
Ministry of Education and Science of the Russian Federation 
Saint Petersburg National Research University of Information 

Technologies, Mechanics, and Optics 
 
 
 
 
 
 
 
 
 
 

NANOSYSTEMS: 
PHYSICS, CHEMISTRY, MATHEMATICS 

 
 

2017, volume 8 (2) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Наносистемы: физика, химия, математика 
2017, том 8, № 2 



 
 

 
 

NANOSYSTEMS: 
PHYSICS, CHEMISTRY, MATHEMATICS 

 

ADVISORY BOARD MEMBERS 
Chairman: V.N. Vasiliev (St. Petersburg, Russia), 
V.M. Buznik (Moscow, Russia); V.M. Ievlev (Voronezh, Russia), P.S. Kop’ev(St. Petersburg, 
Russia), N.F. Morozov (St. Petersburg, Russia), V.N. Parmon (Novosibirsk, Russia), 
A.I. Rusanov (St. Petersburg, Russia), 
 

EDITORIAL BOARD 
Editor-in-Chief: I.Yu. Popov (St. Petersburg, Russia) 
 

Section Co-Editors: 
Physics – V.M. Uzdin (St. Petersburg, Russia), 
Chemistry, material science –V.V. Gusarov (St. Petersburg, Russia), 
Mathematics – I.Yu. Popov (St. Petersburg, Russia). 
 

Editorial Board Members: 
V.M. Adamyan (Odessa, Ukraine); O.V. Al’myasheva (St. Petersburg, Russia); 
A.P. Alodjants (Vladimir, Russia); S. Bechta (Stockholm, Sweden); J. Behrndt (Graz, Austria); 
M.B. Belonenko (Volgograd, Russia); V.G. Bespalov (St. Petersburg, Russia); J. Brasche 
(Clausthal, Germany); A. Chatterjee (Hyderabad, India); S.A. Chivilikhin (St. Petersburg, 
Russia); A.V. Chizhov (Dubna, Russia); A.N. Enyashin (Ekaterinburg, Russia), P.P. Fedorov 
(Moscow, Russia); E.A. Gudilin (Moscow, Russia); V.K. Ivanov (Moscow, Russia), 
H. Jónsson (Reykjavik, Iceland); A.A. Kiselev (Madison, USA); Yu.S. Kivshar (Canberra, 
Australia); S.A. Kozlov (St. Petersburg, Russia); P.A. Kurasov (Stockholm, Sweden); 
A.V. Lukashin (Moscow, Russia); V.A. Margulis (Saransk, Russia); I.V. Melikhov (Moscow, 
Russia); G.P. Miroshnichenko (St. Petersburg, Russia); I.Ya. Mittova (Voronezh, Russia); 
H. Neidhardt (Berlin, Germany); V.V. Pankov (Minsk, Belagus); K. Pankrashkin (Orsay, 
France); A.V. Ragulya (Kiev, Ukraine); V. Rajendran (Tamil Nadu, India); A.A. Rempel 
(Ekaterinburg, Russia); V.Ya. Rudyak (Novosibirsk, Russia); D Shoikhet (Karmiel, Israel); 
P Stovicek (Prague, Czech Republic); V.M. Talanov (Novocherkassk, Russia); A.Ya. Vul’ 
(St. Petersburg, Russia); A.V. Yakimansky (St. Petersburg, Russia), V.A. Zagrebnov 
(Marseille, France). 
 

Editors: 
I.V. Blinova; A.I. Popov; A.I. Trifanov; E.S. Trifanova (St. Petersburg, Russia), 
R. Simoneaux (Philadelphia, Pennsylvania, USA). 
 

Address: University ITMO, Kronverkskiy pr., 49, St. Petersburg 197101, Russia. 
Phone: +7(812)232-67-65, Journal site: http://nanojournal.ifmo.ru/,  
E-mail: popov1955@gmail.com 
 

AIM AND SCOPE 
The scope of the journal includes all areas of nano-sciences. Papers devoted to basic problems of physics, 
chemistry, material science and mathematics inspired by nanosystems investigations are welcomed. Both 
theoretical and experimental works concerning the properties and behavior of nanosystems, problems of its 
creation and application, mathematical methods of nanosystem studies are considered.  
The journal publishes scientific reviews (up to 30 journal pages), research papers (up to 15 pages)  
and letters (up to 5 pages). All manuscripts are peer-reviewed. Authors are informed about the referee opinion 
and the Editorial decision. 

      N   A   N   O 

Ф &Х &М 



CONTENT 
 

MATHEMATICS 
 

S. Albeverio, S. Fassari, F. Rinaldi 
The behaviour of the three-dimensional Hamiltonian 

   0 0[ ]x x x x        as the distance between  
the two centres vanishes 153 
 
G. Cardone 
Waveguides with fast oscillating boundary 160 
 
V. Derkach, C. Trunk 
Coupling of definitizable operators in Kreĭn spaces 166 
 
L. Grubišić, J. Tambača 
Quasi-semidefinite eigenvalue problem and applications 180 
 
A.S. Melikhova 
Zigzag chain model and its spectrum 188 
 
D.L. Meynster, I.Y. Popov, A.I. Popov 
Model of tunneling through double quantum layer 
in a magnetic field 194 
 
H. Neidhardt, A. Stephan, V.A. Zagrebnov 
On convergence rate estimates for approximations of solution 
operators for linear non-autonomous evolution equations 202 
 
N. Peyerimhoff, M. Täufer, I. Veselić 
Unique continuation principles and their absence for Schrӧdinger 
eigenfunctions on combinatorial and quantum graphs  
and in continuum space 216 
 
PHYSICS 
 

S.A. Botman, S.B. Leble 
Electrical conductivity model for quasi-one-dimensional structures 231 
 
S.I. Ezhenkova 
Mathematical modeling of sedimentation of nanoparticles 
in the vessel of finite depth 236 
 
A.E. Ivanova, S.A. Chivilikhin, A.V. Gleim 
Quantum random number generator based on homodyne detection 239 
 



K.V. Gubaidullina, S.A. Chivilikhin 
Stability of Grover's algorithm in respect to perturbations 
in quantum circuit 243 
 
S.B. Leble 
Kolmogorov equation for Bloch electrons and electrical resistivity 
models for nanowires 247 
 
I.F. Melikhov 
Asymptotic solution of ultrasonic near-field levitation problem 260 
 
M.N. Nikolaeva, T.D. Anan’eva, A.N. Bugrov, 
A.T. Dideikin, E.M. Ivankova 
Correlation between structure and resistance of composites based 
on polystyrene and multilayered graphene oxide 266 
 
E.O. Samsonov 
Error analysis in circuits building at the quantum computing 
platform IBM Quantum Experience 272 
 
A.S. Starkov, K.V. Korzenkov, K.A. Starkov 
Two eccentric cylinders in a uniform electric field 277 
 
CHEMISTRY AND MATERIAL SCIENCE 
 

N.R. Popova, A.L. Popov, A.B. Shcherbakov, V.K. Ivanov 
Layer-by-layer capsules as smart delivery systems of CeS2 
nanoparticles-based theranostic agents 282 
 
I.V. Zagaynov, A.K. Buryak 
A surface and catalytic investigation of ceria by laser desorption 
ionization mass spectrometry 290 
 
Information for authors 296 
 



NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2017, 8 (2), P. 153–159
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In this note, we continue our analysis of the behavior of self-adjoint Hamiltonians with symmetric double wells given by twin point interactions

perturbing various types of “free Hamiltonians” as the distance between the two centers shrinks to zero. In particular, by making the coupling

constant to be renormalized and also dependent on the separation distance between the two impurities, we prove that it is possible to rigorously

define the unique self-adjoint Hamiltonian that, differently from the one studied in detail by Albeverio and collaborators, behaves smoothly

as the separation distance between the impurities shrinks to zero. In fact, we rigorously prove that the Hamiltonian introduced in this note

converges in the norm resolvent sense to that of the negative three-dimensional Laplacian perturbed by a single attractive point interaction

situated at the origin having double strength, thus making this three-dimensional model more similar to its one-dimensional analog (not requiring

the renormalization procedure) as well as to the three-dimensional model involving impurities given by potentials whose range may even be

physically very short but non-zero.

Keywords: point interactions, renormalisation, Schrödinger operators, quantum dots.
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1. Introduction

In this brief presentation, we wish to further investigate the phenomenon that had been first observed in [1]
for the one-dimensional Salpeter Hamiltonian perturbed by a pair of identical Dirac distributions symmetrically
situated around the origin and later in [2, 3] for the Hamiltonian of the three-dimensional isotropic harmonic
oscillator with the same perturbation: as the distance between the two centers shrinks to zero, the Hamiltonian does
not approach the Hamiltonian with a single δ-perturbation centered at the origin and having twice the strength.
Here, we consider the model that can be regarded as the most pedagogical one, that is to say the three-dimensional
Hamiltonian −∆ + λ[δ(x+ x0) + δ(x− x0)].

As stated in those papers, such a problematic behavior does not occur in the case of one-dimensional
Schrödinger Hamiltonians with the same singular double well, as attested by the findings of [4,5]. The absence of
the aforementioned phenomenon in this case is due to the fact that the δ-perturbation need not be defined by means
of the coupling constant renormalization, since it is an infinitesimally small perturbation of the one-dimensional
negative Laplacian due to the KLMN theorem.

2. The rigorous definition of the three-dimensional Hamiltonian −∆ + λ[δ(x+ x0) + δ(x− x0)]

As is well known (see, e.g., the references in [6]), the Dirac measure in three dimensions was seen to be far
more singular as a perturbation of the negative Laplacian than its one-dimensional counterpart even in the early
days of Quantum Mechanics. In fact, one has that the matrix element:

(f, δ)(δ, f) =
(
f̂ , δ̂
)(

δ̂, f̂
)

=
1

(2π)3

(
f̂ , 1
)(

1, f̂
)

=

1

(2π)3

((
|p|2 + 1

)1/2
f̂ ,
(
|p|2 + 1

)−1/2)((|p|2 + 1
)−1/2

,
(
|p|2 + 1

)1/2
f̂
)
,



154 S. Albeverio, S. Fassari and F. Rinaldi

diverges since the function
(
|p|2 + 1

)−1
is not in L1(R3) because the integral

4π

+∞∫
0

p2
(
p2 + 1

)−1
dp,

is clearly divergent.
As a consequence, the coupling constant renormalization will have to be exploited. In view of the detailed

study of the important phenomenon mentioned earlier, the case of a singular double well consisting of two Dirac
distributions symmetrically centered around the origin will be considered, precisely at the points:

±~x0 = (±x0, 0, 0) , x0 > 0.

Therefore, after introducing the ultraviolet cut-off given by k > 0, i.e.:

|~p| =
√
p2x + p2y + p2z ≤ k, (2.1)

the resolvent limit, as k → +∞, of the Hamiltonian describing in momentum space the negative Laplacian plus a
sum of symmetric δ-potentials at ±~x0, with cut-off k and coupling constant λ(k) 6= 0 depending on it:

h(k, x0) = |~p|2 +
λ(k)

(2π)3

[
|χ|~p|≤ke−i~x0·~p〉〈χ|~p|≤ke−i~x0·~p|+ |χ|~p|≤kei~x0·~p〉〈χ|~p|≤kei~x0·~p|

]
, (2.2)

is to be studied (χ(·) denoting the indicator function of the set (·)). As the intermediate steps are essentially along
the same lines of those in the three aforementioned papers [1–3], it is quite straightforward to obtain the expression
for the resolvent of H(k, x0) for any E < 0:[

h(k, x0) + |E|
]−1

=
[
|~p|2 + |E|

]−1
−

2

(2π)3

∣∣∣χ|~p|≤k cos(~x0 · ~p) ·
(
|~p|2 + |E|

)−1 〉〈
χ|~p|≤k cos (~x0 · ~p) ·

(
|~p|2 + |E|

)−1 ∣∣∣
1

λ(k)
+

2

(2π)3

∥∥∥∥χ|~p|≤k cos(~x0 · ~p) ·
(
|~p|2 + |E|

)−1/2∥∥∥∥2
2

−

2

(2π)3

∣∣∣χ|~p|≤k sin(~x0 · ~p) ·
(
|~p|2 + |E|

)−1 〉〈
χ|~p|≤k sin(~x0 · ~p) ·

(
|~p|2 + |E|

)−1 ∣∣∣
1

λ(k)
+

2

(2π)3

∥∥∥∥χ|~p|≤k sin(~x0 · ~p) ·
(
|~p|2 + |E|

)−1/2∥∥∥∥2
2

. (2.3)

Furthermore,

2

(2π)3

∥∥∥∥χ|~p|≤k cos(~x0 · ~p) ·
(
|~p|2 + |E|

)−1/2∥∥∥∥2
2

=
2

(2π)3

∫
|~p|≤k

cos2(~x0 · ~p) ·
(
|~p|2 + |E|

)−1
d3p =

1

(2π)3

∫
|~p|≤k

1 + cos(2~x0 · ~p)
|~p|2 + |E|

d3p =
1

(2π)3

4π

∫
|~p|≤k

|~p|2

|~p|2 + |E|
d |~p|+

∫
|~p|≤k

cos(2~x0 · ~p)
|~p|2 + |E|

d3p

 =

1

(2π)3

4πk − 4π|E|
k∫

0

1

|~p|2 + |E|
d |~p|+

∫
|~p|≤k

cos(2~x0 · ~p)
|~p|2 + |E|

d3p

 =

4π

(2π)3

[
k − |E|1/2 tan−1

(
k

|E|1/2

)]
+

1

(2π)3

∫
|~p|≤k

cos(2~x0 · ~p)
|~p|2 + |E|

d3p. (2.4)

Similarly,

2

(2π)3

∥∥∥∥χ|~p|≤k sin(~x0 · ~p) ·
(
|~p|2 + |E|

)−1/2∥∥∥∥2
2

=

4π

(2π)3

[
k − |E|1/2 tan−1

(
k

|E|1/2

)]
− 1

(2π)3

∫
|~p|≤k

cos(2~x0 · ~p)
|~p|2 + |E|

d3p. (2.5)
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The removal of the cut-off, that is to say the limit k → +∞, does not constitute a problem for the two rank
one operators in the last two terms of (2.3) since:∥∥∥∥cos(~x0 · ~p) ·

(
|~p|2 + |E|

)−1∥∥∥∥
2

<∞,
∥∥∥∥sin(~x0 · ~p) ·

(
|~p|2 + |E|

)−1∥∥∥∥
2

<∞.

