.

First, we introduce some auxiliary operators and functions. Let n ∈ N0 and the sheet ZE ⊂ Z̃ be fixed. We
make use of notation Pkl := en+k−2(·, en+l−2) with k, l ∈ {1, 2, 3}. Note that for n = 0 we have Pk1 = P1k = 0
for k = 1, 2, 3. It will also be convenient to decompose the Jacobi matrix JE(λ) in (2.5) as:

JE(λ) = Sn,E(λ) + Tn,E(λ), (4.1)

where the operator-valued functions λ 7→ Tn,E(λ),Sn,E(λ) are defined by:

Tn,E(λ) := bEn+1(λ) [P23 + P32] + bEn (λ) [P21 + P12] , Sn,E(λ) := JE(λ)− Tn,E(λ). (4.2)

Clearly, the operator-valued function Sn,E(·) is uniformly bounded on D1/2(νn). Moreover, for sufficiently
small r = r(n) ∈ (0, 1/2) the bounded operator I + εSn,E(λ) is at the same time boundedly invertible for all
(ε, λ) ∈ Ωr(n) := Dr × Dr(νn). Thus, the operator-valued function:

Rn,E(ε, λ) :=
(
I + εSn,E(λ)

)−1
, (4.3)

is well-defined and analytic on Ωr(n) and, in particular, Rn,E(0, νn) = I. Furthermore, we introduce auxiliary
scalar functions Ωr(n) 3 (ε, λ) 7→ fEkl(ε, λ) by:

fEkl(ε, λ) :=
(
Rn,E(ε, λ)en+k−2, en+l−2

)
, k, l ∈ {1, 2, 3}. (4.4)

Thanks to Rn,E(0, νn) = I we have fEkl(0, νn) = δkl. Finally, we introduce 3× 3 matrix-valued function:

Dr × D×r (νn) 3 (ε, λ) 7→ An,E(ε, λ) :=
(
aEkl(ε, λ)

)3,3
k,l=1

(4.5)

with the entries given for k, l = 1, 2, 3 by:

aEkl(ε, λ) := bEn (λ)
(
fE1k(ε, λ)δ2l + fE2k(ε, λ)δ1l

)
+ bEn+1(λ)

(
fE2k(ε, λ)δ3l + fE3k(ε, λ)δ2l

)
. (4.6)

We remark that rankAn,E(ε, λ) ≤ 2 due to linear dependence between the first and the third columns in An,E(ε, λ).
In the first lemma, we derive an implicit scalar equation which characterizes those points λ ∈ C \ [ν0,+∞)

near νn for which the condition ker (I+ εJE(λ)) 6= {0} is satisfied under additional assumption that ε > 0 is small
enough. This equation can be used to characterize the ‘true’ resonances for Hε as well as the weakly coupled
bound state if n = 0 and E = ∅.

Lemma 4.1. Let the self-adjoint operator Hε, ε ∈ (0, 1), be as in (1.5). Let n ∈ N0 and the sheet ZE ⊂ Z̃ be
fixed. Let r = r(n) > 0 be chosen as above. Then for all ε ∈ (0, r) a point λ ∈ Dr(νn) \ [ν0,∞) is a resonance
of Hε on ZE if, and only if

det
(
I + εAn,E(ε, λ)

)
= 0.

Proof. Using the decomposition (4.1) of JE(λ) and the auxiliary operator in (4.3), we find:

dim ker (I + εJE(λ)) = dim ker (I + εSn,E(λ) + εTn,E(λ)) = dim ker (I + εRn,E(ε, λ)Tn,E(λ)) . (4.7)

Note that:
rank (Rn,E(ε, λ)Tn,E(λ)) ≤ rank (Tn,E(λ)) ≤ 3

and, hence, using [26, Thm. 3.5 (b)], we get:

dim ker (I + εRn,E(ε, λ)Tn,E(λ)) ≥ 1 ⇐⇒ det (I + εRn,E(ε, λ)Tn,E(λ)) = 0. (4.8)

