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Accelerated dynamics in adiabatically-tunable asymmetric double-well potential
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We study a scheme for the acceleration of adiabatic quantum dynamics. Masuda-Nakamura’s theory of acceleration uses a strategy of combining

two opposite ideas: infinitely-large time-magnification factor (ᾱ) and infinitely-small growth rate (ε) for the adiabatic parameter. We apply

the proposed method to a system with a parameter-dependent asymmetric double-well potential which has no scale invariance, and obtain the

elctromagnetic field required to accelerate the system. The ground state wave function, initially localized in one well, quickly moves to another

well. We investigate two kinds of ground-state wave functions: with and without space-dependent phase η. For the system with non-zero η,

we show the fast-forward of the adiabatic change for current density distribution more clearly characterizes the well-to-well transport and is

deformed as the finite renormalized time-multiplication factor (v̄ = εᾱ) is varied.
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1. Introduction

The shorter production time in manufacturing products (e.g., electronics, automotives, plants, etc.) is becoming
an important factor in nanotechnology. Currently, we can control even individual atoms [1] and macroscopic wave
packets in BEC [2–5]. If we try to fabricate massive amounts of such nanoscale stuctures, we should shorten
the dynamics of each atom or BEC to get its desired target states in shorter times. A theory to accelerate
quantum dynamics is proposed by Masuda and Nakamura [6] with use of additional phase and driving potential.
This theory aims to accelerate a known quantum evolution and to obtain the desired target states on shorter
time scales, by fast forwarding the standard quantum dynamics. The theory of fast-forward can be developed
to accelerate the adiabatic quantum dynamics [7], and constitutes one of the most promising means to obtain
a shortcut to adiabaticity [8–14]. The relationship between the acceleration and the shortcut to adiabaticity is
presently clear [15, 16]. Adiabaticity occurs when the external parameter of Hamiltonian is very-slowly changed.
The quantum adiabatic theorem [17–21] states that if the system is initially in an eigenstate of the instantaneous
Hamiltonian, it remains so during the adiabatic process. In section 2, we briefly summarize the theory of fast-
forward of quantum adiabatic dynamics [6, 7].

2. The theory of fast-forward by Masuda and Nakamura

Let Ψ0(x, t) be a known function of space (x) and time (t). We shall call it a standard state. Let α the time
magnification factor of the acceleration. Time evolution of the wave funtion (WF) is sped up if α > 1 and slowed
down if 0 < α < 1. In general α can be time dependent α = α(t). The time evolution of the WF is accelerated
and decelerated when α(t) is increases and decreases, respectively. The ideal accelerated state is defined as:

|Ψα(t)〉 ≡ |Ψ0(Λ(t))〉, (1)

where

Λ(t) =

t∫
0

α(t′)dt′, (2)

but it proves difficult to realize |Ψα(t)〉. Consequently, Nakamura and Masuda redefined the accelerated state with
use of an additional phase factor f(x, t) as:

|ΨFF(x, t)〉 = exp[if(x, t)]|Ψa(x, t)〉. (3)
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The dynamics for the standard state is assumed to be described by Schrödinger equation:

ih̄
dΨ0

dt
= − h̄2

2m0
∇2Ψ0 + V0(x, t)Ψ0. (4)

The corresponding equation for the accelerated state is:

ih̄
dΨFF

dt
= − h̄2

2m0
∇2ΨFF + VFFΨFF, (5)

where VFF is the driving potential.
By using Eqs. (1)–(5), the expression for f and VFF can be written, respectively, as:

f(x, t) = (α(t)− 1)η(x,Λ(t)) (6)

and

VFF = V0 − h̄η
dα

dt
− h̄α

2 − 1

α

∂η

∂t
− h̄2

2m0
(α2 − 1)(∇η)2, (7)

where η ≡ η(x,Λ(t)) is the phase of the standard state Ψ0.
Next, we study the fast-forwarding of adiabatic quantum dynamics. Masuda and Nakamura [7] proposed a

theory to accelerate the adiabatic quantum dynamics by using a combination of opposite ideas of infinitely-large
time multiplication and infinitesimally-slow evolution rate of adiabatic dynamics, to generate the finite driving
potential, by which we obtain the final adiabatic state in any desired short time. To apply the theory of accelerated
standard dynamics, it is necessary to regularize the adiabatic state so that it satisfies the time-dependent Schrödinger
equation. A regularized potential and WF is written a