Then, it is clear that the reciprocal of λ(k) is to be chosen in such a way as to get the cancellation of the
divergent quantity proportional to k. In fact, by setting:

1

λ(k, β)
= − 1

(2π)3

∫
|p|≤k

1

|~p|2
d3p− 1

β
= − k

2π2
− 1

β
,

or equivalently:

λ(k, β) = − β

1 +
1

(2π)3

∫
p|≤k

1

|~p|2
d3p

,

for any real β, the limit of the right hand side of (2.3), as k → +∞, is given by:

R (|E|;β, x0) =
[
|~p|2 + |E|

]−1
+

2

(2π)3

∣∣∣cos(~x0 · ~p)
|~p|2 + |E|

〉〈cos(~x0 · ~p)
|~p|2 + |E|

∣∣∣
1

β
+
|E|1/2

4π
− 1

(2π)3
lim

k→+∞

∫
|~p|≤k

cos(2~x0 · ~p)
|~p|2 + |E|

d3p

+

2

(2π)3

∣∣∣ sin(~x0 · ~p)
|~p|2 + |E|

〉〈 sin(~x0 · ~p)
|~p|2 + |E|

∣∣∣
1

β
+
|E|1/2

4π
+

1

(2π)3
lim

k→+∞

∫
|~p|≤k

cos(2~x0 · ~p)
|~p|2 + |E|

d3p

=

[
|~p|2 + |E|

]−1
+

2

(2π)3

∣∣∣cos(~x0 · ~p)
|~p|2 + |E|

〉〈cos(~x0 · ~p)
|~p|2 + |E|

∣∣∣
1

β
+
|E|1/2

4π
− 1

4π

e−2|E|
1/2x0

2x0

+

2

(2π)3

∣∣∣ sin(~x0 · ~p)
|~p|2 + |E|

〉〈 sin(~x0 · ~p)
|~p|2 + |E|

∣∣∣
1

β
+
|E|1/2

4π
+

1

4π

e−2|E|
1/2x0

2x0

. (2.6)

At this stage, one should prove that R(|E|, β, x0) is the resolvent of a self-adjoint operator h(β, x0). However,
such a proof will be omitted here given that it would be almost identical to the one provided in [6] in the case of a
single point perturbation centred at the origin, the only difference represented by the possibility of having a second
point to be excluded along the negative energy semiaxis, namely the possible zero of the denominator of the last
term in (2.6).

The above findings can be summarized in the following theorem:
Theorem 2.1. The Hamiltonian of the three-dimensional negative Laplacian perturbed by two identical at-
tractive point interactions situated symmetrically with respect to the origin at the points ±~x0 = (±x0, 0, 0),
x0 = |±~x0| > 0, making sense of the merely formal expression:

h{λ(β),~x0} = −∆ + λ(β) [δ(~x− ~x0) + δ(~x+ ~x0)] ,

with:

λ(β) = − β

1 +
1

(2π)3

∫
<3

1

|~p|2
d3p

,

being the self-adjoint operator h(β, x0) whose resolvent is given by the bounded operator (2.6). The latter is the
limit of the resolvents (2.3) of the Hamiltonians (2.2) (with the energy cut-off k defined by (2.1)) in the norm
topology of bounded operators on L2(R3) once the energy cut-off is removed, i.e. for k → +∞. Furthermore,
h(β, x0) regarded as a function of β is an analytic family in the sense of Kato.

Hence, the equation leading to the calculation of the ground state energy is:

α+
|E|1/2

4π
− 1

4π

e−2|E|
1/2x0

2x0
= 0, α =

1

β
, (2.7)

while the one leading to the calculation of the energy of the other bound state is:

α+
|E|1/2

4π
+

1

4π

e−2|E|
1/2x0

2x0
= 0. (2.8)
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These two equations are exactly those thoroughly studied at the end of section II.1 in [6]: as shown graphically
in Fig. 1 below for x0 = 1/2,

i) both eigenvalues are absent if 4πα ≥ (2x0)−1;
ii) the ground state is the only bound state if −(2x0)−1 ≤ πα < (2x0)−1;
iii) there are two bound states if 4πα < −(2x0)−1.

FIG. 1. The spectral curves of the two eigenvalues of h(1/α, x0) as functions of the extension
parameter α for x0 = 1/2

As can be seen in the above plot, whilst the excited state energy gets absorbed into the absolutely continuous
spectrum at the point α = −(4π)−1, the ground state energy gets absorbed into the absolutely continuous spectrum
at the opposite value α = (4π)−1. This is entirely consistent, of course, with the fact that, for any fixed value of
x0, as α→ +∞, h(1/α, x0) approaches the free Hamiltonian in the norm resolvent sense.

The interesting phenomenon previously anticipated is that, as x0 → 0+, the two eigenvalues exhibit different
behaviors: whilst the second eigenvalue gets absorbed into the absolutely continuous spectrum, the magnitude of
the ground state energy diverges, clearly implying that the Hamiltonian does not converge to the one in which the
perturbation is represented by a single point interaction having double the strength. As mentioned earlier, the same
phenomenon was observed in [1] dealing with the one-dimensional Salpeter Hamiltonian perturbed by a pair of
twin Dirac distributions symmetrically situated with respect to the origin, the spectrum of which also consists of
two eigenvalues below the absolutely continuous spectrum, as well as in [2, 3] dealing instead with an operator
having only infinitely many eigenvalues, namely the Hamiltonian of the three-dimensional harmonic oscillator
perturbed by a pair of twin Dirac distributions symmetrically situated with respect to the origin. Such a singular
behavior is in contrast with the smooth one of one-dimensional Schrödinger Hamiltonians with or without the
harmonic confinement under the same perturbation (see [4,5]), as well as with that exhibited by three-dimensional
Hamiltonians with perturbations whose range might be even very short but non-zero.

The strategy needed to regularize this singular behavior, thus making three-dimensional zero range perturbations
behave like positive range ones, is the one adopted in the aforementioned papers, that is to say the coupling constant
to be renormalized must also suitably depend on x0. It is quite instructive to see how this works in the case of the
model analyzed in this note.

By setting:

1

λ(k, β, x0)
= − k

(2π)2
− 1

β
− 1

(2π)3

∫
|~p|≤k

cos(2~x0 · ~p)
|~p|2

d3p, (2.9)

and

H(k, x0) = |~p|2 +
λ(k, β, x0)

(2π)3

[
|χ|~p|≤ke−i~x0·~p〉〈χ|~p|≤ke−i~x0·~p|+ |χ|~p|≤kei~x0·~p〉〈χ|~p|≤kei~x0·~p|

]
, (2.10)
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it is rather straightforward to obtain the new limit of the resolvent of (2.10) once the ultraviolet cut-off gets
removed, namely:

R̃ (|E|;β, x0) =
[
|~p|2 + |E|

]−1
+

2

(2π)3

∣∣∣cos(~x0 · ~p)
|~p|2 + |E|

〉〈cos(~x0 · ~p)
|~p|2 + |E|

∣∣∣
1

β
+
|E|1/2

4π
+

1

(2π)3
lim

k→+∞

∫
|~p|≤k

cos(2~x0 · ~p)

[
1

|~p|2
− 1

|~p|2 + |E|

]
d3p

+

2

(2π)3

∣∣∣ sin(~x0 · ~p)
|~p|2 + |E|

〉〈 sin(~x0 · ~p)
|~p|2 + |E|

∣∣∣
1

β
+
|E|1/2

4π
+

1

(2π)3
lim

k→+∞

∫
|~p|≤k

cos(2~x0 · ~p)

[
1

|~p|2
+

1

|~p|2 + |E|

]
d3p

=

[
|~p|2 + |E|

]−1
+

2

(2π)3

∣∣∣cos(~x0 · ~p)
|~p|2 + |E|

〉〈cos(~x0 · ~p)
|~p|2 + |E|

∣∣∣
1

β
+
|E|1/2

4π
+

1

4π

1− e−2|E|1/2x0

2x0

+

2

(2π)3

∣∣∣ sin(~x0 · ~p)
|~p|2 + |E|

〉〈 sin(~x0 · ~p)
|~p|2 + |E|

∣∣∣
1

β
+
|E|1/2

4π
+

1

4π

1 + e−2|E|
1/2x0

2x0

. (2.11)

This operator can be rigorously shown to be the resolvent of another self-adjoint operator H(β, x0) =
H(1/α, x0) by means of a proof again patterned after the aforementioned one in [6]. Therefore, also in this
case our findings can be summarized in the following theorem:

Theorem 2.2. The Hamiltonian of the three-dimensional negative Laplacian perturbed by two identical at-
tractive point interactions situated symmetrically with respect to the origin at the points ±~x0 = (±x0, 0, 0),
x0 = |±~x0| > 0, making sense of the merely formal expression:

H{λ(β,x0),~x0} = −∆ + λ(β, x0) [δ(~x− ~x0) + δ(~x+ ~x0)] ,

with:

λ(β, x0) = − β

1 +
1

(2π)3

∫
<3

1 + cos(2~x0 · ~p)
|~p|2

d3p

,

is the self-adjoint operator H(β, x0) whose resolvent is given by the bounded operator (2.11). The latter is the
limit of the resolvents of the Hamiltonians (2.10) (with the energy cut-off k defined by (2.1)) in the norm topology
of bounded operators on L2(R3) once the energy cut-off is removed, i.e. for k → +∞. Furthermore, H(β, x0)
regarded as a function of β is an analytic family in the sense of Kato.

The discrete spectrum of H(β, x0) = H(1/α, x0) may also have up to two eigenvalues, namely the solutions
of:

α+
|E|1/2

4π
+

1

4π

1− e−2|E|1/2x0

2x0
= 0, α =

1

β
(ground state energy equation), (2.12)

α+
|E|1/2

4π
+

1

4π

1 + e−2|E|
1/2x0

2x0
= 0, α =

1

β
(excited state energy equation). (2.13)

The solutions of both equations are plotted below in Fig. 2 as functions of α = 1/β, for x0 = 1/2, for the
sake of comparison with those of h(1/α, x0) shown earlier in Fig. 1.

The above plot shows that the ground state energy gets absorbed into the absolutely continuous spectrum
exactly at α = 0, thus implying e0(0) = 0. This is entirely consistent with the expectation that this operator should
approach, as x0 → 0+, the negative Laplacian perturbed by a single point interaction centred at the origin which
is known to have a zero energy resonance at α = 0, characterised by the fact that the corresponding x-space wave
function is only locally square integrable (see [6]).
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FIG. 2. The spectral curves of the two eigenvalues of H(1/α, x0) as functions of the extension
parameter α for x0 = 1/2

The norm resolvent limit of H(β, x0), as x0 → 0+, is clearly given by:

[
|~p|2 + |E|

]−1
+

1

(2π)3

∣∣∣ 1

|~p|2 + |E|

〉〈 1

|~p|2 + |E|

∣∣∣
1

2β
+
|E|1/2

4π

. (2.14)

The latter is nothing else but the resolvent in momentum space of the negative Laplacian perturbed by a single
point interaction centered at the origin having double strength, as can be understood by looking at either (1.1.21),
its x-space counterpart, in Section I.1 of [6] or (1.1.24) in Section II.1 of the same monograph for N = 1 with the
origin being the location of the single point perturbation, taking into account that the extension parameter α used
therein is the reciprocal of the strength. Apart from the absolutely continuous spectrum [0,+∞), if β < 0, there is
an isolated eigenvalue below the absolutely continuous spectrum, namely:

E0(2β) = −
(

2π

β

)2

.

3. Final remarks

In this brief note, we have considered the most pedagogical three-dimensional model involving a symmetric
double well consisting of two identical Dirac distributions, whose Hamiltonian is heuristically given by −∆ +
λ[δ(x + x0) + δ(x − x0)]. We have first reviewed the coupling constant renormalization procedure leading to
the rigorous definition of the self-adjoint operator fully investigated in [6] as well as the two ensuing equations
determining the two possible eigenvalues generated by the perturbation. Since the ground state eigenenergy does
not converge to the single eigenvalue of the self-adjoint Hamiltonian −∆1/2β,0, defined in [6] (with β < 0) as
the distance between the two centres shrinks to zero, an alternative renormalization procedure has been adopted
in order to regularise this problematic behavior. By making the coupling constant suitably dependent also on
x0 = | ± ~x0| > 0, in addition to the usual momentum cut-off, it has been possible to define a new self-adjoint
Hamiltonian whose resolvent converges in norm to that of −∆1/2β,0 as x0 → 0+. The crucial difference between
the discrete spectra of the two operators is that, whilst the ground state eigenenergy of the former Hamiltonian gets
absorbed into the absolutely continuous spectrum at α = (8πx0)−1 (α = 1/β being the extension parameter), the
ground state eigenenergy of the latter gets absorbed into the absolutely continuous spectrum at α = 0 independently
of x0. As pointed out earlier, this is entirely consistent with the fact that the limiting operator, that is to say the
negative Laplacian perturbed by a single point interaction centered at the origin, is known to have a zero energy
resonance at α = 0, so that the corresponding x-space wave function is only locally square integrable (see [6]).