For the orthogonal projector P := P11 + P22 + P33 the identity Tn,E(λ) = Tn,E(λ)P is straightforward. Hence,
employing [27, IV.1.5] we find:

det (I + εRn,E(ε, λ)Tn,E(λ)) = det (I + εRn,E(ε, λ)Tn,E(λ)P) = det (I + εPRn,E(ε, λ)Tn,E(λ)) . (4.9)

For k, l ∈ {1, 2, 3} we can write the following identities:

PkkPRn,E(ε, λ)Tn,E(λ)Pll = PkkRn,E(ε, λ)
(
bEn (λ) [P21 + P12] + bEn+1(λ) [P23 + P32]

)
Pll

= PkkRn,E(ε, λ)
(
bEn (λ) [P2lδ1l + P1lδ2l] + bEn+1(λ) [P2lδ3l + P3lδ2l]

)
= Pklb

E
n (λ)

[
fE2k(ε, λ)δ1l + fE1k(ε, λ)δ2l

]
+ Pklb

E
n+1(λ)

[
fE2k(ε, λ)δ3l + fE3k(ε, λ)δ2l

]
= aEkl(ε, λ)Pkl
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with fEkl as in (4.4), and as a result we get

PRn,E(ε, λ)Tn,E(λ) =

3∑
k=1

3∑
l=1

aEkl(ε, λ)Pkl,

with aEkl(ε, λ) as in (4.6). Hence, the determinant in (4.9) can be expressed as:

det (I + εRn,E(ε, λ)Tn,E(λ)) = det(I + εAn,E(ε, λ))

where on the right-hand side we have the determinant of the 3× 3 matrix I + εAn,E(ε, λ); cf. (4.5). The claim of
lemma then follows from (4.7), (4.8), and Theorem 2.4. �

In the second lemma, we establish the existence and investigate properties of solutions of the scalar equation in
Lemma 4.1. To this aim it is natural to try to apply the analytic implicit function theorem. The main obstacle that
makes a direct application of the implicit function theorem difficult lies in the fact that λ 7→ det(I+εAn,E(ε, λ)) is
not analytic near νn due to the cut on the real axis. We circumvent this obstacle by applying the analytic implicit
function theorem to an auxiliary function which is analytic in the disc and has values in different sectors of this
disc that are in direct correspondence with the values of λ 7→ det(I + εAn,E(ε, λ)) on the four different sheets in
Z̃ which are mutually adjacent in a proper way.

Assumption 4.2. Let n ∈ N0 and the sheet ZE ⊂ Z̃ be fixed. Let the sheets ZF , ZG and ZH be such that
ZE ∼n−1 ZF , ZF ∼n ZG and ZG ∼n−1 ZH . For r > 0 let the matrix-valued function Dr × D×r 3 (ε, κ) 7→
Bn,E(ε, κ) be defined by:

Bn,E(ε, κ) :=


An,E(ε, νn − κ4), arg κ ∈ ΦE := (−π,− 3π

4 ] ∪ (0, π4 ],

An,F (ε, νn − κ4), arg κ ∈ ΦF := (− 3π
4 ,−

π
2 ] ∪ (π4 ,

π
2 ],

An,G(ε, νn − κ4), arg κ ∈ ΦG := (−π2 ,−
π
4 ] ∪ (π2 ,

3π
4 ],

An,H(ε, νn − κ4), arg κ ∈ ΦH := (−π4 , 0] ∪ ( 3π
4 , π].

Tracing the changes in the characteristic vector along the path ZE ∼n−1 ZF ∼n ZG ∼n−1 ZH , one easily
verifies that ZH ∼n ZE . Thus, Bn,E is analytic on Dr × D×r for sufficiently small r > 0 which is essentially a
consequence of componentwise analyticity in Dr of vector-valued function:

κ 7→ R•(νn − κ4), • ∈ {E,F,G,H} for arg κ ∈ Φ•,

where R• is as in (1.9).

