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1. Introduction

Lattice two-particle Hamiltonians have been investigated in [1–3]. In [1], the problem of the two-particle
bound states for the transfer-matrix in a wide class of Gibbs fields on the lattices in the high temperature domains
of (t � 1), as well in [2] the appearance of bound state levels standing in a definite distance from the essential
spectrum has been shown for some quasi-momenta values. The spectral properties of the two-particle operator
depending on total quasi-momentum have been studied in [3].

In [4], it was proven that if the operator h(0) has a virtual level at the lower edge of essential spectrum, then
the discrete spectrum of h(k) lying below the essential spectrum is always nonempty for any k ∈ Td \ {0}. In [5],
assuming that dispersion relations ε1(·) and ε2(·) are linearly dependent, it was proven that the positivity of h(0)
implies the positivity of h(k) for all k.

In recent work [6], conditions were obtained for the discrete two-particle Schrödinger operator with zero-range
attractive potential to have an embedded eigenvalue in the essential spectrum depending on the dimension of the
lattice. In [7], the discrete spectra of one-dimensional discrete Laplacian with short range attractive perturbation
were studied.

In [8], a system of two arbitrary particles in a three-dimensional lattice with some dispersion relation was
considered. Particles interact via an attractive potential only on the neighboring knots of lattice. The existence
and absence of eigenvalues of the family h(k) depending on the energy of interaction and quasi-momentum
k ∈ T3 (T3 – three dimensional torus) have been investigated. Moreover, depending on the interaction energy, the
conditions were found for h(0) to have a simple, two-fold, or three-fold virtual level at 0. In [9], the two-particle
Schrödinger operator h(k), k ∈ T3, associated with a system of two particles on the three-dimensional lattice, was
considered. Here, some 6N -dimensional integral operator is taken as the potential and the dispersion relation is
chosen depending on N . In this work, the existence or absence of eigenvalues has also been studied for the family
h(k) depending on the interaction energy and total quasi-momentum k. Moreover, dependending on the interaction
energy, conditions were found for the operator h(0) that has 3N -fold eigenvalue and a 3N -fold virtual level.

The current work is a generalization of [8]. In this work, we consider the system of two arbitrary quantum
particles moving on the d-dimensional lattice and interacting via an attractive potential. For all values of k ∈ Td
(Td – d-dimensional torus) the dependence of the number of eigenvalues of the family h(k) on the interaction
energy is studied. The conditions for that h(0) has simple or multifold virtual level (eigenvalue) at 0 are found for
d = 3, 4 (d ≥ 5).

2. Statement of the Main Result

Let L2(Td) be the Hilbert space of square-integrable functions defined on d-dimensional lattice Td.
Consider the two-particle Schrödinger operator h(k), k ∈ Td, associated with the direct integral expansion of

Hamiltonian of the system of two arbitrary particles, interacting via short-range pair potential [8], acting in L2(Td)
as

h(k) = h0(k)− v,
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here h0(k) – multiplication operator by a function:

Ek(p) = ε1(p) + ε2(k − p)

and v is an integral operator with kernel

v(p− s) = µ0 +

d∑
α=1

µα cos(pα − sα), µα > 0.

Assumption 1. Additionally, we assume that εl, l = 1, 2 are real-valued, continuous, even and periodic functions
with period π in every variable.

Please note that the Weyl theorem on the essential spectrum [10] implies that the essential spectrum σess(h(k))
of the operator h(k) coincides with the spectrum of the unperturbed operator h0(k):

σess(h(k)) = σ(h0(k)) = [m(k),M(k)],

where m(k) = min
p∈Td

Ek(p), M(k) = max
p∈Td

Ek(p).

Since v ≥ 0, one has:

sup(h(k)f, f) ≤ sup(h0(k)f, f) = M(k)(f, f), f ∈ L2(Td),

and, thus, h(k) does not have eigenvalues lying above the essential spectrum:

σ(h(k)) ∩ (M(k),+∞) = ∅.