This might have some relevant implications in the study of quantum three-body models consisting of two
heavy particles and a light one interacting with each other via two-body zero range interactions, at least in the
adiabatic approximation, as might be implied by the findings of [7].

We also intend to extend the analysis of the singular phenomenon carried out in this note and in the afore-
mentioned papers [1–3] to another type of quantum oscillator with a different confinement, namely the one whose
Hamiltonian is given by:

H0 =
1

2
(−∆ + |~x|) ,
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even though the resolvent of this three-dimensional operator will have to be determined first since, differently from
its one-dimensional counterpart (see [10, 11]), it is not yet explicitly known.
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1. Introduction

We study the problem of homogenization of boundary value problems in domains with a fast oscillating
boundary when such boundary is given by the graph of the function x2 = η(ε)b(x1ε

−1), where ε is a small
positive parameter, η(ε) is a positive function tending to zero as ε→ +0, and b is a smooth periodic function. The
parameter ε describes the period of the boundary oscillations while η(ε) is their amplitude.

In previous results, the weak or strong resolvent convergence of the solutions was proved and the resolvents
were also treated in various possible norms. In some cases, the estimates for the convergence rate were proven.
It was also shown that when constructing the next terms of the asymptotics for the perturbed solutions, one can
get estimates for the convergence rate or improve it [1–8]. In some cases, complete asymptotic expansions were
constructed [9–12].

One more type of established results is the uniform resolvent convergence for the problems. Such convergence
was established just for few models, see [13, Ch. III, Sec. 4], [8]. The estimates for the rates of convergence
were also established. In both papers, the amplitude and the period of oscillations were of the same order. At the
same time, the uniform resolvent convergence for the models considered in the homogenization theory provided
quite strong results. Moreover, recently a series of papers by M. Sh. Birman, T. A. Suslina, V. V. Zhikov and
S. E. Pastukhova have stimulated interest in this aspect (see [14–27] and references therein and further papers
by these authors). The uniform resolvent convergence was shown to hold true for the elliptic operators with
fast oscillating coefficients and the estimates for the rates of convergence were obtained. There are also similar
results for some problems in bounded domains, see [26]. Similar results but for the boundary homogenization
were established in [28–32]. Here, the Laplacian in a planar straight infinite strip with frequently alternating
boundary conditions was considered. Such boundary conditions were imposed by partitioning the boundary into
small segments where Dirichlet and Robin conditions were imposed in turn. The homogenized problem involves
one of the classical boundary conditions instead of the alternating ones. For all possible homogenized problems,
the uniform resolvent and the estimates for the rates of convergence were proven and the asymptotics for the
spectra were constructed.

In the present paper, we also consider the boundary homogenization for the elliptic operators in unbounded
domains but the perturbation is a fast oscillating boundary. As the domain, we choose a planar straight infinite
strip with a periodic fast oscillating boundary; the operator is a general self-adjoint second order elliptic operator.
The operator is regarded as an unbounded one in an appropriate L2 space. On the oscillating boundary, we
impose Dirichlet, Neumann, or Robin conditions. Apart from a mathematical interest in this problem, as a physical
motivation, we can mention a model of a planar quantum or acoustic waveguide with a fast oscillating boundary.

Our main result is the form of the homogenized operator and the uniform resolvent convergence of the
perturbed operator to the homogenized one. This convergence is established in the sense of the norm of the
operator acting from L2 into W 1

2 . The estimates for the rate of convergence are provided. Most of the estimates
are sharp. In the case of the Dirichlet or Neumann conditions on the oscillating boundary, the homogenized problem
involves the same condition on the mollified boundary no matter how the period and amplitude of the oscillations
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behave. Provided the amplitude is not greater than the period (in order), the Robin conditions on the oscillating
boundary leads us to a similar condition but with an additional term in the coefficient. If the amplitude is greater
than the period, the homogenization transforms the Robin conditions into those of Dirichlet. The last result is in a
good accordance with a similar case, treated in [33]. The difference is that in [33], the strong resolvent convergence
was proven provided the coefficient in the Robin conditions was positive, while we succeeded to prove the uniform
resolvent convergence provided the coefficient is either positive or non-negative and vanishing on the set of zero
measure. All the results stated in this paper are proved in [34].

2. Problem and main results

Let x = (x1, x2) be the Cartesian coordinates in R2, ε be a small positive parameter, η = η(ε) be a non-
negative function uniformly bounded for sufficiently small ε, b = b(t) be a non-negative 1-periodic function
belonging to C2(R). We define two domains, cf. Fig. 1:

Ω0 := {x : 0 < x2 < d}, Ωε := {x : η(ε)b(x1ε
−1) < x2 < d},

where d > 0 is a constant, and its boundaries are indicated as:

Γ := {x : x2 = d}, Γ0 := {x : x2 = 0}, Γε := {x : x2 = η(ε)b(x1ε
−1)}.

By Aij = Aij(x), Aj = Aj(x), A0 = A0(x), i, j = 1, 2, we denote the functions defined on Ω0 and satisfying the
belongings Aij ∈W 2

∞(Ω0), Aj ∈W 1
∞(Ω0), A0 ∈ L∞(Ω0). Functions Aij , Aj are assumed to be complex-valued,

while A0 is real-valued. In addition, functions Aij satisfy the ellipticity condition:

Aij = Aji,

2∑
i,j=1

Aijzizj > c0(|z1|2 + |z2|2), x ∈ Ω0, zj ∈ C. (2.1)

By a = a(x) we denote a real function defined on {x : 0 < x2 < δ} for some small fixed δ, and it is supposed
that a ∈W 1

∞({x : 0 < x2 < d}).

FIG. 1. Domain with oscillating boundary

The main object of our study is the operator:

−
2∑

i,j=1

∂

∂xj
Aij

∂

∂xi
+

2∑
j=1

Aj
∂

∂xj
− ∂

∂xj
Aj +A0 in L2(Ωε), (2.2)

subject to Dirichlet conditions on Γ. On the other boundary, we choose either Dirichlet conditions:

u = 0 on Γε,

or Robin conditions: (
∂

∂νε
+ a

)
u = 0 on Γε,

∂

∂νε
= −

2∑
i,j=1

Aijν
ε
j

∂

∂xi
−

2∑
j=1

Ajν
ε
j ,

where νε = (νε1 , ν
ε
2) is the outward normal to Γε. In the case of Dirichlet conditions on Γε we denote this operator

as HD
ε,η , while for Robin conditions it is HR

ε,η . The former also includes the case of Neumann conditions since the
function a can be identically zero.

Rigorously, we introduce HD
ε,η as the lower-semibounded self-adjoint operator in L2(Ωε) associated with the

closed symmetric lower-semibounded sesquilinear form:

λhD
ε,η(u, v) :=

2∑
i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)
L2(Ωε)

+

2∑
j=1

(
Aj

∂u

∂xj
, v

)
L2(Ωε)

+

2∑
j=1

(
u,Aj

∂v

∂xj

)
L2(Ωε)

+ (A0u, v)L2(Ωε),
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in L2(Ωε) with the domain D(hD
ε,η) := W 1

2,0(Ωε, ∂Ωε). Hereinafter D(·) is the domain of a form or an operator,

and W j
2,0(Ω, S) denotes the Sobolev space consisting of the functions in W j

2 (Ω) with zero trace on a curve S lying
in a domain Ω ⊂ R2. The operator HR

ε,η is introduced in the same way via the sesquilinear form:

hR
ε,η(u, v) :=

2∑
i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)
L2(Ωε)

+

2∑
j=1

(
Aj

∂u

∂xj
, v

)
L2(Ωε)

+

2∑
j=1

(
u,Aj

∂v

∂xj

)
L2(Ωε)

+ (A0u, v)L2(Ωε) + (au, v)L2(Γε),

with the domain D(hR
ε,η) := W 1

2,0(Ωε,Γ).
The main aim of the paper is to study the asymptotic behavior of the resolvents of HD

ε,η and HR
ε,η as ε→ +0.

To formulate the main results we first introduce some additional operators.
By HD

0 we denote operator (2.2) in L2(Ω0) subject to Dirichlet conditions. We introduce it by analogy with
HD
ε,η as associated with the form:

hD
0 (u, v) :=

2∑
i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)
L2(Ω0)

+

2∑
j=1

(
Aj

∂u

∂xj
, v

)
L2(Ω0)

+

2∑
j=1

(
u,Aj

∂v

∂xj

)
L2(Ω0)

+ (A0u, v)L2(Ω0),

(2.3)

in L2(Ω0) with the domain D(hD
0 ) := W 1

2,0(Ω0, ∂Ω0). The domain of operator HD
0 is W 2

2,0(Ω0, ∂Ω0) that can be
shown by analogy with [35, Ch. III, Sec. 7,8], [36, Lm. 2.2].

Our first main result (proved in section 2 in [34]) describes the uniform resolvent convergence for HD
ε,η .

Theorem 2.1. Let f ∈ L2(Ω0). For sufficiently small ε, the estimate:

‖(HD
ε,η − i)−1f − (HD

0 − i)−1f‖W 1
2 (Ωε) 6 Cη1/2‖f‖L2(Ω0),

holds true, where C is a constant independent of ε and f .

The next four theorems describe the resolvent convergence for operator HR
ε,η . Given a0 ∈ W 1

∞(Γ0), let HR
0

be the self-adjoint operator in L2(Ω0) associated with the lower-semibounded sesquilinear symmetric form:

hR
0 (u, v) :=

2∑
i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)
L2(Ω0)

+

2∑
j=1

(
Aj

∂u

∂xj
, v

)
L2(Ω0)

+

2∑
j=1

(
u,Aj

∂v

∂xj

)
L2(Ω0)

+ (A0u, v)L2(Ω0) + (a0u, v)L2(Γ0),

with the domain D(hR
0 ) := W 1

2,0(Ω0,Γ). It can be shown by analogy with [35, Ch. III, Sec. 7,8], [36, Lm. 2.2]
that the domain of HR

0 consists of the functions u ∈W 2
2,0(Ω0,Γ) satisfying Robin conditions:(

∂

∂ν0
+ a0

)
u = 0 on Γ0,

∂

∂ν0
:= −

2∑
i=1

Ai2
∂

∂xi
−A2. (2.4)

First, we consider the particular case of Neumann conditions on Γε, i.e., a = 0. Operator HR
ε,η and associated

quadratic form hR
ε,η are re-denoted in this case by HN

ε,η and hN
ε,η . By HN

0 , we denote the self-adjoint lower-
semibounded operator in L2(Ω0) associated with the sesquilinear form hN

0 which is hR
0 taken for a0 ≡ 0. Its

domain is the set of the functions in W 2
2,0(Ω0,Γ) satisfying boundary conditions (2.4) with a0 = 0. The resolvent

convergence in this case is given in following theorem (for the proof see section 3 in [34]).

Theorem 2.2. Let f ∈ L2(Ωε). Then for sufficiently small ε the estimate

‖(HN
ε,η − i)−1f − (HN

0 − i)−1f‖W 1
2 (Ωε) 6 Cη1/2‖f‖L2(Ω0)

holds true, where C is a constant independent of ε and f .
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Assume now a 6≡ 0. Here we consider separately two cases:

ε−1η(ε)→ α = const > 0, ε→ +0, (2.5)

ε−1η(ε)→ +∞, ε→ +0. (2.6)

The first assumption means that the amplitude of the oscillation of curve Γε is of the same order (or smaller)
as the period. The other assumption corresponds to the case when the amplitude is much greater than the period.
In what follows, the first case is referred to as a relatively slow oscillating boundary Γε while the other describes
relatively high oscillating boundary Γε.

We begin with the slowly oscillating boundary. We denote:

a0(x1) := a(x1, 0)

1∫
0

√
1 + α2

(
b′(t)

)2
dt. (2.7)

The proof of the following theorem is given in section 3 in [34].

Theorem 2.3. Suppose (2.5) and let f ∈ L2(Ωε). Then, for sufficiently small ε, the estimate

‖(HR
ε,η − i)−1f − (HR

0 − i)−1f‖W 1
2 (Ωε) 6 C(η1/2(ε) + |ε−2η2(ε)− α2|)‖f‖L2(Ω0)

holds true, where function a0 in (2.4) is defined in (2.7), and C is a constant independent of ε and f .

We proceed to the case of the highly oscillating boundary Γε. Here, the homogenized operator happens to
be quite sensitive to the sign of a and zero level set of this function. In the paper, we describe the resolvent
convergence as a is non-negative. We first suppose that a is bounded from below by a positive constant.
Surprisingly, but here the homogenized operator has the Dirichlet condition on Γ0 as in Theorem 2.1. The
proof of the following Theorem is given in section 4 in [34].

Theorem 2.4. Suppose (2.6),
a(x) > c1 > 0, c1 = const, (2.8)

and that the function b is not identically constant. Let f ∈ L2(Ω0). Then, for sufficiently small ε, the estimate:

‖(HR
ε,η − i)−1f − (HD

0 − i)−1f‖W 1
2 (Ωε) 6 C

(
η1/2 + ε1/2η−1/2

)
‖f‖L2(Ω0) (2.9)

holds true, where C is a constant independent of ε and f .