V reg
0 = V0 + εṼ (x, t), (8)

Ψreg
0 (x, t, R(t)) = φn(x,R(t))e(−i/h̄)

∫ t
0
En(R(t′))dt′eiεθ(x,t), (9)

where R is a time-dependent adiabatic parameter as:

R(t) = R(0) + εt (10)

with ε� 1, and: φn is the eigenstate of the time-independent Schrödinger equation,

Hφn = Enφn. (11)

Formally, φn can be decomposed as:
φn = φ̄ne

iη(x,t), (12)

where φ̄n is a real positive amplitude and η is the phase. The Schrödinger equation for Ψreg
0 is represented as:

ih̄
dΨreg

dt
= − h̄2

2m0
∇2Ψreg + V reg

0 (x, t)Ψreg. (13)

Ψreg
0 and V reg

0 are assumed to satisfy Eq. (13) up to O(ε). By subtituting Eqs. (8), (9) and (12) into Eq. (13) and
decomposing it into real and imaginary parts, we have θ and Ṽ as follows:

φ̄2
n∇2θ + 2φ̄n∇φ̄n∇θ +

2m0

h̄
φ̄n
∂φ̄n
∂R

= 0, (14)

and

Ṽ = −h̄(∂Rη)− h̄2

m0
∇η∇θ. (15)

Here, θ can be solved as:

∇θ = −m0

h̄

1

φ̄2
n(x,R)

∂

∂R

x∫
−∞

φ̄2
n(x′, R)dx′. (16)

Applying the general issue in Eqs. (6) and (7), we have:

f(x, t) = (α(t)− 1)εθ(x, R(Λ(t)). (17)

With use of f in Eq. (17), the driving potential VFF to realize fast-forward of adiabatic quantum dynamics can be
written as:

VFF = −αεh̄(∂Rη)− αε h̄
2

m0
∇η∇θ (18)

−h̄dα
dt
εθ − h̄ε2α2 ∂θ

∂R
− h̄2

2m0
ε2α2(∇θ)2 + V0.
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The expression for driving electric field can be written as:

ÊFF ≡ −
∂

∂x
(VFF − V0) = h̄εα̇∇θ + h̄ε2α2 ∂

∂R
(∇θ) +

h̄2

m0
(αε)2∇θ∇2θ (19)

+αεh̄∂R(∇η) + αε
h̄2

m0
∇(∇η∇θ).

Taking the limit ε→ 0, ᾱ→∞, with εᾱ = v̄, we can define v(t) and v̇(t) as:

αε = v̄

(
1− cos

2πt

TF

)
≡ v(t), (20)

α̇ε = v̇(t). (21)

Then, ΨFF becomes ΨFF = φ̄ne
i(η+v(t)θ), and ÊFF is given by:

ÊFF = h̄v̇(t)∇θ + h̄(v(t))2∂R∇θ +
h̄2

m0
(v(t))2∇θ∇2θ (22)

+v(t)h̄∂R(∇η) + v(t)
h̄2

m0
∇(∇η∇θ).

The magnification factor α in Eq. (20) is commonly chosen for 0 ≤ t ≤ TF , where v̄ is the time average of
α(t)ε during the fast forwarding. The final time of the fast-forward TF is related to the standard final time T as
TF = εT/v̄, where T is taken as T = 1/ε(� 1) and R(T )−R(0) = 1.

The driving electric field (ÊFF) guarantees the fast-forward of adiabatic quantum dynamics [22]. Recently,
Nakamura et al. [23] suggested a new theory for the fast-forwarding of the adiabatic dynamics without the
additional phase f . But the present and new theories are compatible by using the gauge transformation as shown
in Appendix A.