Lemma 4.3. Let n ∈ N0 and the sheet ZE ⊂ Z̃ be fixed. Set (p, q, r) := (lEn−1, l
E
n , l

E
n+1). Let the matrix-valued

function Bn,E be as in Assumption 4.2. Then the implicit scalar equation:

det
(
I + εBn,E(ε, κ)

)
= 0

has exactly two solutions κn,E,j(·) analytic near ε = 0 such that κn,E,j(0) = 0, satisfying
det(I + εBn,E(ε, κn,E,j(ε))) = 0 pointwise for sufficiently small ε > 0, and having asymptotic expansions:

κn,E,j(ε) = ε
(zn,E)

1/2
j

2
+O(ε2), ε→ 0+, (4.10)

where zn,E = (−1)q+r(n+ 1) + (−1)p+q+1ni.

Proof. First, we introduce the shorthand notations:

u(κ) := b•n(νn − κ4), v(κ) := b•n+1(νn − κ4), • ∈ {E,F,G,H} for arg κ ∈ Φ•.

Let bkl with k, l ∈ {1, 2, 3} be the entries of the matrix-valued function Bn,E . Furthermore, we define the scalar
functions X = X(ε, κ), Y = Y (ε, κ), and Z = Z(ε, κ) by:

X := b11 + b22 + b33,

Y := b11b22 + b22b33 + b11b33 − b13b31 − b12b21 − b23b32,

Z := b11b22b33 + b13b32b21 + b12b23b31 − b13b31b22 − b12b21b33 − b11b23b32.

(4.11)

Employing an elementary formula for the determinant of 3× 3 matrix, the equation det(I + εBn,E(ε, κ)) = 0 can
be equivalently written as:

1 + εX(ε, κ) + ε2Y (ε, κ) + ε3Z(ε, κ) = 0. (4.12)
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By a purely algebraic argument, one can derive from (4.6) that Z = 0. Hence, (4.12) simplifies to 1 + εX(ε, κ) +
ε2Y (ε, κ) = 0. Introducing new parameter t := ε/κ, we can further rewrite this equation as:

1 + tκX(ε, κ) + t2κ2Y (ε, κ) = 0. (4.13)

Note also that the coefficients (ε, κ) 7→ κX(ε, κ), κ2Y (ε, κ) of the quadratic equation (4.13) are analytic in D2
r .

For each fixed pair (ε, κ) the equation (4.13) has (in general) two distinct roots tj(ε, κ), j = 0, 1. The condition
det(I + εBn,E(ε, κ)) = 0 with κ 6= 0 holds if, and only if at least one of the two conditions:

fj(ε, κ) := ε− κtj(ε, κ) = 0, j = 0, 1, (4.14)

is satisfied. Using analyticity of u(·) and v(·) near κ = 0, we compute:

lim
κ→0

κu = lim
r→0+

reiπ/8u(reiπ/8) = lim
r→0+

n1/2

2

reiπ/8

((−1 + ir4)
1/2
p (ir4)

1/2
q )1/2

=
n1/2eiπ/8

2((−1)p+qieiπ/4)1/2
,

lim
κ→0

κv = lim
r→0+

reiπ/8v(reiπ/8) = lim
r→0+

(n+ 1)1/2

2

reiπ/8

((ir4)
1/2
q (1 + ir4)

1/2
r )1/2

=
(n+ 1)1/2eiπ/8

2((−1)q+reiπ/4)1/2
.