In the next theorem, that is proved in section 4 in [34], we still suppose that a is non-negative but can have
zeroes. An essential assumption is that zero level set of a is of zero measure. We let b∗ := max

[0,1]
b.

Theorem 2.5. Suppose (2.6),
a > 0, (2.10)

and that the function b is not identically constant. Assume also that for all sufficiently small δ, the set
{x : a(x) 6 δ, 0 < x2 < (b∗ + 1)η} is contained in an at most countable union of the rectangles
{x : |x1 −Xn| < µ(δ), 0 < x2 < (b∗ + 1)η}, where µ(δ) is a some nonnegative function such that µ(δ) → +0
as δ → +0, and numbers Xn, n ∈ Z, are independent of δ, are taken in the ascending order, and satisfy uniform
in n and m estimate:

|Xn −Xm| > c > 0, n 6= m. (2.11)

Let f ∈ L2(Ω0). Then, for sufficiently small ε, the estimate:

‖(HR
ε,η − i)−1f−(HD

0 − i)−1f‖W 1
2 (Ωε)

6 C
(
η1/2 + ε1/2η−1/2δ−1/2 + µ1/2(δ)| lnµ(δ)|1/2

)
‖f‖L2(Ω0)

(2.12)

holds true, where C is a constant independent of ε and f , and δ = δ(ε) is any function tending to zero as
ε→ +0.

Let us discuss the main results. We first observe that under the hypotheses of all theorems we have the cor-
responding spectral convergence, namely, the convergence of the spectrum and the associated spectral projectors –
see, for instance, [37, Thms. VIII.23, VIII.24]. We also stress that in all Theorems 2.1–2.5 the resolvent convergence
is established in the sense of the uniform norm of bounded operator acting from L2(Ω0) into W 1

2 (Ωε).
In the case of the Dirichlet conditions on Γε, the homogenized operator has the same condition on Γ0 no

matter how the boundary Γε oscillates, slowly or highly. The estimate for the rate of convergence is also universal
being O(η1/2). Despite here we consider a periodically oscillating boundary, in the proof of Theorem 2.1 this fact
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is not used. This is why its statement is also valid for a periodically oscillating boundary described by the equation
x2 = ηb(x1, ε), where b is an arbitrary function bounded uniformly in ε and such that b(·, ε) ∈ C(R). The estimate
is Theorem 2.1 is sharp, see the discussion in the end of Sec. 2 in [34].

A similar situation occurs if we have Neumann conditions on Γε. Here, Theorem 2.2 says that the homogenized
operator is subject to Neumann conditions on Γ0 and the rate of the uniform resolvent convergence is the same as
in Theorem 2.1, namely, O(ε1/2). This estimate is again sharp, as the example in the end of Sec. 3 in [34] shows.

Once we have Robin conditions on Γε, the situation is completely different. If the boundary oscillates slowly,
the homogenized operator still has Robin conditions on Γ0, but the coefficient depends on the geometry of the
original oscillations, cf. (2.7). The estimate for the rate of the resolvent convergence in this case involves an
additional term in comparison with the Dirichlet or Neumann cases, cf. Theorem 2.3. The estimate in this theorem
is again sharp, see the example in the end of Sec. 3 in [34].

As boundary Γε oscillates relatively highly, the resolvent convergence changes dramatically. If coefficient a is
strictly positive, the homogenized operator has Dirichlet conditions on Γ0. A new term, ε1/2η−1/2, appears in the
estimate for the rate of the uniform resolvent convergence, cf. Theorem 2.4. We are able to prove that this term is
sharp, see the discussion in the end of Sec. 4 in [34].

Provided function a is non-negative and vanishes only on a set of zero measure, the homogenized operator
still has Dirichlet conditions on Γ0, but the estimate for the rate of the uniform resolvent convergence becomes
worse. Namely, the behavior of a in a vicinity of its zeroes becomes important. This is reflected by functions
µ(δ) and δ in (2.12). The latter should be chosen so that δ → +0, ε1/2η−1/2δ−1/2 → +0, ε→ +0, that is always
possible. The optimal choice of δ is so that:

µ1/2(δ)| lnµ(δ)|1/2 ∼ ε1/2η−1/2δ−1/2,

δµ(δ)| lnµ(δ)| ∼ εη−1. (2.13)

As we see, the choice of δ depends on a particular structure of µ(δ). The most typical case is µ(δ) ∼ δ1/2, i.e.,
the function a vanishes by the quadratic law in a vicinity of its zeroes. In this case, condition (2.13) becomes:

δ3/2| ln δ| ∼ εη−1,

which implies:
δ ∼ ε2/3η−2/3| ln εη−1|−2/3.

Then, the estimate for the resolvent convergence in Theorem 2.5 is of order O
(
(η1/2 + ε1/6η−1/6| ln εη−1|1/3

)
.

We are not able to prove the sharpness of estimate (2.12), but in the end of Sec. 4 in [34] we provide some
arguments showing that estimate (2.12) is rather close to being optimal.

In conclusion, we discuss the case of Robin conditions on highly oscillating Γε when the coefficient a does
not satisfy the hypotheses of Theorems 2.4, 2.5. If it is still non-negative but vanishes for a set of non-zero values,
and at the end-points of this set the vanishing happens with certain rate like in Theorem 2.5, we conjecture that
the homogenized operator involves mixed Dirichlet and Neumann conditions on Γ0. Namely, if a(x1, 0) ≡ 0 on
ΓN0 and a(x1, 0) > 0 on ΓD0 , Γ0 = ΓN0 ∪ ΓD0 , it is natural to expect that the homogenized operator has Neumann
conditions on ΓN0 and Dirichlet one on ΓD0 . This conjecture can be regarded as the mixture of the statements of
Theorems 2.2 and 2.5. The main difficulty of proving this conjecture is that the domain of such homogenized
operator is no longer a subset of W 2

2 (Ω0) because of the mixed boundary conditions. At the same time, this
fact was essentially used in all our proofs. An even more complicated situation occurs once a is negative or
sign-indefinite. If a is negative on a set of non-zero measure, it can be shown that the bottom of the spectrum of
the perturbed operator goes to −∞ as ε → +0. In such cases, one should study the resolvent convergence near
this bottom, i.e., for the spectral parameter tending to −∞. This makes the issue quite troublesome. We stress that
under the hypotheses of all Theorems 2.1–2.5, the bottom of the spectrum is lower-semibounded uniformly in ε.
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1. Introduction

Let K be a Hilbert space with the inner product (·, ·) and let J be a linear operator in K, such that J =
J∗ = J−1. The space K endowed with Hermitian sesquilinear form [., .]K = (J ·, ·) is called a Kreı̆n space and is
denoted by (K, [., .]K), for details see [1, 2] or Section 2.1 below.

The Hermitian sesquilinear form [., .]K induces in an obvious way a sign type spectrum for linear operators.
In the last two decades, this notion was frequently used in theoretical physics in connection with PT -symmetric
problems; here, we mention only [3–7] and in the study of PT -symmetric operators, we refer to [8–11].

A self-adjoint operator A in a Krĕın space (K, [., .]K) is said to be definitizable [12], if its resolvent set ρ(A) is
nonempty and there exists a real polynomial p such that p(A) is nonnegative in (K, [., .]K). If α1 < α2 < · · · < αN
is the set of all real zeros of p, then there exists a spectral function E(∆) of A, which is defined on all intervals ∆,
such that the endpoints of ∆ do not belong to the set {αj}Nj=1, E(∆) takes values in the set of orthogonal
projections, commuting with A and E(∆) is monotone on each interval (αj , αj+1). These intervals are classified
in [12] as intervals of positive and negative type and the points αj which are spectral points of neither positive
type nor negative type are called critical, see exact denitions in Section 2.2. A critical point α is called regular, if
the operators E(∆) are uniformly bounded for all small ∆ containing α, otherwise it is called singular. The set
of critical points of A is denoted by c(A), the set of regular (singular) critical points of A is denoted by cr(A)
(cs(A), respectively). The notion of local definitizability of a self-adjoint operator A in a Krĕın space (K, [., .]K)
was introduced in [13, 14], see Section 3 below.

In the present paper, the following problem is studied: the problem of the definitizability of the coupling A of
two symmetric operators A+ and A− and the regularity of their critical points. Note the definition of the coupling
from [15] adapted to the case of Krĕın spaces. Let a Krĕın space (K, [., .]K) be the orthogonal sum K = K+[+̇]K−
of (K, [ · , · ]) of two Krĕın spaces (K+, [., .]K+

) and (K−, [., .]K−), such that the subspaces:

D+ =
{
f ∈ K+∩ (domA) :Af ∈ K+

}
and D− =

{
f ∈ K−∩ (domA) :Af ∈ K−

}
are dense in K+ and K− and the restrictions:

A+ = A|D+
and A− = A|D−

are symmetric operators with defect numbers (1, 1) in the Krĕın spaces (K+, [ · , · ]K) and (K−, [ · , · ]K), respec-
tively. The operator A is called a coupling of two symmetric operators A+ and A−. The coupling A of two
symmetric operators A+ and A− is not uniquely defined by the above definition. We will make this definition
more precise in Theorem 4.4 by using the boundary triple approach developed in [16–19]. For differential operators
with indefinite weights, the coupling method was used in [20], and also in [21–23] to study the similarity problem
and in [24] to study definitizabilty.
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The main result of the paper is Theorem 4.6, where conditions for regularity of the critical point ∞ ∈ c(A)
are found under the assumptions that the symmetric operators A+ and A− admit definitizable and semibounded
extensions A+,0 and A−,0. The proof is based on the K. Veselić criterion of regularity [25,26] adapted to the case
of definitizable operators in [27]. In the case when A+ and A− are Hilbert space symmetric operators, similar
results were obtained in [23] and [28].

Typically, such problems arise in the study of indefinite Sturm–Liouville operators:

`(f)(t) :=
sgn t

w(t)

(
− d

dt

(
df

r(t)dt

)
+ q(t)f(t)

)
for a.a. t ∈ R, (1.1)

where the coefficients r, q and w are real functions on R satisfying the conditions:

(C1) r, q, w ∈ L1
loc(R) and r, w > 0 a.e. on R,

(C2) the expression ` is in the limit point case at −∞ and at +∞,
(C3) minimal differential operators B± generated by ±` in L2

w(R±) are semibounded from below.

The operator A generated by the differential expression (1.1) in the Krĕın space is the coupling of two semibounded
symmetric operators A± := ±B±. In Proposition 5.1, it is shown that the operator A is definitizable over a vicinity
of ∞ and conditions (4.18) for ∞ 6∈ cs(A) are formulated in terms of the m-coefficients for the operators B±.
In the case w ≡ 1, the conditions (4.18) are fulfilled automatically [28]. This fact was proved earlier by another
method in [29].

1.1. Notations and preliminaries

By C+, we denote the set of all z ∈ C with positive imaginary part and we set C := C ∪ {∞} and
R := R ∪ {∞}.

A complex function m is called a Nevanlinna function if m is holomorphic at least on C \R and satisfies the
following two conditions:

m(z) = m(z) and Imm(z) ≥ 0, for all z ∈ C+. (1.2)

For information on Nevanlinna functions, we refer readers to [30] and [31, Chapter II].
All operators in this paper are closed densely defined linear operators. For such an operator T , we use the

common notation ρ(T ), dom(T ), ran(T ) and ker(T ) for the resolvent set, the domain, the range and the null-
space, respectively, of T . We define the extended spectrum σ̃(A) of A by σ̃(A) := σ(A) if A is bounded and
σ̃(A) := σ(A) ∪ {∞} if A is unbounded and we set ρ̃(A) := C \ σ̃(A).

2. Definitizable operators in Kreı̆n spaces

2.1. Kreı̆n spaces

We recall standard notation and some basic results on Krĕın spaces. For a complete exposition on the subject
(and the proofs of the results below) see the books by Azizov and Iokhvidov [1] and Bognár [2]. A vector
space K with a Hermitian sesquilinear form [., .]K is called a Kreı̆n space if there exists a so-called fundamental
decomposition

K = K+

.
+ K−,

such that (K+, [., .]K) and (K−,−[., .]K) are Hilbert spaces which are orthogonal to each other with respect to [., .]K.
Those two Hilbert spaces induce in a natural way a Hilbert space inner product (., .) and, hence, a Hilbert space
topology on the Krĕın space K. Observe that the indefinite metric [., .]K and the Hilbert space inner product (., .)
of K are related by means of a fundamental symmetry, i.e. a unitary self-adjoint operator J which satisfies

(x, y) = [Jx, y]K for x, y ∈ K. (2.1)

If H and K are Krĕın spaces and T : H → K a bounded operator, the adjoint operator T+ of T with respect to the
Krĕın spaces H and K is defined by:

T+ := JHT
∗JK,

where JH and JK are the fundamental symmetries associated with H and K, respectively; the operator T+ satisfies
[Tx, y]K = [x, T+y]K for all x ∈ H, y ∈ K. If A is a densely defined operator in K then the adjoint A+ of A
with respect to [ · , · ]K is defined analogously. In fact, if J is a fundamental symmetry on

(
K, [ · , · ]K

)
and (., .) is

the corresponding Hilbert space inner product (2.1), then A+ = JA∗J . The operator A+ satisfies the following:

[Ax, y]K = [x,A+y]K for all x ∈ dom(A), y ∈ dom(A+).