3. Accelerated dynamics in adiabatically tunable-asymmetric double-well potential: case of Ṽ = 0

We show the acceleration of the adiabatic quantum dynamics with use of a parameter-dependent asymmetric
double-well potential, which does not satisfy the scale invariance such as dilation or translation invariance. Let’s
define the zero energy (E0 = 0) eigen-function which is a superposition of a pair of Gaussian functions with their
center at x = 0 and x = d, where d represents the distance between the two wells. To be explicit:

Ψ0 = h(R)

[
(1−R)e−

x2

2a +Re−
(x−d)2

2a

]
, (23)

changing in the range 0 ≤ R ≤ 1. The potential V0(x) to realize Ψ0 is written by:

V0(x) ≡ h̄2

2m

Ψ′′0
Ψ0

=
h̄2

2m0

[
− 1−R

a

(
1− x2

a

)
− R

a

(
1− (x− d)2

a

)
f(x)

]
× 1

(1−R) +Rf(x)
, (24)

with f(x) = e
d
a (x− d

2 ). The normalization factor h(R), determined by
∫ ∞
−∞
|Ψ|2 = 1, is given by:

h(R) =
1

(πa)1/4

(
1− 2R+ 2R2 + 2R(1−R)e−

d2

4a

)−1/2

. (25)

Figures 1 and 2 show the change of the potential and wave function for various values of R, between R = 0
and R = 1. As the potential minimum moves from x = 0 to x = d, the center-of-mass of WF also moves in the
same direction. Fig. 3 shows the probability amplitude |Ψ0|2 in the adiabatic dynamics with R(t) = εt. Fig. 4
shows |ΨFF|2 in the fast-forwarded adiabatic dynamics, where R(Λ(t)) is written as:

R(Λ(t)) = ε

t∫
0

α(t′)dt′ =

t∫
0

v(t′)dt′ = v̄

(
t− TF

2π
sin

2πt

TF

)
. (26)

The adiabatic standard dynamics evolves up to the final time T = 102 with use of ε = 10−2 and its accelerated
version up to the shortened final time TF = T/ᾱ = εT/v̄ = 0.025 with use of the mean acceleration factor
ᾱ = 4× 103 and mean velocity v̄ = ᾱε = 40.
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FIG. 1. The change of V0(x) with various values of R: R = 0 → 0.25 → 0.5 → 0.75 → 1
(from top left to bottom right), d = 5

FIG. 2. The change of probability amplitude |Ψ0(x)| with various values of R: R = 0→ 0.25→
0.5→ 0.75→ 1, d = 5

FIG. 3. 3D plot of |Ψ̂|2 with
ε = 10−2, T = 100, a = 1, and d = 3

FIG. 4. 3D plot of |Ψ̂FF|2 with TF = T/ᾱ = 0.025

From Eqs. (16), ∇θ is given by:

∇θ = −1

2
(πa)1/2

[
κ(

(1−R)e−
x2

2a +Re−
(x−d)2

2a

)2 − (−2 + 4R+ (2− 4R)e−
d2

4a )µ(
(1−R)e−

x2

2a +Re−
(x−d)2

2a

)2
g

]
, (27)
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with

κ = (2− 4R)e−
d2

a erfc(−
x− d

2√
a

) + 2R erfc

(
−x− d√

a

)
+ (2R− 2)erfc

(
− x√

a

)
,

µ =

(
2R(1−R)e−

d2

a erfc

(
−
x− d

2√
a

)
+R2erfc

(
−x− d√

a

)
+ (1−R)2erfc

(
− x√

a

))
,

and
g =

(
2(1−R)Re−

d2

4a + 2R2 − 2R+ 1
)
,

where the complimentary error function erfc is :

erfc(x) =
2√
π

∞∫
x

e−t
2

dt. (28)

The driving electric field (ÊFF) to generate the acceleration is calculated by Eq. (22) and is shown in Fig. 5.

FIG. 5. ÊFF with TF = 0.025

4. The case of Ṽ 6= 0

In the previous example, the right-hand side of Eq. (15) was always vanishing, because of the absence of a
space-dependent phase η in the standard WF. In many practical cases, we have an adiabatic state with a space-
dependent phase η. Choosing again the asymmetric double-well potential, we shall investigate the fast-forwarding
with non-zero Ṽ by having recourse to a stationary state with a phase η. Here, the adiabatic state with the
eigenvalue En=0 = 0 is chosen as:

Ψ0 = h(R)

[
(1−R)e−

x2

2a +Re−
(x−d)2

2a

]
eiη, (29)

with η given as:

η = B

x∫
−∞

exp

− 1

h(R)
(

(1−R)e−
x2

2a +Re−
(x−d)2

2a

)2

 , (30)

where B is a real constant. The potential that guarantees the eigenstate in Eq. (29) is written as:

V0(x) =
h̄2

2m0

[(
−1−R

a

(
1− x2

a

)
− R

a

(
1− (x− d)2

a

)
f(x)

)
(31)

× 1

(1−R) +Rf(x)
+

1

2
exp

− 1

h(R)
(

(1−R)e−
x2

2a +Re−
(x−d)2

2a

)2


 ,

with f(x) = e
d
a (x− d

2 ), and h(R) being given in Eq. (25). Eq. (31) is available from Eq. (24) by adding an
extra term. ∇θ, which appears in the regularization procedure, is the same as in Eq. (27) because of the formula
Eq. (16). From Eqs. (15) and (29), Ṽ is written as:
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Ṽ = −h̄ ∂

∂R

B x∫
−∞

exp

− 1

h(R)
(

(1−R)e−
x2

2a +Re−
(x−d)2

2a

)2


 (32)

− h̄
2

m0
Bexp

− 1

h(R)
(

(1−R)e−
x2

2a +Re−
(x−d)2

2a

)2

∇θ.
Figures 6 and 7 show the amplitude of the standard wave function and its fast-forward version with η 6= 0,

respectively. ÊFF is evaluated by Eqs. (22), and is depicted in Fig. 8. We see no big difference of fast forward
between the cases with η = 0 and η 6= 0.

FIG. 6. 3D plot of |Ψ̂|2 with η 6= 0
and B = 1

FIG. 7. 3D plot of |Ψ̂FF|2 with η 6= 0,
TF = T/ᾱ = 0.025 and B = 1

The present scheme also introduces a current density jFF. We see:

jFF(x, t) = Re

[
ΨFF

h̄

im
∇ΨFF

]
=

h̄

m
φ̄2
n(x,Λ(t)) [∇η(x,Λ(t)) + v(t)∇θ(x,Λ(t))] , (33)

j(x, t) =
h̄

m
φ̄2
n(x, t)∇η(x, t), (34)

and find the relationship:

jFF(x, t) = j(x,Λ(t)) +
h̄

m
v(t)φ̄2

n(x,Λ(t))∇θ(x,Λ(t)). (35)

Thus, jFF has a non-adiabatic current in addition to the adiabatic one j(x,Λ(t)). Figs. 9 and 10 show the
adiabatic current density and fast-forward current density respectively. We find : the adiabatic current density
distribution in Fig. 9 is radically changed by the fast forwarding. This change, in particular, the increase of the
current intensity becomes more marked as the control parameter v̄ associated with the fast forwarding is increased
(see Fig. 10). At the end of the fast forwarding, the non-adiabatic current vanishes.

The asymmetric double-well potential in the present paper breaks the scale invariance. In the case of a scale-
invariant single well, Lewis-Riesenfeld’s invariant method [11] can also lead to the accelerated dynamics, which
will be discussed in Appendix B.

5. Conclusion

The Masuda-Nakamura’s scheme of accelerated adiabatic quantum dynamics is applied to the system with
a tunable asymmetric double-well potential and the driving electric field is obtained. The potential here has no
scale invariance. A combination of opposite ideas of infinitely-large time multiplication and infinitesimally-slow
adiabatic dynamics generates a finite driving potential, by which we obtain the final adiabatic state in any desired
short time. We investigated two kinds of ground state wave functions, with and without the space-dependent
phase η. For the system with non-zero η, we see that the fast-forward of current density acquires a non-adiabatic
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FIG. 8. ÊFF with η 6= 0, TF = T/ᾱ =
0.025 and B = 1

FIG. 9. 3D plot of j with B = 1

(a) (b)

(c)

FIG. 10. 3D plot of jFF with η 6= 0 and B = 1: (a) ᾱ = 1, v̄ = 0.01, TF = 100; (b) ᾱ = 10,
v̄ = 0.1, TF = 10; (c) ᾱ = 102, v̄ = 1, TF = 1

contribution besides the adiabatic current density and that the current intensity radically grows as the control
parameter associated with fast forwarding is increased.
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Appendix A. Gauge tranformation to the scheme without the additional phase

Let’s consider the gauge transformation as follows :

ΨFF → Ψ̂FFe
iζ

VFF → V̂FF −
h̄

q
ζ̇

AFF(= 0)→ ÂFF +
h̄c

q
∇ζ,

with
ζ = εα(t)θ(x,R(Λ(t))) (A.1)