We set:

µ±i (k; z) =
ci(k; z) + si(k; z)±

√
(ci(k; z)− si(k; z))2 + 4ξ2i (k; z)

2[ci(k; z)si(k; z)− ξ2i (k; z)]
,

where

ci(k; z) =

∫
Td

cos2 si ds

Ek(s)− z
, si(k; z) =

∫
Td

sin2 si ds

Ek(s)− z
,

ξi(k; z) =

∫
Td

sin si cos si ds

Ek(s)− z
, z ≤ m(k).

Recall that ci(k; z)si(k; z)− ξ2i (k; z) ≥ 0.
There exist (finite or infinite) limits:

lim
z→m(k)−0

b(k; z), lim
z→m(k)−0

ci(k; z), lim
z→m(k)−0

si(k; z), lim
z→m(k)−0

ξ2i (k; z),

where

b(k; z) =

∫
Td

ds

Ek(s)− z
.

Lemma 1. For any k ∈ Td there exists finite limits:

µ0(k) = lim
z→m(k)−0

1

b(k; z)
, (2.1)

µ±i (k) = lim
z→m(k)−0

µ±i (k; z), i = 1, . . . , d. (2.2)

Moreover,
µ−i (k) ≤ µ+

i (k) for all k ∈ Td, i = 1, . . . , d.

Let us define the functions:

α(µ; k) =

{
0 if µ0 ∈ (0;µ0(k)],

1 if µ0 ∈ (µ0(k);∞),
(2.3)

βi(µ; k) =


0 if µi ∈ (0;µ−i (k)],

1 if µi ∈ (µ−i (k);µ+
i (k)],

2 if µi ∈ (µ+
i (k);∞)

(2.4)

for all i = 1, . . . , d.
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Theorem 1. Let µ = (µ0, · · · , µd) ∈ Rd+1
+ . Then, counting multiplicity, h(k) has exactly:

α(µ; k) +

d∑
i=1

βi(µ; k)

eigenvalues below the essential spectrum.

Assumption 2. Assume that m(0) = min
p∈Td

E0(p) = 0 and

M = {p ∈ Td : m(0) = 0} = {p1, · · · , pn}, n <∞.
Moreover, assume that around points of M E0(p) is of order ρ > 0:

c|p− pl|ρ ≤ E0(p) ≤ c1|p− pl|ρ as p→ pl, l = 1, . . . , n.

Let C(Td) be a Banach space of continuous periodic functions on Td and G(k; z) denote the (Birman-
Schwinger) integral operator in L2(Td) with the kernel:

G(k; z; p, q) = v(p− q)(Ek(q))−1, p, q ∈ Td.
Definition 1. We say that the operator h(0) has a virtual level at 0 (lower edge of essential spectrum) if 1 is an
eigenvalue of G(0; 0) with some associated eigenfunction ψ ∈ L2(Td) satisfying:

ψ(·)
E0(·)

∈ L1(Td) \ L2(Td).

The number of such linearly independent vectors ψ is called the multiplicity of virtual level of h(0).

We set:

µ0
α = min

{
1

cα(0; 0)
,

1

sα(0; 0)

}
, α = 1, . . . , d.

We define the following sets depending on cα(0; 0) and sα(0; 0):

Lα1 =

{
µ0
α :

1

cα(0; 0)
> µ0

α

}
,

Lα2 =

{
µ0
α :

1

cα(0; 0)
= µ0

α, p
α
i =

π

2
or pαi = −π

2
for all i = 1, · · · , n

}
,

Lα3 =

{
µ0
α :

1

cα(0; 0)
= µ0

α, p
α
i 6=

π

2
or pαi 6= −

π

2
at least one i = 1, . . . , n

}
,

Mα1 =

{
µ0
α :

1

sα(0; 0)
> µ0

α

}
,

Mα2 =

{
µ0
α :

1

sα(0; 0)
= µ0

α, p
α
i = 0 or pαi = π for all i = 1, . . . , n

}
,

Mα3 =

{
µ0
α :