By analogy with the definitions in Hilbert spaces, A is symmetric in
(
K, [ · , · ]K

)
if A+ is an extension of A and

A is self-adjoint in
(
K, [ · , · ]K

)
if A = A+.
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A densely defined operator A is called nonnegative in
(
K, [ · , · ]K

)
if [Af, f ]K ≥ 0 for all f ∈ dom(A). A

nonnegative self-adjoint operator in a Krĕın space can have an empty resolvent set; a specific example is given
in [12, Section 1.2] and [2, Example VII.1.5]. But if a nonnegative self-adjoint operator in a Krĕın space also has
a nonempty resolvent set, then it has real spectrum only.

An operator A is called semibounded from below in the Krĕın spaces
(
K, [ · , · ]K

)
, if there exists α ∈ R such

that:
[Af, f ]K ≥ α[f, f ]K, f ∈ dom(A).

2.2. Definitizable operators

In this section, we recall some facts on definitizable operators in Krĕın spaces. For an overview, we refer
to [32], see also [33]. For this purpose, it is convenient to introduce in Definition 2.1 below the notion of sign-type
spectra, cf. [34–37].

Let A be a closed operator in a Krĕın space
(
K, [ · , · ]K

)
. A point λ0 ∈ C is said to belong to the approximative

point spectrum σap(A) of A if there exists a sequence (xn) in dom(A) with ‖xn‖ = 1, n = 1, 2, . . . , and
‖(A− λ0)xn‖ → 0 if n→∞. For a self-adjoint operator A in

(
K, [ · , · ]K

)
, all real spectral points of A belong to

σap(A) (see e.g. [2, Corollary VI.6.2]).

Definition 2.1. For a self-adjoint operator A in
(
K, [ · , · ]K

)
a point λ0 ∈ σ(A) is called a spectral point of positive

(negative) type of A if λ0 ∈ σap(A) and for every sequence (xn) in dom(A) with ‖xn‖ = 1, n = 1, 2, . . ., and
‖(A− λ0)xn‖ → 0 for n→∞, we have:

lim inf
n→∞

[xn, xn]K > 0 (resp. lim sup
n→∞

[xn, xn]K < 0).

The point ∞ is said to be a point of positive (negative) type of the extended spectrum of A if A is unbounded
and for every sequence (xn) in dom(A) with lim

n→∞
‖xn‖ = 0 and ‖Axn‖ = 1, n = 1, 2, . . ., we have:

lim inf
n→∞

[Axn, Axn]K > 0 (resp. lim sup
n→∞

[Axn, Axn]K < 0).

We denote the set of all points of σ̃(A) of positive (negative) type by σ++(A) (resp. σ−−(A)). Points from
σ̃(A) of neither positive nor negative type are called critical. In the following proposition, we collect some
properties. For a proof, we refer to [34].

Proposition 2.2. (i) The sets σ++(A) and σ−−(A) are contained in R.
(ii) The non-real spectrum of A cannot accumulate to σ++(A) ∪ σ−−(A).
(iii) The sets σ++(A) and σ−−(A) are relatively open in σ̃(A).
(iv) Let λ0 be a point of σ++(A) (σ−−(A), respectively). Then there exists an open vicinity U in C of λ0

and a number M > 0 such that:

‖(A− λ)−1‖ ≤ M

|Imλ|
for all λ ∈ U \ R.

We shall say that an open subset ∆ of R is of positive type (negative type) with respect to A if:

∆ ∩ σ̃(A) ⊂ σ++(A) (resp. ∆ ∩ σ̃(A) ⊂ σ−−(A)).

An open set ∆ of R is called of definite type if ∆ is of positive or of negative type with respect to A. If we
relate Definition 2.1 to nonnegative operators in Krĕın spaces (cf. Section 2.1), we obtain from the properties of
the spectral function of a nonnegative operator in a Krĕın space, see, e.g., [1, 32, 38], and [34, Proposition 25] the
following.

Proposition 2.3. Let A be a nonnegative operator with ρ(A) 6= ∅ in a Kreı̆n space
(
K, [ · , · ]K

)
. Then c(A) ⊂

{0,∞} and

σ(A) ∩ (0,∞) ⊂ σ++(A) ⊂ R \ (−∞, 0), σ(A) ∩ (−∞, 0) ⊂ σ−−(A) ⊂ R \ (0,∞).

In particular, we have:
c(A) = σ̃(A) \ (σ++(A) ∪ σ−−(A)). (2.2)

A generalization of the class of nonnegative operators in Krĕın spaces is given by the class of definitizable
operators. Recall, that a self-adjoint operator A in a Krĕın space

(
K, [ · , · ]K

)
is called definitizable if ρ(A) 6= ∅

and if there exists a rational function p 6= 0 having poles only in ρ(A) such that [p(A)x, x]K ≥ 0 for all x ∈ K.
Such a function p is called definitizing function for A. Then the spectrum of A is real or its non-real part consists
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of a finite number of points. Inspired by Proposition 2.3 we introduce the set of critical points of a definitizable
operator A via:

c(A) := σ̃(A) \ (σ++(A) ∪ σ−−(A)). (2.3)

It is known (cf. [32]) that c(A) is contained in {t ∈ R : p(t) = 0} ∪ {∞}.
For the definitizable operator A, the spectral function E(∆) can be introduced for every interval ∆ such that

the endpoints of ∆ belong to intervals of definite type, see [32], [14]. We mention only that E(∆) is defined and
is a self-adjoint projection in (K, [·, ·]K) for every such interval. Moreover,(

E(∆)K, [ · , · ]K
)

is a Hilbert space whenever ∆ ⊂ {t ∈ R : p(t) > 0}. (2.4)

If a critical point α is the endpoint of two intervals (λ1, α) and (α, λ2) of the definite type, then the sequences
E
(
[λ1, t]

)
and E

(
[t, λ2]

)
are monotone in (λ1, α) and (α, λ2), resp. The point α is called a regular critical point

of A, if the limits
lim
t↑α

E
(
[λ1, t]

)
and lim

t↓α
E
(
[t, λ2]

)
(2.5)

exist in the strong operator topology. A critical point of A which is not regular is called singular critical point of
A. The set of all singular critical points of A is denoted by cs(A).

In Subsection 4.2, we essentially use the following resolvent criterion of K. Veselić [25, 26] for ∞ 6∈ cs(A).
We state a special case of this criterion as it has appeared in [27, Corollary 1.6].

Theorem 2.4. Let A be a definitizable self-adjoint operator in a Kreı̆n space (K, [ · , · ]). Then:

(a) ∞ 6∈ cs(A) if and only if there is η0 > 0, such that the set of numbers:
η∫

η0

Re [(A− iy)−1f, f ]Kdy (η ∈ (η0,∞))

is bounded for every f ∈ K.
(b) Let ξ0 ∈ R. Then ξ0 6∈ cs(A) and ker(A − ξ0) = ker(A − ξ0)2 if and only if there is η0 > 0, such that

the set of numbers:
η0∫
η

Re [(A− ξ0 − iy)−1f, f ]Kdy (η ∈ (0, η0))

is bounded for every f ∈ K.

A characterization of definitizable operators via their sign-type spectrum together with some growth conditions
for the resolvent is provided by the following theorem. Its proof follows from [35, Definition 4.4 and Theorem 4.7]).

Theorem 2.5. Let A be a self-adjoint operator in the Kreı̆n space
(
K, [ · , · ]K

)
. Then A is definitizable if and

only if the following holds.

(i) The non-real spectrum σ(A) \R consists of isolated points which are poles of the resolvent of A, and no
point of R is an accumulation point of the non-real spectrum σ(A) \ R of A.

(ii) There is an open vicinity U of R in C and numbers m ≥ 1, M > 0 with

‖(A− λ)−1‖ ≤M(|λ|+ 1)2m−2|Imλ|−m for all λ ∈ U \ R.

(iii) Every point λ ∈ R has an open connected vicinity Iλ in R such that both components of Iλ \ {λ} are of
definite type with respect to A.

3. Locally definitizable operators and their direct sum

3.1. Locally definitizable operators in Kreı̆n spaces

In view of Theorem 2.5, it is natural to introduce a local version of definitizability which will play an important
role in the following. The next notion is due to P. Jonas, see [13, 14], we mention also the overview in [39].

Definition 3.1. Let Ω be a domain in C which is symmetric with respect to R such that Ω ∩ R 6= ∅ and the
intersections with the open upper and lower half-plane are simply connected. Let A be a self-adjoint operator in
the Krĕın space (K, [ · , · ]K). The operator A is called definitizable over Ω if the following holds:

(i) The non-real spectrum in Ω, i.e. σ(A)∩ (Ω\R), consists of isolated points which are poles of the resolvent
of A, and no point of Ω ∩ R is an accumulation point of the non-real spectrum σ(A) \ R of A.
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(ii) For every closed subset ∆ of Ω∩R there exist an open vicinity U of ∆ in C and numbers m ≥ 1, M > 0
such that

‖(A− λ)−1‖ ≤M(|λ|+ 1)2m−2|Imλ|−m for all λ ∈ U \ R.
(iii) Every point λ ∈ Ω ∩R has an open connected vicinity Iλ in R such that both components of Iλ \ {λ} are

of definite type with respect to A.

Let A be definitizable over Ω. Similar as in (2.3) we call a point t ∈ Ω ∩ R a critical point of the operator
A if there is no open subset ∆ of definite type with t ∈ ∆. The set of critical points of A is denoted by
c(A). As in Section 2.1, critical points admit a classification into singular and regular critical points: If for some
λ ∈ c(A) \ {∞} the limits analogous to (2.5) exist, then λ is called a regular critical point of A. If ∞ is a critical
point of A and the limits (2.5) exist in the strong operator topology for some λ1, λ2 ∈ R \ {0}, then ∞ is called
regular critical point of A. A critical point of A which is not regular is called singular critical point of A. The
set of all singular critical points of A is denoted by cs(A).

Theorem 2.4 has a counterpart for locally definitizable operators: Let A be definitizable over a vicinity Ω
of ∞. Then, A admits an orthogonal decomposition into two operators: a definitizable one with spectrum in
∆ and a self-adjoint one with spectrum outside ∆, where ∆(⊂ Ω) is a vicinity of ∞, for details we refer
to [35, Theorem 4.8]. Then, the following theorem follows easily from this decomposition and Theorem 2.4:

Theorem 3.2. Let a self-adjoint operator A in a Kreı̆n space (K, [ · , · ]) be locally definitizable over a neighbor-
hood Ω of ∞. Then ∞ 6∈ cs(A) if and only if there is η0 > 0, such that the set of numbers:

η∫
η0

Re [(A− iy)−1f, f ]Kdy (η ∈ (η0,∞)),

is bounded for every f ∈ K.
Similarly, if ξ0 ∈ R and A is locally definitizable over a vicinity Ω of ξ0, then ξ0 6∈ cs(A) and ker(A− ξ0) =

ker(A− ξ0)2 if and only if there is η0 > 0, such that the set of numbers:
η0∫
η

Re [(A− ξ0 − iy)−1f, f ]Kdy (η ∈ (0, η0))

is bounded for every f ∈ K.

Roughly speaking, the property of an operator to be definitizable or to be locally definitizable is stable under
finite rank perturbations. This is made more precise in the following theorem which is taken from J. Behrndt [40,
Theorem 2.2]:

Theorem 3.3. Let A0 and A1 be self-adjoint operators in a Kreı̆n space (K, [ · , · ]K) with ρ(A0)∩ ρ(A1) 6= ∅ and
assume that for some λ0 ∈ ρ(A0) ∩ ρ(A1) the difference:

(A0 − λ0)−1 − (A1 − λ0)−1

is a finite rank operator. Then, A0 is definitizable over Ω if and only if A1 is definitizable over Ω.
Moreover, if A0 is definitizable over Ω and δ ⊂ Ω ∩ R is an open interval with endpoint µ ∈ Ω ∩ R and the

spectral points of A0 in δ are only of positive type (negative type), then there exists an open interval δ′, δ′ ⊂ δ,
with endpoint µ such that the spectral points of A1 in δ′ are only of positive type (negative type, respectively).

Theorem 3.3 also holds for definitizable operators as the class of definitizable operators over C coincides with
the class of definitizable operators ( [35, Theorem 4.7]). For definitizable operators, this fact is already contained
in [41].

3.2. Local definitizability of the direct sum of two operators

In this section, we characterize the definitizability of an operator which is the direct sum of two definitizable
operators. For this, we provide the following definition:

Definition 3.4. We shall say that the sets S1 and S2, S1, S2 ⊂ R, are separated by a finite number of points if
there exists a finite ordered set {αj}Nj=1, N ∈ N:

−∞ = α0 < α1 ≤ · · · ≤ αN < αN+1 = +∞,
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such that one of the sets Sj , j = 1, 2, is a subset of
⋃

k is even

[αk, αk+1] and the other one is a subset of⋃
k is odd

[αk, αk+1]. Here, we agree that 0 is even, [α0, α1] stands for (−∞, α1] ∪ {∞} and [αN , αN+1] for

[αN ,∞) ∪ {∞}.

The following theorem can be considered as a refinement of [42, Theorem 3.6]:

Theorem 3.5. Consider two operators A and B where A is self-adjoint in the Kreı̆n space
(
K+, [ · , · ]K+

)
and B

in
(
K−, [ · , · ]K−

)
. Let the direct sum of the two Kreı̆n spaces:

K = K+[+]K−,

be endowed with the natural inner product:

[f, g]K := [P+f, P+g]K+ + [P−f, P−g]K− (f, g ∈ K), (3.1)

where P± are the orthogonal projections onto K±. Then, the sum of the operators A[+]B is self-adjoint in the
direct sum of the Kreı̆n spaces K with the natural inner product from (3.1). We set the following:

S+ := σ++(A) ∪ σ++(B) and S− := σ−−(A) ∪ σ−−(B).