Hence, we get:

lim
ε,r→0+

reiπ/8bkl(ε, re
iπ/8) = lim

r→0+
reiπ/8u(reiπ/8)

(
fE2k(0)δ3l + fE3k(0)δ2l

)
+ lim
r→0+

reiπ/8v(reiπ/8)
(
fE1k(0)δ2l + fE2k(0)δ1l

)
=
n1/2eiπ/8

(
δ2kδ3l + δ3kδ2l

)
2((−1)p+qieiπ/4)1/2

+
(n+ 1)1/2eiπ/8

(
δ1kδ2l + δ2kδ1l

)
2((−1)q+reiπ/4)1/2

.

Combining this with (4.11) we end up with:

lim
(ε,κ)→0

κX = lim
ε,r→0+

reiπ/8X(ε, reiπ/8) = lim
ε,r→0+

reiπ/8
[
b11 + b22 + b33

]
(ε, reiπ/8) = 0,

lim
(ε,κ)→0

κ2Y = lim
ε,r→0+

r2eiπ/4Y (ε, reiπ/8)

= lim
ε,r→0+

r2eiπ/4
[
b11b22 + b22b33 + b11b33 − b13b31 − b12b21 − b23b32

]
(ε, reiπ/8)

= lim
ε,r→0+

r2eiπ/4
[
− b12b21 − b23b32

]
(ε, reiπ/8)

= −
(

n1/2eiπ/8

2((−1)p+qieiπ/4)1/2

)2

−
(

(n+ 1)1/2eiπ/8

2((−1)q+reiπ/4)1/2

)2

= − (−1)p+q+1ni

4
− (−1)q+r(n+ 1)

4
= −zn,E

4
.

Hence, the roots tj(ε, κ) of (4.13) converge in the limit (ε, κ) → 0 to the roots 2
[
(zn,E)

1/2
j

]−1
, j = 0, 1, of the

quadratic equation zn,Et
2 − 4 = 0. Moreover, analyticity of the coefficients in equation (4.13), the above limits,

and the formula for the roots of a quadratic equation imply analyticity of the functions (ε, κ) 7→ tj(ε, κ) near 0.

Step 2. The partial derivatives of fj in (4.14) with respect to ε and κ are given by ∂εfj = 1 − κ∂εtj and
∂κfj = −tj − κ∂κtj . Analyticity of tj near 0 implies (∂εfj)(0) = 1 and (∂κfj)(0) = −tj . In particular, we have
shown that (∂κfj)(0) 6= 0. Since the functions fj(·) are analytic near 0 and satisfy fj(0) = 0, we can apply the
analytic implicit function theorem [25, Thm. 3.4.2] which yields existence of a unique function κj(·), analytic near
ε = 0 such that κj(0) = 0 and that fj(ε, κj(ε)) = 0 holds pointwise. Moreover, the derivative of κj at ε = 0 can
be expressed as:

κ′j(0) = − (∂εfj)(0)

(∂κfj)(0)
=

1

tj(0)
. (4.15)

Hence, we obtain Taylor expansion for κj near ε = 0:

κj(ε) = κj(0) + κ′j(0)ε+O(ε2) =
ε

tj(0)
+O(ε2) = ε

(zn,E)
1/2
j

2
+O(ε2) ε→ 0 + .

The functions κj , j = 0, 1, satisfy all the requirements in the claim of the lemma. �

Now we are prepared to prove Theorem 1.2 (ii) and Theorem 1.5 (ii)–(iii) from the introduction.
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Proof of Theorem 1.2 (ii). By Proposition 1.1 (iv) we have N1/2(Hε) = 1 for all sufficiently small ε > 0. Recall
that we denote by λ1(Hε) the corresponding unique eigenvalue. Thus, we have by Lemma 4.1:

det(I + εA0,∅(ε, λ1(Hε))) = 0.