1

sα(0; 0)
= µ0

α, p
α
i 6= 0 or pαi 6= π at least one i = 1, . . . , n

}
,

where pαi – α-th coordinate of minimum point pi of E0(·).
Let us define the following functions:

β(µ0) =

{
0 if µ0 ∈ (0;µ0(0)),

1 if µ0 = µ0(0),

γ(α) =

{
0 if µα ∈ (0;µ0

α) orµα ∈ Lα1 ∪ Lα2,
1 if µα ∈ Lα3,

γ(α) =

{
0 if µα ∈ (0;µ0

α) or µα ∈ Lα1 ∪ Lα3,
1 if µα ∈ Lα2,

η(α) =

{
0 if µα ∈ (0;µ0

α) or µα ∈Mα1 ∪Mα2,

1 if µα ∈Mα3,

η(α) =

{
0 if µα ∈ (0;µ0

α) or µα ∈Mα1 ∪Mα3,

1 if µα ∈Mα2.
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Theorem 2. (i) Let ρ = 2, µ0 ∈ (0;µ0(0)], µα ∈ (0, µ0
α], α = 1, . . . , d. Then

1) if d = 3, 4, then 0 is

β(µ0) +

d∑
α=1

[γ(α) + η(α)]

– fold virtual level of h(0). In addition, if
d⋃

α=1

Lα2 ∩Mα2 6= ∅, then 0 is simultaneously

d∑
α=1

[γ̄(α) + η̄(α)]

– fold eigenvalue of h(0).
2) if d ≥ 5, then 0 is

β(µ0) +

d∑
α=1

[γ(α) + η(α)]

– fold eigenvalue of h(0).

(ii) Let ρ ∈ (
d

2
, d), d > 3, µ0 ∈ (0;µ0(0)], µα ∈ (0, µ0

α], α = 1, . . . , d. Then 0 is at least

β(µ0) +

d∑
α=1

[γ(α) + η(α)]

-fold virtual level of h(0).

Remark 1. 1) By definition of sets Lα2 and Mα2 for each α = 1, . . . , d one has Lα3 ∪Mα3 6= ∅. Moreover, in
this case, the multiplicity of the virtual level of h(0) is always not less than d if µα = µ0

α, α = 1, . . . , d.
2) For ρ = 2 the function

E0(·) = E0(p) = ε1(p) + ε2(p), ε1(p) = ε2(p) = cos2 p1 +

d∑
i=1

(1 + cos 2pi)

satisfies the assumptions of Theorem 2 with
d⋃

α=1

Lα2 ∩Mα2 6= ∅. In addition, L12 6= ∅.

3) For ρ ∈
(
d

2
, d

)
the function:

E0(p) = ε1(p) + ε2(p), ε1(p) = ε2(p) =

(
d∑
i=1

(1− cos 2pi)

)ρ/2
satisfies the assumptions of Theorem 2.

3. Eigenvalues of h(k)

Proof of Lemma 1. Note that proof of (2.1) is obvious.
By definition µ−α (k; z) < µ+

α (k; z) for any z < m(k) and k ∈ Td. Notice that:

cα(k; z)sα(k; z)− ξ2α(k; z) =

∫
Td

cos2 sαds

Ek(s)− z

∫
Td

sin2 tαdt

Ek(t)− z
−
∫
Td

sin sα cos sαds

Ek(s)− z

∫
Td

sin tα cos tαdt

Ek(t)− z

=

∫
Td

∫
Td

1
2 cos2 sα sin2 tαdsdt

(Ek(s)− z)(Ek(t)− z)
−
∫
Td

∫
Td

sin sα cos sα sin tα cos tαdsdt

(Ek(s)− z)(Ek(t)− z)
+

∫
Td

∫
Td

1
2 cos2 tα sin2 sαdsdt

(Ek(s)− z)(Ek(t)− z)

=
1

2

∫
Td

∫
Td

sin2(sα − tα)dsdt

(Ek(s)− z)(Ek(t)− z)
. (3.1)