Then, A[+]B is definitizable if and only if the operators A and B are definitizable and S+ and S− are separated
by a finite number of points.

Proof. The non-real-spectrum of A[+]B coincides with the union of the non-real spectra of A and of B. Therefore,
if A[+]B is definitizable, then item (i) of Theorem 2.5 holds for A and for B. Conversely, if A and B are both
definitizable, then (i) of Theorem 2.5 holds for A[+]B. Therefore, it is no restriction to assume that A[+]B, A,
and B have real spectrum only.

If A[+]B is definitizable, then by the definition of the inner product in K = K+[+]K− a definitizing function
p for A[+]B is also a definitizing function for A and for B. From (2.4), we deduce:

{t ∈ R : p(t) > 0} ⊂ σ++(A) ∪ ρ(A), {t ∈ R : p(t) < 0} ⊂ σ−−(A) ∪ ρ(A),

{t ∈ R : p(t) > 0} ⊂ σ++(B) ∪ ρ(B), {t ∈ R : p(t) < 0} ⊂ σ−−(B) ∪ ρ(B),

and, hence, the zeros of p are the points separating S+ and S−, cf. Definition 3.4.
It remains to prove the converse. We assume that S+ and S− are separated by the points {α0, . . . , αN+1}, cf.

Definition 3.4, then we have:

S+ ∩ S− ⊂ {α0, . . . , αN+1}.
Note that S+ and c(A) may have a non-empty intersection (and the same applies to S+ ∩ c(B), S− ∩ c(A), and
S− ∩ c(B)). Indeed, let λ ∈ σ++(B) (and, hence, λ ∈ S+) such that λ is an isolated spectral point of A which
belongs to c(A). Then, λ ∈ S+ ∩ c(A) and, moreover as λ /∈ S−, we have in addition λ /∈ {α0, . . . , αN+1}.

We define:

Λ := {α0, . . . , αN+1} ∪ c(A) ∪ c(B),

and for λ ∈ S+ \ Λ, the following statements are true:

(i) λ ∈ σ++(A) ∪ σ++(B) (as λ ∈ S+),
(ii) λ /∈ σ−−(A) ∪ σ−−(B) (as λ /∈ S−),
(iii) λ /∈ c(A) ∪ c(B) (as λ /∈ Λ).

Thus, by (2.2) applied to both A and B, we obtain:

λ ∈ σ++(A) ∪ ρ̃(A) and λ ∈ σ++(B) ∪ ρ̃(B).

This implies:

λ ∈ σ++(A[+]B),

and we obtain:

S+ \ Λ ⊂ σ++(A[+]B), (3.2)

and with similar arguments:

S− \ Λ ⊂ σ−−(A[+]B). (3.3)
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From (2.2), we conclude:

σ̃(A[+]B) = σ̃(A) ∪ σ̃(B)

= σ++(A) ∪ c(A) ∪ σ−−(A) ∪ σ++(B) ∪ c(B) ∪ σ−−(B)

= S+ ∪ c(A) ∪ c(B) ∪ S− ⊂ S+ ∪ S− ∪ Λ.

(3.4)

Obviously, for the operator A[+]B the statements (i) and (ii) from Theorem 2.5 are satisfied as A and B are
definitizable operators. It remains to show (iii). Clearly, for λ ∈ C \ σ̃(A[+]B) (iii) in Theorem 2.5 is satisfied.
Let λ ∈ σ̃(A[+]B). If λ ∈ (S+ ∪ S−) \ Λ we deduce from (3.2) and (3.3) that either λ ∈ σ++(A[+]B) or λ ∈
σ−−(A[+]B). As the sets σ++(A[+]B) and σ−−(A[+]B) are relatively open in σ̃(A[+]B) (cf. Proposition 2.2),
(iii) follows. By (3.4), it remains to consider λ ∈ Λ. For λ ∈ {α0, . . . , αN+1} (iii) follows from (3.2) and (3.3).
Therefore, consider λ ∈ c(A) ∪ c(B). It is sufficient to consider λ ∈ c(A) \ {α0, . . . , αN+1}. It follows from the
definition of the points {α0, . . . , αN+1} and the fact that λ /∈ {α0, . . . , αN+1} that there exists open connected
vicinities Iλ, Jλ in R of λ with:

(Iλ \ {λ}) ∩ σ̃(A) ⊂ σ++(A) and (Jλ \ {λ}) ∩ σ̃(B) ⊂ σ++(B)

or
(Iλ \ {λ}) ∩ σ̃(A) ⊂ σ−−(A) and (Jλ \ {λ}) ∩ σ̃(B) ⊂ σ−−(B).

This shows (Iλ ∩ Jλ \ {λ}) ∩ σ̃(A[+]B) is a subset of σ++(A[+]B) or of σ−−(A[+]B) and (iii) follows.
�

Corollary 3.6. Let A+ and A− be self-adjoint and semibounded from below in the Kreı̆n spaces
(
K+, [ · , · ]K+

)
and

(
K−, [ · , · ]K−

)
, respectively:

[A±f±, f±]K± ≥ α±[f±, f±]K± , f± ∈ dom(A±), (3.5)

for some α± ∈ R. Let ρ(A+) 6= ∅, ρ(A−) 6= ∅. Then, their direct sum A+[+]A− is definitizable over:

Ω := C \ [min{α+, α−},max{α+, α−}] , (3.6)

in the direct sum of the Kreı̆n spaces K = K+[+]K−. In particular, A+[+]A− is definitizable if and only if the
sets S+ and S− from Theorem 3.5 are separated by a finite number of points.

This is fulfilled in the following special cases:

(I) α− = α+.
(II) α− < α+ and either σ(A+) ∩ (α−, α+) is finite or σ(A−) ∩ (α−, α+) is finite.

(III) α+ < α− and either σ(A+) ∩ (α+, α−) is finite or σ(A−) ∩ (α+, α−) is finite.

Proof. The assumptions on A± imply that A+ − α+ and A− − α− are nonnegative operators and, hence, A± are
definitizable operators. Then, with Proposition 2.3, we see that:

(α±,∞) ∩ σ(A±) ⊂ σ++(A±) and (−∞, α±) ∩ σ(A±) ⊂ σ−−(A±) (3.7)

and properties (i)–(iii) from Definition 3.1 for the operator A+[+]A− and Ω as in (3.6) are easily shown, cf.
Proposition 2.2. Therefore, A+[+]A− is definitizable over Ω.

The statements on the definitizability of the operator A+[+]A− now follow directly from (3.7) and Theo-
rem 3.5. �

4. Coupling of definitizable operators in Kreı̆n spaces

4.1. Boundary triples and Weyl functions of symmetric operators

Starting from this section, we will denote by A a closed densely defined symmetric operator in a Krĕın space(
K, [ · , · ]K

)
. Let ρ̂(A) denote the set of points of regular type of A, see [43], and let Nz denote the defect subspace

of the operator A:
Nz := H	 ran(A− z̄) = ker(A+ − z), z ∈ ρ̂(A).

In what follows, we assume that the operator A admits a self-adjoint extension Ã in
(
K, [ · , · ]K

)
with a

nonempty resolvent set ρ(Ã). Then, for all z ∈ ρ(Ã), we have:

dom(A+) = dom(Ã)uNz direct sum in H. (4.1)

This implies, in particular, that the dimension dim(Nz) is constant for all z ∈ ρ(Ã).

Definition 4.1. Let Γ0 and Γ1 be linear mappings from dom(A+) to Cd such that:
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(i) the mapping Γ : f → {Γ0f,Γ1f} from dom(A+) to C2d is surjective;
(ii) the abstract Green’s identity:

[A+f, g]K − [f,A+g]K = (Γ0g)
∗
(Γ1f) − (Γ1g)

∗
(Γ0f) (4.2)

holds for all f , g ∈ dom(A+).

Then, the triplet Π = {Cd,Γ0,Γ1 } is said to be a boundary triple for A+, see [19, 44, 45, Sect.3.1.4] for a much
more general setting.

It follows from (4.2) that the extensions A0, A1 of A defined as restrictions of A+ to the domains:

dom(A0) := ker(Γ0) and dom(A1) := ker(Γ1) (4.3)

are self-adjoint extensions of A.
If A has a self-adjoint extension Ã, with ρ(Ã) 6= ∅, then the operator A+ admits a boundary triple {Cd,Γ0,Γ1},

such that A0 = Ã and d = dimNz (z ∈ ρ(A0)). In this case, for every z ∈ ρ(A0), the decomposition (4.1) holds
with Ã = A0 and the mapping Γ0|Nz is invertible for every z ∈ ρ(A0). Therefore, the operator-function:

γ(z) := (Γ0|Nz )−1, (4.4)

is well defined and takes values in the set of bounded operators from Cd to Nz . The operator-function γ(z) is
called the γ−field of A, associated with the boundary triple Π. Notice, that γ(z) satisfies the equality:

γ(z) = (A0 − z0)(A0 − z)−1γ(z0) (z, z0 ∈ ρ(A0)).

Definition 4.2. The matrix valued function M : ρ(A0)→ Cd×d is defined by the equality:

M(z)Γ0fz = Γ1fz, fz ∈ Nz, z ∈ ρ(A0). (4.5)

The matrix valued function M is called the Weyl function of A corresponding to the boundary triple Π =
{Cd,Γ0,Γ1}.

Clearly,

M(z) = Γ1γ(z), z ∈ ρ(A0), (4.6)

and hence M(z) is well defined and takes values in Cd×d. It follows from the identity that the Weyl function
M(λ) satisfies the identities:

M(z)−M(w)∗ = (z − w̄)γ(w)+γ(z), z, w ∈ ρ(A0). (4.7)

With w = z̄ the identity (4.7) yields that the Weyl function M satisfies the symmetry condition:

M(z̄)∗ = M(z) for all z ∈ ρ(A0). (4.8)

The identity (4.7) was used in [46] as a definition of the Q-function. In the case when
(
K, [ · , · ]K

)
is a Hilbert

space, it follows from (4.7) and (4.8) that M is a Nevanlinna matrix valued function cf. (1.2).
In what follows, the function:

f̂(z) := [f, γ(z̄)]K (f ∈ K, z ∈ ρ(A0))

is called the generalized Fourier transform of f associated with the boundary triple {C,Γ0,Γ1}. A motivation for
this name is hidden in the fact, that the mapping f 7→ f̂ is a unitary mapping from K to a reproducing kernel

Krĕın space with the kernel
M(z)−M(w̄)

z − w̄
(see [28] for the Hilbert space case).

Proposition 4.3. [44–46] Let A1 be the self-adjoint extension of A with the domain defined in (4.3) and let d = 1.
For every z ∈ ρ(A0), the following equivalence holds:

z ∈ ρ(A1) ⇐⇒ M(z) 6= 0,

and the resolvent of A1 can be found by the formula:

(A1 − z)−1f = (A0 − z)−1f − f̂(z)

M(z)
γ(z),

for all f ∈ H and all z ∈ ρ(A0) ∩ ρ(A1).
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4.2. Construction of the coupling of two self-adjoint operators in a Kreı̆n space

In this section, we consider two Krĕın spaces
(
K+, [ · , · ]K+

)
and

(
K−, [ · , · ]K−

)
. Let their direct sum:

K = K+[+]K−,

be endowed with the natural inner product (3.1). Consider two closed symmetric densely defined operators A+ and
A− with defect numbers (1, 1) acting in the Krĕın spaces

(
K+, [ · , · ]K+

)
and

(
K−, [ · , · ]K−

)
. Let {C,Γ±0 ,Γ

±
1 } be

a boundary triple for A+
±. Let M± be the corresponding Weyl function and γA± the γ-field. By A±,0, we denote

the self-adjoint extension of A± which is defined on:

dom(A±,0) = ker(Γ±0 ) by A±,0 = A+
±|ker(Γ±

0 ),

and assume that ρ(A+,0) ∩ ρ(A−,0) 6= ∅. Then, the functions M± are defined and holomorphic on ρ(A±,0).
The following theorem is the indefinite version of a result from [47] (see also [28]).

Theorem 4.4. Under the general assumptions of this subsection we have:

(a) The linear operator A defined as the restriction of A+
+[+]A+

− to the domain:

dom(A) =

{(
f+

f−

)
:

Γ+
0 (f+) = Γ−0 (f−) = 0,

Γ+
1 (f+) + Γ−1 (f−) = 0,

f± ∈ dom(A+
±)

}
, (4.9)

is closed, densely defined and symmetric with defect numbers (1, 1) in the Kreı̆n space K.
(b) The adjoint A+ of A is the restriction of A+

+[+]A+
− to the domain:

dom(A+) =

{(
f+

f−

)
: Γ+

0 (f+)− Γ−0 (f−) = 0, f± ∈ dom(A+
±)

}
. (4.10)

(c) A boundary triple {C,Γ0,Γ1} for A+ is given by:

Γ0f = Γ+
0 f+, Γ1f = Γ+

1 f+ + Γ−1 f−, f =

(
f+

f−

)
∈ dom(A+). (4.11)

(d) The Weyl function M(z) and the γ-field of A relative to the boundary triple {C,Γ0,Γ1} are given by:

M(z) = M+(z) +M−(z), γ(z) =

(
γA+

(z)

γA−(z)

)
z ∈ C \ R. (4.12)

(e) The self-adjoint extension A1 of A such that dom(A1) = ker(Γ1) coincides with the restriction of
A+

+[+]A+
− to the domain:

dom(A1) =

{(
f+

f−

)
:

Γ+
0 (f+)− Γ−0 (f−) = 0,

Γ+
1 (f+) + Γ−1 (f−) = 0,

f± ∈ dom(A+
±)

}
, (4.13)

and is called a coupling of A+ and A− relative to the boundary triples {C,Γ+
0 ,Γ

+
1 } and {C,Γ−0 ,Γ

−
1 }.