Using the construction of Assumption 4.2 for the physical sheet and n = 0, we obtain

det(I + εB0,∅(ε, (ν0 − λ1(Hε))
1/4)) = det(I + εA0,∅(ε, λ1(Hε))) = 0,

where we have chosen the principal branch for (·)1/4. Thus, by Lemma 4.3, we get:

(ν0 − λ1(Hε))
1/4 =

ε

2
+O(ε2), ε→ 0+,

where we have used the fact that z0,∅ = 1. Hence, taking the fourth power of the left and right hand sides in the
above equation we arrive at:

λ1(Hε) = ν0 −
ε4

16
+O(ε5), ε→ 0 + . �

Proof of Theorem 1.5 (ii)–(iii). Let n ∈ N and the sheet ZE ⊂ Z̃ be fixed. Let us repeat the construction of
Assumption 4.2. By Lemma 4.3 we infer that there exist exactly two analytic solutions κn,E,j , j = 0, 1 of the
implicit scalar equation det(I + εBn,E(ε, κ)) = 0 such that κn,E,j(0) = 0. It can be checked that both solutions
correspond to the same resonance and it suffices to analyze the solution κn,E := κn,E,0 only.

For all small enough ε > 0 the asymptotics (4.10) yields:

arg(κn,E(ε)) =
1

2
arg(zn,E) ∈ ΦE , if, and only if n ∈ S(E).

Hence, if n ∈ N \ S(E), Lemmata 4.1 and 4.3 imply that there will be no resonances in the vicinity of the point
λ = νn lying on Z−E for sufficiently small ε > 0. Thus, we have proven Theorem 1.5 (iii). While if n ∈ S(E) we
get by Lemmata 4.1 and 4.3 that there will be exactly one resonance

λEn (Hε) = νn − (κn,E(ε))4,

in the vicinity of the point λ = νn lying on Z−E for sufficiently small ε > 0 and its asymptotic expansion is a
direct consequence of the asymptotic expansion (4.10) given in Lemma 4.3. Thus, the claim of Theorem 1.5 (ii)
follows. �

APPENDIX

A. Krein’s formula, meromorphic continuation of resolvent, and condition on resonances

In this appendix, we use Krein’s resolvent formula for Smilansky Hamiltonian to prove Proposition 1.3 and
Theorem 2.4 on meromorphic continuation of (Hε − λ)−1 to Z̃. The proposed continuation procedure is of an
iterative nature wherein, we first extend (Hε − λ)−1 to the sheets adjacent to the physical sheet, then to the sheets
which are adjacent to the sheets being adjacent to the physical sheet and so on.

To this aim, we define for n ∈ N0 the scalar functions C\[ν0,+∞) 7→ yn(λ) and (C\[ν0,+∞))×R 7→ ηn(λ;x)
by:

yn(λ) := rn(λ)
√
νn, ηn(λ;x) := ν1/4

n exp(−rn(λ)|x|), (A.1)

where rn(·), n ∈ N0, is as in (1.7). Next, we introduce the following operator-valued function:

T(λ) : `2(N0)→ H, T(λ){cn} := {cnηn(λ;x)}.

For each fixed λ ∈ C \ [ν0,+∞) the operator T(λ) is bounded and everywhere defined and the adjoint of T(λ)
acts as:

T(λ)∗{un} ∼ {In(λ;un)}n∈N0
, In(λ;u) :=

∫
R

ηn(λ;x)u(x)dx.

With these preparations, the resolvent difference of Hε and H0 can be expressed by [7, Thm. 6.1] (see also [4, Sec.
6]) as follows:

(Hε − λ)−1 = (H0 − λ)−1 + T(λ)Y(λ)
[(
I + εJ∅(λ)

)−1 − I
]
Y(λ)T(λ)∗, λ ∈ C \ [ν0,+∞), (A.2)

where H0 is the Smilansky Hamiltonian with ε = 0, Y(λ) = diag{(2yn(λ))−1/2} and J∅(λ) is as in (2.5). The
formula (A.2) can be viewed as a particular case of abstract Krein’s formula (see e.g. [29–31]) for the resolvent
difference of two self-adjoint extensions of their common densely defined symmetric restriction.
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Proof of Proposition 1.3 and Theorem 2.4. Let us fix n ∈ N0 and a sheet ZE ⊂ Z̃. We denote by Rn(λ) the
resolvent of the self-adjoint operator H2(R) 3 f 7→ −f ′′ + νnf in the Hilbert space L2(R). We can express the
function r∅n,ε(·;u) in (1.13) using Krein’s formula (A.2) as:

r∅n,ε(λ;u) =
〈
(Hε − λ)−1u⊗ en, u⊗ en

〉
=
〈
(H0 − λ)−1u⊗ en, u⊗ en

〉
+
(
Y(λ)