Then, the Schrödinger equation becomes that of a charge particle under the gauge potentials ÂFF and V̂FF:

ih̄
∂Ψ̂FF

∂t
=

1

2m0

(
h̄

i
∇− q

c
ÂFF

)2

Ψ̂FF + qV̂FFΨ̂FF. (A.2)

The wave function becomes free from the additional phase :

Ψ̂FF = φn(x,R(Λ(t))), (A.3)

and the scalar and vector potential are given by:

V̂FF = − h̄2

2m0
ε2α2(∇θ)2 − αεh̄(∂Rη)− αε h̄

2

m0
∇η∇θ, (A.4)

ÂFF = −h̄εα∇θ (A.5)

respectively. Equations (A.2)–(A.5) are nothing but the scheme proposed in Ref. [23].

Appendix B. Relationship between Masuda-Nakamura’s scheme and Lewis-Riesenfeld method

Let us consider the Hamiltonian for single well potential:

H =
p̂2

2m
+

1

2
mω2(t)x̂2, (B.1)

where ω is a time-dependent parameter. The wave function at any time t can be deduced from Lewis-Riesenfeld
theory of invariants [11]. By assuming the existence of a Hermitian invariant of the homogeneous, its quadratic
form is given by:

I(t) =
1

2
[α(t)x̂2 + β(t)p̂2 + γ(t)(x̂p̂+ p̂x̂)], (B.2)

where α, β, and γ are real function of time. I(t) should satisfy the conditions:

dI

dt
=
∂I

∂t
+

1

ih̄
[I,H] = 0. (B.3)

In order to satisfy Eq. (B.3), it is convenient to introduce another function σ(t), defined by:

β(t) = σ2(t), (B.4)

where σ2(t) is a real function of time. By making the scale transformation σ(t) = c1/4ρ(t), the invariant may be
written in the form:

I =
1

2
mω2

0(1/ρ2)x̂2 +
1

2m
(ρp̂−mρ̇x̂)2. (B.5)

Here, c is an arbitrary constant of integration and ρ satisfies the Ermakov equation:

ρ̈+ ω2(t)ρ− ω2
0

ρ3
= 0. (B.6)

The eigenstates and the eigenvalues of the invariant operator I(t) may be found by an operator technique.
Thus the dynamical phase function may be written in the form:

αn(t) = − i
h̄

(n+
1

2
)

t∫
0

dt′
1

ρ2(t′)
. (B.7)

For the Hamiltonian in Eq. (B.1), the general solution of time-dependent Schrödinger equation can be expanded as
a linear combination with eigenvectors ψn of I as:

ψ(x, t) = Σncne
iαnψn(x, t) = Σncnψn(x, t)e−

i
h̄ (n+ 1

2 )
∫ t
0
dt′ρ−2(t′). (B.8)
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Formally ψn can be decomposed as ψn = ψ̄ne
iζ , where ζ =

m

2h̄

ρ̇

ρ
x2.

By using ω in Eq. (B.6), the potential for the single well in Eq. (B.1) can be written as:

V (x, t) =
1

2
m

[
ω2

0

ρ4(t)
− ρ̈

ρ(t)

]
x2. (B.9)

The corresponding V0 is:

V0(x, t) =
1

2
m

ω2
0

ρ4(t)
x2. (B.10)

Applying Eq. (16) to the adiabatic eigenstate of Eq. (B.1), we can show the equality:

ζ = εα(t)θ(x,R(Λ(t)) =
m

2h̄

ρ̇

ρ
x2, (B.11)

where Λ(t) =

∫ t

0

α(t′)dt′. By making space and time derivatives of Eq. (B.11), the potential in Eq. (B.9) can be

written as:

V (x, t) = V0 − h̄
dα

dt
εθ − h̄ε2α2 ∂θ

∂R
− h̄2

2m
ε2α2(∇θ)2, (B.12)

which is nothing but VFF in Eq. (18) in the case η = 0. Therefore, Lewis-Riesenfeld scheme is equivalent to
Masuda-Nakamura’s. In contrast with [12] and [15], α(t) is an arbitrary and experimentally-accessible time scaling
factor and is not necessary to satisfy the Ermakov equation with 6 boundary conditions. Besides this advantage,
the Masuda-Nakamura’s scheme is applicable to any kind of scale-noninvariant potentials.
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