(f) The self-adjoint extension A0 of A coincides with the direct sum A+,0[+]A−,0 and ρ(A 0) = ρ(A+,0) ∩
ρ(A−,0) 6= ∅.

(g) The resolvent set ρ(A1) is nonempty if and only if

M+ +M− 6≡ 0.

For every z ∈ ρ(A1) ∩ ρ(A0) and f =

(
f+

f−

)
∈ K = K+[+]K−, the resolvent of A1 is given by:

(
A1 − z

)−1
f =

(
A0 − z

)−1
f −

f̂A+
(z) + f̂A−(z)

M+(z) +M−(z)
γ(z), (4.14)

where:

f̂A+
(z) := [f+, γA+

(z̄)]K+
, f̂A−(z) := [f−, γA−(z̄)]K− . (4.15)
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Proof. (a)–(c) Since {C,Γ±0 ,Γ
±
1 } is a boundary triple for A+

±, it follows from (4.2) that for all f± ∈ dom(A+
±):

[A+
+f+, g+]K+

− [f+, A
+
+g+]K− + [A+

−f−, g−]K− − [f−, A
+
−g−]K−

= (Γ+
0 g+)(Γ+

1 f+) − (Γ+
1 g+)(Γ+

0 f+) + (Γ−0 g−)(Γ−1 f−)− (Γ−1 g−)(Γ−0 f−).
(4.16)

We denote by T the restriction of A+
+[+]A+

− to the set of the right hand side of (4.10).
If

f =

(
f+

f−

)
, g =

(
g+

g−

)
∈ dom(T ) then Γ+

0 f+ = Γ−0 f− and Γ+
0 g+ = Γ−0 g−,

and hence, one obtains from (4.16):

[Tf, g]K − [f, Tg]K = Γ+
0 g+(Γ+

1 f+ + Γ−1 f−) − (Γ+
1 g+ + Γ−1 g−)Γ+

0 f+. (4.17)

Now, it follows from (4.17) that A is a closed, densely defined and symmetric operator in the Krĕın space K,
T = A+ and a boundary triple for A+ can be chosen in the form (4.11).

(d) The formulas for M and γ are implied by (4.11), (4.4) and (4.5).
(e) & (f) As {C,Γ0,Γ1} is a boundary triple for A+, the extension A1 with dom(A1) = ker(Γ1) being a

restriction of A+
+[+]A+

−. The formula (4.13) for the domain follows from A1 ⊂ A+ (see (4.10)) and dom(A1) =
ker(Γ1). The statement (f) is immediate from (4.10) and (4.11).

(g) The statement (g) is implied by (4.12) and Proposition 4.3. �

Remark 4.5. The construction in Theorem 4.4 shows that the coupling of two self-adjoint operators A+,0 and
A−,0 is not uniquely defined. Namely, let the boundary triples Π− = {C,Γ−0 ,Γ

−
1 } and Π̃− = {C, Γ̃−0 , Γ̃

−
1 } be

related by

Γ̃−0 = cΓ−0 , Γ̃−1 = c̄−1Γ−1 ,

for some non-zero c ∈ C, c 6= 1. Then, the extension Ã1 defined as the restriction of A+
+[+]A+

− to the domain:

dom(Ã1) =

{(
f+

f−

)
:

Γ+
0 (f+)− cΓ−0 (f−) = 0,

Γ+
1 (f+) + c̄−1Γ−1 (f−) = 0,

f± ∈ dom(A+
±)

}
,

is also a coupling of A− and A+ with Ã1 6= A1.
However, when the boundary triples {C,Γ±0 ,Γ

±
1 } are fixed, then the coupling A1 of the operators A± is

uniquely defined by the formula (4.13) and is called the coupling of the operators A±,0 relative to the boundary
triples {C,Γ±0 ,Γ

±
1 }.

Let us suppose that the operators A±,0 are semibounded from below, that is there exists α± ∈ R such that (3.5)
holds. Then, the results of Section 3.2 allow us to show that the coupling A1 of the operators A+,0 and A−,0 is at
least locally definitizable in a vicinity of ∞. In the next theorem, sufficient conditions for regularity of the critical
point ∞ are given.

Theorem 4.6. Under the general assumptions of this subsection, we assume that the operators A±,0, the γ−fields
γ± and the Weyl functions M± satisfy the following assumptions:

(A1) The operators A±,0 are semibounded from below, ρ(A±,0) 6= ∅, and

∞ 6∈ cs(A±,0).

(A2) (w(z) :=)|M+(z) +M−(z)| 6≡ 0 on ρ(A+,0) ∩ ρ(A−,0).
(A3) There is y1 > 0, such that for all fA± ∈ K±:

∞∫
y1

|f̂A±(iy)|2

w(iy)
dy <∞,

∞∫
y1

|f̂A±(−iy)|2

w(iy)
dy <∞, (4.18)

where the generalized Fourier transforms f̂A+
and f̂A− are defined by (4.15).

Then, the coupling A1 of the operators A+,0 and A−,0 is definitizable over Ω, where Ω is as in (3.6). Moreover,
we have:

∞ 6∈ cs(A1).
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Proof. By Corollary 3.6, the operator A0 = A+,0[+]A−,0 is definitizable over Ω. In view of Theorem 4.4, the
assumption (A2) yields ρ(A1) 6= ∅. Since the operator A1 is a two-dimensional perturbation of A0, by Theorem 3.3,
the operator A1 is also definitizable over Ω.

Clearly, ∞ 6∈ cs(A0) and it follows from Theorem 3.2 that there is y2 > y1 > 0, such that:
∞∫
y2

|Re [(A0 − iy)−1f, f ]K|dy <∞ for all f ∈ K.

Let us set:

A(f, iy) :=
(f̂A+

(iy) + f̂A−(iy))(f̂A+
(−iy) + f̂A−(−iy))

M+(iy) +M−(iy)
. (4.19)

We show:
∞∫
y2

|A(f, iy)|dy <∞ for all f ∈ K.

It follows from (A3) that for every fA± ∈ K±
∞∫
y2

∣∣∣f̂A±(iy)f̂A±(−iy)
∣∣∣ dy

w(iy)
≤

 ∞∫
y2

∣∣∣f̂A±(iy)
∣∣∣2 dy

w(iy)

1/2 ∞∫
y2

∣∣∣f̂A±(−iy)
∣∣∣2 dy

w(iy)

1/2

<∞. (4.20)

Similarly, one obtains for all fA± ∈ K±:
∞∫
y2

∣∣∣f̂A+
(iy)f̂A−(−iy)

∣∣∣ dy

w(iy)
<∞. (4.21)

Combining (4.20) and (4.21), one obtains from (4.19) for all f ∈ K
∞∫
y2

|A(f, iy)|dy =

∞∫
y2

∣∣∣∣∣ (f̂A+
(iy) + f̂A−(iy))(f̂A+

(−iy) + f̂A−(−iy))

M+(iy) +M−(iy)

∣∣∣∣∣ dy <∞.
Now the statement ∞ 6∈ cs(A1) is implied by Theorem 2.4 and (4.14). �

Theorem 4.7. Under the assumptions of this subsection we assume that the operators A±,0, the γ−fields γ± and
the Weyl functions M± satisfy the following conditions:

(A1′) The operators A±,0 are semibounded from below, ρ(A±,0) 6= ∅, one of the conditions (i), (ii) or (iii) of
Corollary 3.6 holds, and α := min{α−, α+} satisfies:

α 6∈ cs(A±,0).

(A2′) (w(z) :=)|M+(z) +M−(z)| 6≡ 0 on ρ(A+,0) ∩ ρ(A−,0).
(A3′) There is y1 > 0, such that for all fA± ∈ K±:

y1∫
0

|f̂A±(α+ iy)|2

w(α+ iy)
dy <∞,

y1∫
0

|f̂A±(α− iy)|2

w(α+ iy)
dy <∞.

Then, the coupling A1 of the operators A+,0 and A−,0 is a definitizable operator and

α 6∈ cs(A).

Proof. In view of Corollary 3.6, the operator A0 := A+,0[u]A−,0 is definitizable. By Theorem 4.4, the assumption
(A2′) implies ρ(A1) 6= ∅. Then by [41] the operator A1 is also definitizable.

By the assumption (A1′) α 6∈ cs(A±,0), then α 6∈ cs(A0). Since by Theorem 2.4 there is y2 ∈ (0, y1), such
that:

y2∫
0

|Re [(A0 − α− iy)−1f, f ]K|dy <∞ for all f ∈ K,

it remains to show that:
y2∫

0

|A(f, α+ iy)|dy <∞ for all f ∈ K,
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where A is defined as in (4.19). The proof of this inequality is similar to that in Theorem 4.6 and is based on the
assumption (A3′). �

5. Application to Sturm–Liouville operators with indefinite weights

Consider the differential expression:

`(f)(t) :=
sgn t

w(t)

(
− d

dt

(
df

r(t)dt

)
+ q(t)f(t)

)
for a.a. t ∈ R, (5.1)

where the coefficients r, q and w are real functions on R satisfying the conditions:

(C1) r, q, w ∈ L1
loc(R) and r, w > 0 a.e. on R,

(C2) the expression ` is in the limit point case at −∞ and at +∞.

Let H± = L2
w(R±) be the standard weighted L2-space with the positive definite inner product:

(f, g)± =

∫
R±

f(t)g(t)w(t)dt (f, g ∈ L2
w(R±)).

Consider minimal differential operators B± generated by ±` in L2
w±

(R±), here w± denotes the restriction of w
to R±. Since we assume that ` is in the limit point case at ±∞, the operator B± is a densely defined symmetric
operator with defect numbers (1, 1) in the Hilbert space L2

w±
(R±) and:

dom(B∗±) =
{
f ∈ L2

w±
(R±) : f, (r−1f ′ ∈ ACloc[0,±∞), `(f) ∈ L2

w±
(R±)

}
,

dom(B±) =
{
f ∈ dom(B∗±) : f(0) = f ′(0) = 0

}
,

B±f := ±`(f), f ∈ dom(B±). (5.2)

In addition to (C1), (C2), we assume that:

(C3) B+ and B− are semibounded from below in L2
w+

(R+) and L2
w−

(R−), respectively.

Let z ∈ C \ R and denote by ϑ(·, z) and ϕ(·, z) the unique solutions of the equation:

−(r−1 f ′)′ + qf = zwf

satisfying the boundary conditions:

ϕ(0, z) = 1, (r−1 ϕ′)(0, z) = 0 and ϑ(0, z) = 0, (r−1 ϑ′)(0, z) = 1, respectively.

Since we assume that ±` are in the limit point case at ±∞, for each z ∈ C \ R there is a unique solution:

ψ±(t, z) = ϕ(t, z)±m±(z)ϑ(t, z), t ∈ R±, (5.3)

of the restriction of ±`(f) = zf to R± which belongs to L2
w±

(R±). Relation (5.3) defines the function m± :

C \R→ C uniquely. The function m± is called the Dirichlet m-coefficient of the restriction of the expression ±`
to R±.

A boundary triple for B∗± is {C,Γ±0 ,Γ
±
1 }, where:

Γ±0 f := f(0±), Γ±1 (f) = ±(r−1 f ′)(0±), f ∈ dom(B∗±). (5.4)

It follows from (4.6) and (5.4) that the Dirichlet m-coefficient m± defined by (5.3) coincides with the Weyl
function of the operator B± in (5.2) relative to the boundary triple in (5.4).

It is natural to consider the expression ` in the Krĕın space
(
K, [·, ·]K

)
, where K = L2

w(R) is the standard
weighted L2-space endowed with the indefinite inner product:

[f, g]K = (Jf, g)L2
w(R) =

∫
R

sgn tf(t)g(t)dt, f, g ∈ L2
w(R),

and the operator:
(Jf)(t) = (sgn t)f(t), f ∈ L2

w(R),

is a fundamental symmetry on
(
K, [·, ·]K

)
. We set:

K± =
{
f ∈ L2

w(R) : f = 0 a.e. on R∓
}
.

Then K = K+[+̇]K− is the fundamental decomposition corresponding to J .
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Let the operators A± := ±B± be considered as semibounded symmetric operators in the Krĕın spaces(
L2
w±

(R±),±(·, ·)L2
w±

(R±)

)
. Then, the triples (5.4) are boundary triples for A+

±. The corresponding Weyl

functions of the operators A+ and A− take the form:

M+(z) = m+(z), M−(z) = m−(−z).
Consider a symmetric operator A in the Krĕın space

(
K, [·, ·]K

)
determined by the conditions (4.9). Then the

domain of the adjoint operator A+ is characterized by the boundary condition (4.10), which in view of (5.4), takes
the form:

f(0+) = f(0−).

Consider the coupling A1 of A+ and A− relative to the boundary triples (5.4). A1 is characterized by the boundary
conditions (4.13), which now can be rewritten as:

f(0+) = f(0−), (r−1f ′)(0+) = (r−1f ′)(0−).

Therefore, the operator A1 is associated with the expression in (5.1) in the Hilbert space L2
w(R); that is A1f = `(f)

for all:
f ∈ dom(A1) =

{
f ∈ L2

w(R) : f, r−1f ′ ∈ ACloc(R), `(f) ∈ L2
w(R)

}
.