Hence, cα(k; z)sα(k; z)− ξ2α(k; z) > 0 for all z < m(k) and k ∈ Td.
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The function µ+
α (k; z) we estimate as follows:

µ+
α (k; z) =

cα(k; z) + sα(k; z) +
√

(cα(k; z)− sα(k; z))2 + 4ξ2α(k; z)

2[cα(k; z)sα(k; z)− ξ2α(k; z)]

=
cα(k; z) + sα(k; z) +

√
(cα(k; z) + sα(k; z))2 − 4[cα(k; z)sα(k; z)− ξ2α(k; z)]

2[cα(k; z)sα(k; z)− ξ2α(k; z)]

<
cα(k; z) + sα(k; z)

cα(k; z)sα(k; z)− ξ2α(k; z)
. (3.2)

Since
sin2(sα − tα)

Ek(t)− z
> 0 for any z < m(k) and for a.e. k, s, t ∈ Td, there exists δ > 0 such that:

min
k,z

∫
Td

sin2(sα − tα)dsdt

Ek(t)− z
≥ δ.

From here and from (3.1) we get:

cα(k; z)sα(k; z)− ξ2α(k; z) >
δ

2

∫
Td

ds

Ek(s)− z
.

Since

cα(k; z) + sα(k; z) =

∫
Td

ds

Ek(s)− z

from (3.2) we get uniform upper estimate:

µ+
α (k; z) <

1

2δ
.

From here we get (2.2).
Lemma is proved.

Lemma 2. z < m(k) is an eigenvalue of h(k) if and only if ∆(k; z) = 0, where

∆(k; z) = (1− µ0b(k; z))

d∏
α=1

(
[1− µαcα(k; z)][1− µαsα(k; z)]− µ2

αξ
2
α(k; z)

)
. (3.3)

Proof. Let z < m(k) be an eigenvalue of h(k) with associated eigenfunction f 6= 0. Then h(k)f = zf and
so:

f = r0(z)vf, (3.4)

where r0(z) is a resolvent of h0(k). Introduce the following notations:

ϕ0 =

∫
Td

f(s)ds, (3.5)

ϕα =

∫
Td

cos sαf(s)ds, (3.6)

ψα =

∫
Td

sin sαf(s)ds, α = 1, 2, 3, ...d. (3.7)

Then, (3.4) is rewritten as:

f(p) =
µ0ϕ0

Ek(p)− z
+

1

Ek(p)− z

d∑
α=1

µα[cos pαϕα + sin pαψα]. (3.8)

From the π-periodicity of Ek(·) in each argument, it follows that:∫
Td

cos sαds

Ek(s)− z
=

∫
Td

cos sα cos sβds

Ek(s)− z
=

∫
Td

cos sα sin sβds

Ek(s)− z
=

∫
Td

sin sα sin sβds

Ek(s)− z
= 0, α 6= β. (3.9)
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Putting (3.8) in the relations (3.5)–(3.7) and using (3.9), we get that ϕ0, ϕ1, ..., ϕd, ψ1, ψ2, ..., ψd satisfy the system
of (2d+ 1)-linear equations:

ϕ0 = µ0b(k; z)ϕ0,

ϕα = µαcα(k; z)ϕα + µαξα(k; z)ψα, α = 1, ..., d

ψα = µαξα(k; z)ϕα + µαsα(k; z)ψα, α = 1, ..., d.

(3.10)

This system of equations has a nonzero solution (ϕ0, . . . , ϕd, ψ1, . . . ψd) if and only if its determinant is zero,
i.e. detD(k; z) = 0. It is easy to see that detD(k; z) = ∆(k; z).