[
(I + εJ∅(λ))

−1 − I
]
Y(λ)T(λ)∗u⊗ en,T(λ)∗u⊗ en

)
= (Rn(λ)u, u)R + In(λ;u)In(λ;u)

([
(I + εJ∅(λ))

−1 − I
]
Y(λ)en,Y(λ)∗en

)
= (Rn(λ)u, u)R +

In(λ;u)In(λ;u)

2yn(λ)

[((
I + εJ∅(λ)

)−1
en, en

)
− 1

]
.

Since (Rn(λ)u, u)R, yn(λ), In(λ;u), and In(λ;u) can be easily analytically continued to Z̃, to extend r∅n,ε(·;u)

meromorphically to the other sheets of the component Z̃ it suffices to extend:

s∅n,ε(λ) :=
(

(I + εJ∅(λ))
−1 en, en

)
,

meromorphically from Z∅ to Z̃. The poles of the meromorphic extension of s∅n,ε(·) can be identified with the
resonances of Hε in the sense of Definition 1.4.

To this aim, we set by definition:

sEn,ε(λ) :=
(

(I + εJE(λ))
−1 en, en

)
,

for any λ ∈ C \ [ν0,+∞) such that −1 /∈ σ(εJE(λ)). In what follows, we let ZE and ZF be two sheets of Z̃ such
that ZE ∼n−1 ZF with n ∈ N0

4. Suppose that λ 7→ sEn,ε(·) is well defined and meromorphic either on Z+
E or on

Z−E . Next, we extend λ 7→ sEn,ε(·) meromorphically from Z±E to Z∓F . Without loss of generality, we restrict our
attention to the case that λ 7→ sEn,ε(·) is meromorphic on Z+

E and extend it meromorphically to Z−F . On the open
set Ωn := C+ ∪ C− ∪ (νn−1, νn), the operator-valued function:

JEF (λ) :=

{
JE(λ), λ ∈ C+,

JF (λ), λ ∈ Ωn \ C+,

is analytic which is essentially a consequence of analyticity on Ωn of the entries b•m(λ) (with • = E for λ ∈ C+

and • = F for λ ∈ C−) for the underlying Jacobi matrix. Thus, the operator-valued function:

Ωn 3 λ 7→ AEFε (λ) := ε (I + εJ0)
−1

(JEF (λ)− J0)

is also analytic on Ωn because of the analyticity of JEF (λ). Furthermore, the values of AEFε (·) are compact
operators thanks to compactness of the difference JEF (λ)− J0. Taking into account that:((

I + AEFε (λ)
)−1

en, (I + εJ0)
−1 en

)
=

{
sEn,ε(λ), λ ∈ C+,

sFn,ε(λ), λ ∈ Ωn \ C+,

we obtain from the analytic Fredholm theorem [28, Thm. VI.14] that C− 3 λ 7→ sFn,ε(λ) is a meromorphic
continuation of C+ 3 λ 7→ sEn,ε(λ) across the interval (νn−1, νn) and that the poles of C− 3 λ 7→ sFn,ε(λ) satisfy
the condition:

ker (I + εJF (λ)) 6= {0}, λ ∈ C−.

Starting from the physical sheet Z∅, we use the above procedure iteratively to extend s∅n,ε(·) meromorphically to

the whole of Z̃ thus proving Proposition 1.3 and Theorem 2.4. �
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