Conversely, let ∆(k; z) = 0, z < m(k). Then, at least one of the equalities 1 − µ0b(k; z) = 0, [1 −
µαcα(k; z)][1 − µαsα(k; z)] − µ2

αξ
2
α(k; z) = 0, α ∈ {1, . . . , d} holds. Thus, the vector c = (c0, · · · , c2d) where

c0 = 1, cα = ϕα, cd+α = ψα, is a solution of (3.10). Consequently, one of the functions:

1

Ek(p)− z
,

1

Ek(p)− z
µα[ϕα cos pα + ψα sin pα]

is an eigenfunction of h(k) associated with eigenvelue z < m(k).
Observe that ∆(k; ·) is the Fredholm determinant of the operator I − r0(z)v, i.e. ∆(k; z) = det(I − r0(z)v).

Moreover, it is well-known [11] that geometric multiplicity of eigenvalue 1 of r0(z)v coincides with the multiplicity
of zero z of ∆(k; ·). Since the multiplicities of eigenvalues 1 and z of operators respectively r0(z)v and h(k)
are the same, we get that multiplicity of zeros of ∆(k; ·) is equal to the multiplicity of eigenvalues of h(k). The
lemma is thus proved.

Proof of Theorem 1. Notice that the function:

∆α(k; z) = [1− µαcα(k; z)][1− µαsα(k; z)]− µ2
αξ

2
α(k; z),

is a Fredholm determinant associated with the operator I− r0(z)vα, where vα – is an integral operator with kernel
vα(p− s) = µα cos(pα − sα).

Since vα is a two-dimensional operator, number of zeros βα(µ; k) with multiplicities of the function ∆α(k; ·),
lying below m(k), is not more than 2. Function ∆α(k; ·) can be represented as:

∆α(k; z) = [cα(k; z)sα(k; z)− ξ2α(k; z)]
(
µα − µ−α (k; z)

)(
µα − µ+

α (k; z)
)
. (3.11)

Since:
lim

z→m(k)−0
µ±α (k; z) = µ±α (k) <∞,

one has:

µα − µ±α (k;m(k)) =

{
≥ 0 if µα ∈ (0, µ±α (k)],

< 0 if µα ∈ (µ±α (k),∞).

Consequently, from (3.11) and (3.1) it can be deduced that:

βα(µ; k) =


0 if µα ∈ (0, µ−α (k)],

1 if µα ∈ (µ−α (k), µ+
α (k)],

2 if µα ∈ (µ+
α (k),∞).

Observe that the function 1 − µ0b(k; ·) is monotonously decreasing in (∞,m(k)). Thus for the number of
zeros α(µ; k) of the function ∆α(k; ·) below m(k) it holds:

α(µ; k) =

{
0 if µ0 ∈ (0;µ0(k)],

1 if µ0 ∈ (µ0(k);∞).

If µ0(k) = 0, then lim
z→m(k)−0

b(k; z) = +∞. Obviously, in this case α(µ; k) = 1 for any µ0 > 0.

The aforementioned facts imply that if: µ = (µ0, µ1, . . . , µd) ∈ Rd+1
+ , then the function ∆(k; ·) has exactly:

α(µ; k) +

d∑
i=1

βi(µ; k)

zeros (counting multiplicities) below m(k).
Then, from Lemma 1, we get that for µ = (µ0, µ1, . . . , µd) ∈ Rd+1

+ the operator h(k) exactly:

α(µ; k) +

d∑
i=1

βi(µ; k)
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zeros (counting multiplicities) below m(k).
This finishes the proof.
Proof of Theorem 2. We shall study the equation:

G(0; 0)ϕ = ϕ.

Notice that the function ∆(k; z), defined as (3.3) is the Fredholm determinant of I −G(k; z). From Hypothesis 2,
the function ∆(k; z) is defined for k = 0, m(0) = 0. Since E0(·) is even, the function

ξi(0; z) =

∫
Td

sin si cos sids

E0(s)− z
= 0, z ≤ 0.

Consequently, the function ∆(0; z) can be represented as:

∆(0; z) = (1− µ0b(0; z))

d∏
α=1

(
[1− µαcα(0; z)][1− µαsα(0; z)]

)
.

The following lemma can be proved analogously to Lemma 2.

Lemma 3. The number λ = 1 is an eigenvlue of G(0; 0) if and only if ∆(µ) = ∆(0; 0) = 0. In this case if

1 − µ0b(0; 0) = 0
(

1 − µαcα(0; 0) = 0 or 1 − µαsα(0; 0) = 0
)
, then the function ϕ0 = 1

(
ϕα(p) = cos pα or

ψα(p) = sin pα

)
is an eigenfucntion of the operator G(0; 0), associated with 1.

Obviously, ∆(µ) > 0 if µ0 ∈ (0;µ0(0)), µα ∈ (0;µ0
α), α = 1, . . . , d. By Lemma 3 λ = 1 is not eigenvalue of

G(0; 0). Hence 0 is not an eigenvalue of h(0) for µ0 ∈ (0;µ0(0)), µα ∈ (0;µ0
α), α = 1, . . . , d.

Further, consider the equation G(0; 0)ϕ = ϕ for µ0 = µ0(0), µα = µ0
α, α = 1, . . . , d.

(i) a) Let ρ = 2, µ0 = µ0(0).
According to Lemma 3, λ = 1 is an eigenvalue of G(0; 0), with associated eigenfunction ϕ0(p) = 1.
It is easy to check that if d = 3, 4, then:

F0(·) ∈ L1(Td) \ L2(Td),
and if d ≥ 5, then:

F0(·) ∈ L2(Td),
where

F0(p) =
1

E0(p)
.

It means that z = 0 is virtual level of h(0) for d = 3, 4, and eigenvalue for d ≥ 5.
b) Let µα = µ0

α, α = 1, . . . , d. Then µα belongs one and only one of the sets Lα1, Lα2, Lα3 Mα1, Mα2,
Mα3.

If µα ∈ Lα1
(
µα ∈ Mα1

)
, then 1 − µαcα(0; 0) > 0

(
1 − µαsα(0; 0) > 0

)
. If µα ∈ Lα2

(
µα ∈ Mα2

)
, then

cos p
(α)
i = 0

(
sin p

(α)
i = 0

)
for all i = 1, . . . , d. In this case

Fα(·) ∈ L2(Td),
(

Φα(·) ∈ L2(Td)
)
, d ≥ 3,

where

Fα(p) =
cos pα
E0(p)

, Φα(p) =
sin pα
E0(p)

, α = 1, ..., d,

and, so, z = 0 is not virtual level of h(0) for d ≥ 3, but is an eigenvalue of this operator.

If µα ∈ Lα3
(
µα ∈Mα3

)
, then cos p

(α)
i 6= 0

(
sin p

(α)
i 6= 0

)
at least one of i = {1, . . . , d}. Consequently,

Fα(·) ∈ L1(Td) \ L2(Td),
(

Φα(·) ∈ L1(Td) \ L2(Td)
)

for d = 3, 4,

Fα(·) ∈ L2(Td),
(

Φα(·) ∈ L2(Td)
)

for d > 4,

i.e. z = 0 is a virtual level (eigenvalue) of the operator h(0) for d = 3, 4 (d > 4).
From a) and b) we deduce the following:
if µ0 = µ0(0), then z = 0 is virtual level (eigenvalue) of h(0) for d = 3, 4 (d > 4);
if µα ∈ Lα1 ∪ Lα2, then z = 0 is not virtual level of h(0) for d ≥ 3;
if µα ∈ Lα3, then z = 0 is virtual level (eigenvalue) of the operator h(0) for d = 3, 4 (d > 4);
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if µα ∈ Lα2, then z = 0 is eigenvalue of the operator h(0) for d ≥ 3;
if µα ∈Mα1 ∪Mα2, then z = 0 is not virtual level of h(0) for d ≥ 3;
if µα ∈Mα3, then z = 0 is a virtual level (eigenvalue) of h(0) for d = 3, 4 (d > 4);
if µα ∈Mα2, then z = 0 is eigenvalue of h(0) for d ≥ 3.
Part (i) of Theorem 2 is proved.
Part (ii) of Theorem 2 is proved analogously.
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