Notice, that the assumption (A1) of Theorem 4.6 is satisfied in view of (C3) and the assumption (A2) is satisfied
since if m+(z) + m−(−z) ≡ 0 then m+(z) = −m−(−z) is holomorphic on the half-line (−β−,∞), what is
impossible for the m-coefficient of the Sturm-Liouville operator. These considerations and Theorem 4.6 justify the
following:

Proposition 5.1. Let the differential operation ` satisfy (C1), (C2) and let the minimal differential operators B±
generated by ±` in L2

w(R±) satisfy (C3) and let m± be the Dirichlet m-functions of B±. Then, the coupling
A1 of A+ and A− is locally definitizable in the Kreı̆n space

(
K, [·, ·]K

)
. If, in addition, m+ and m− satisfy the

condition (4.18), then ∞ 6∈ cs(A1).
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[5] Caliceti E., Graffi S., Sjöstrand J. Spectra of PT -symmetric operators and perturbation theory. J. Phys. A: Math. Gen., 2005, 38,

P. 185–193.
[6] Günther U., Stefani F., Znojil M. MHD α2-dynamo, squire equation and PT -symmetric interpolation between square well and harmonic

oscillator. J. Math. Phys., 2005, 46, P. 063504.
[7] Langer H., Tretter C. A Krein space approach to PT -symmetry. Czech. J. Phys., 2004, 54, P. 1113–1120.
[8] Albeverio S., Günther U., Kuzhel S. J-self-adjoint operators with C-symmetries: extension theory approach. J. Phys. A: Math. Theor.,

2009, 42, P. 105205.
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1. Introduction

In this note, we will consider mixed variational formulations of evolution problems as abstract differential
algebraic equations. More generally, abstract differential algebraic equations can be seen as a good tool to study
the evolution of any system with constraints. Their theory and numerical analysis is fairly well known in the finite
dimensional case, see eg. [1], but the corresponding results for infinite dimensional abstract differential algebraic
equations are at an early stage of development, see [2, 3].

Let us note that simulations of complex systems, where one considers several physical regimes simultaneously
can be described by a state vector in an appropriate product space called the state space. Experience indicates
that mixed variational formulations are easier to combine in a state space formulation. In the mixed approach, the
“agreement” between models/regimes is enforced a constraint in the state space.

Our approach to mixed variational problems is through the theory of 2× 2 block operator matrices [4] and the
representation theorems for quasi-definite quadratic forms by such operators from [5,6].

Formally, we start from the problem of finding u ∈ L2(0, T,X) and p ∈ L2(0, T, Y ), T > 0 so that:[
M 0

0 0

]
d

dt

[
u

p

]
+

[
K B

D∗ C

][
u

p

]
=

[
f1
f2

]
, (1)

holds in the state space X ⊗ Y . As in [2, 3, 7], the time derivative is to be interpreted in the distributional sense
and X and Y are assumed to be Hilbert spaces. We will call X ⊗ Y the state space. It is a Hilbert space with
usual product space structure and we will write:

ψ = x⊕ y =

[
x

y

]
∈ X ⊗ Y

for its elements, the state vectors.
An important class of model problems which can formally be posed in the form (1) originates from problems

in fluid mechanics modeled by Stokes, Oseen or Navier-Stokes equations linearized about nonzero velocity, see [3]
for some details. In this note, we will be interested in the homogeneous problem associated to the problem (1):[

M 0

0 0

]
d

dt

[
u

p

]
+

[
K B

D∗ C

][
u

p

]
= 0 (2)

and its fundamental solutions ψ(t) = exp(λt)ψ0. From the Floquet theorem, we know that λ ∈ C and ψ0 ∈ X⊗Y
must satisfy the algebraic problem:

λ

[
M 0

0 0

]
ψ0 +

[
K B

D∗ C

]
ψ0 = 0 . (3)
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Note that eigenvalue problem (3) also covers the case of some special second order systems. For instance, in the
absence of damping we have: [

M 0

0 0

]
d2

dt2

[
u

p

]
+

[
K B

D∗ C

][
u

p

]
= 0 . (4)

Equation (4) leads to the consideration of a quadratic eigenvalue problem. It is a special type of the quadratic
eigenvalue problem which can be transformed into a linear eigenvalue problem by a simple change of spectral
variable.

We will restrict our analysis to considering equations (4) where operator M is a bounded positive semi-definite
operator and the block operator matrix is quasi-semidefinite. For the purposes of this note, a block operator matrix
is called positive quasi semi-definite if it defines a boundedly invertible self-adjoint operator and has the structure:

K =

[
K B

B∗ 0

]
,

where B is the closed range operator and K is positive semidefinite operator in the sense of Kato, [8]. To tackle
both problems in a unified manner, we will analyze the generalized resolvents:

R1 : z 7→

[
K − zM B

B∗ 0

]−1
, R2 : z 7→

[
K − z2M B

B∗ 0

]−1
(5)

as 2 × 2 block operator matrices. The only assumption which we will make is that there are complex num-
bers z1, z2 ∈ C such that R1(z1) and R2(z2) are bounded and that in addition, K−1 is compact. The terminology
for quasi-definite block operator matrices comes from [9] and the references therein.

2. Matrix analysis of the generalized resolvent

In this section, we will present matrix analysis of the generalized resolvents (5) under the additional assumption
that X and Y are finite dimensional. The computations are motivated by the considerations from [10, 11]. We
will restrict our analysis to the following setting. Without reducing the level of generality, we consider a general
Hermitian (self-adjoint) block 2× 2 matrix of the form:

K =

[
K B

B∗ 0

]
,

where matrix B is such that ‖(B∗B)−1‖ <∞. Such block matrices were called quasi-semidefinite in [9]. In this
case, there exists a unitary matrix Q = [Q1 Q2] and a lower triangular matrix R which is invertible and:

B =
[
Q1 Q2

] [R∗
0

]
.

This directly implies the following for the range space of the operator B and the null space (kernel) of the
operator B∗:

Im(B) = Im(Q1),

Null(B∗) = Im(Q2) .

We define the unitary block matrix:

Q =

[
Q 0

0 I

]
= Q⊕ I.

In the state space formulation, we will henceforth use the notation A⊕B to denote the block diagonal matrix with
diagonal blocks A and B. With these definitions, we compute:

Q∗KQ =
([
Q1 Q2

]
⊕ I
)∗
K
([
Q1 Q2

]
⊕ I
)
=

K11 K12 R∗

K21 K22 0

R 0 0

 . (6)

The analysis of [12] implies the following technical lemma.
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Lemma 1. Assume that B is such that ‖(B∗B)−1‖ <∞ and Q1, Q2 and R are as in (6). Then,

K =

[
K B

B∗ 0

]
is invertible if and only if Q∗2KQ2 = K22 is invertible. In that case u and p which satisfy:[

K B

B∗ 0

][
u

p

]
=

[
f

g

]
are given by:

u =

[
Q1R

−1g

Q2K
−1
22 (Q∗2f −K21R

−1g)

]
,

p = Q∗1f −K11R
−1g −K12K

−1
22

(
Q∗1f −K21R

−1g
)
.

Proof. According to [9], we have:

Null(K) = (Null(K) ∩Null(B∗))⊗Null(B)

for the null space of K. The assumptions on the matrix B imply that Null(B) = {0} and Null(B∗) = Im(Q2),
and so, if K22 = Q∗2KQ2 is invertible, so is (Null(K) ∩ Null(B∗)) trivial. This proves the first claim. To finish
the proof of the theorem, note that (6) implies:K11 K12 R

K21 K22 0

R∗ 0 0


Q∗1uQ∗2u

p

 =

Q∗1fQ∗2f

g

 ,
and the claim follows by equating the matrix identity block element by block element. �

Lemma 1 directly allows for the block matrix analysis of the resolvents and was used in [12] to analyze the
eigenvalue problem associated to the resolvent R1. In particular it holds:

Q∗Ri(z)Q

f1f2
g

 =

 R−1g

R22,i(z)(f2 − (K21 − ziM21)R
−1g)

−(K12 − ziM12)R22,i(z)(f2 − (K21 − ziM21)R
−1
1 g) + f1 − (K11 − ziM11)R

−1g

 ,
where

R22,i(z) := (K22 − ziM22)
−1 .

Here, we see that the singularities of the functions z 7→ Ri(z) and z 7→ R22,i(z) coincide. Let ρi(K22,M22) =

{z ∈ C : ‖(K22 − ziM22)
−1‖ < ∞} be the resolvent set of R22,i. Its complement Speci(K22,M22) =

C \ ρi(K22,M22) is called the spectrum of Ri. In particular, when K22 is a positive definite Hermitian (self-
adjoint) matrix, then for each λ ∈ Speci(K22,M22) there is a vicinity U ⊂ ρi(K22,M22) such that the expansion:

Ri(z) =
1

z − λ
Pi +Hi(z), z ∈ U ,

holds. Here, Hi is a holomorphic operator valued function and Im(P ) = Null(K22 − λiM22). This result follows
from the celebrated Keldysh’ theorem, see [13, 14]. Let us note that in the case in which we assume that K22

is positive definite, as will be prototypical for the applications which we have in mind, then we will study the
resolvents associated with the operator K−122 M22 and so obtain the results for the resolvents Ri, i = 1, 2, see [15]
and the references therein. Note that [15] is obtained in the Hilbert space setting and this will allow a direct
generalization in the next section.

3. The main results

In this section, we concentrate on the operator equivalent of the matrix results. Let us assume that X and Y
are Hilbert spaces. Then, we assume we have operators K : X → X and B : Y → X such that:

(A1): K is self-adjoint and positive semi-definite;
(A2): B is closed;
(A3): ‖B∗(I +K)−1/2‖ <∞;
(A4): Y = Im(B∗(I +K)1/2);
(A5): The restriction of the operator K on the space Im(B∗) is positive definite (in the sense of quadratic forms,

see below).
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The restriction of the operator K on the space Null(B∗) ⊂ X , denoted by K22, is defined as the operator
representation, in the sense of Kato [8], of the quadratic form:

k22(u, v) := (K1/2u,K1/2v), u, v ∈ Null(B∗) ∩Dom(K1/2).

Here, K1/2 is a self-adjoint operator defined by spectral calculus and satisfies the requirements of the Kato’s
second representation theorem and V := Dom(K1/2) ⊂ X denotes the operator domain of K1/2. The operator
K22 is now a self adjoint and positive definite operator from Null(B∗) to Null(B∗) such that:

(K
1/2
22 u,K

1/2
22 v) = k22(u, v), u, v ∈ Null(B∗) ∩Dom((I +K)1/2)

and Dom(K
1/2
22 ) = Null(B∗) ∩Dom((I +K)1/2.

The null space of the closed operator is closed and the assumptions (A1) and (A2) together with the closed
range theorem imply:

X = Im(B)⊕Null(B∗).

Based on this decomposition, which is an abstract version of the Hodge–Helmholtz decomposition for the Stokes
operator, we will seek a block 3× 3 representation of the resolvents R1 and R2 in the state space:

X ⊗ Y = (Im(B)⊕Null(B∗))⊗ Y = Im(B)⊗Null(B∗)⊗ Y,
where we have tacitly identified ismorphic Hilbert spaces. Let us now consider the following forms:

k11(u, v) = (K1/2u,K1/2v), u, v ∈ Im(B) ∩ (Dom(I +K)1/2),

k21(u, v) = (K1/2u,K1/2v), u ∈ Im(B) ∩ (Dom(I +K)1/2), v ∈ Null(B∗) ∩ (Dom(I +K)1/2),

b(u, v) = (u,B∗v), u ∈ Y, v ∈ V ⊂ X.
(7)

Further, let K11 be the operator representation of k11 in the sense of Kato, and let R be the maximal operator such
that:

(u,Rv) = b(u, v), u ∈ Y, v ∈ Im(B) ∩Dom((I +K)1/2). (8)

Then, by the assumptions (A3) and (A4), the operator R : Im(B)→ Y is closed and has a bounded inverse.
Note that the forms k12 and k21 need not have operator representations. Also, they are conjugate to each other

as forms since K is self-adjoint. However, the operator KR defined by:

(KR u, v) = k21(R
−1u,K

−1/2
22 v), u ∈ Y, v ∈ Null(B∗), (9)

is a bounded operator. Assumptions (A1) and (A3) also imply that R−∗K11R is a bounded self-adjoint operator.
We now present the main theorem on the block operator representation of the resolvents Ri, i = 1, 2.

Theorem 1. Let M be a bounded and self-adjoint semi-definite operator on Im(B) ⊗ Null(B∗) and let K and
B be operators which satisfy (A1)–(A5). Let further K11 and K22 be the operators as defined in (7)–(9) and let
K−1 be compact. Then for z ∈ C the operator Ri(z) is bounded if and only if R22,i(z) = (K22 − ziM22)

−1 is
bounded. Here we assumed the obvious notation for the block 2× 2 representation of a bounded operator M on
Im(B)⊗Null(B∗).

Proof. Recall from [5, 6, 9] that the operator:

K =

[
K B

B∗ 0

]
is semibounded from below and so due to its quasi semi-definitnes we can justify the following computation in the
product space

(
Im(B)×Null(B∗)

)
⊗ Y :

Ri(z) =

(
R−∗ ⊕K−1/222 ⊕ I

)R−∗K11R
−1 − ziR−∗M11R

−1 KR − ziR−∗M12K
−1/2
22 I

K∗R − ziK
−1/2
22 M21R

−1 I − ziK−1/222 M22K
−1/2
22 0

I 0 0


−1 (

R−1 ⊕K−1/222 ⊕ I
)
.

The 3× 3 block operator matrix in the middle has only bounded entries and it is, using the same technique as
in Lemma 1, boundedly invertible if and only if:

‖(I − ziK−1/222 M22K
−1/2
22 )−1‖ <∞ .

Since K22 has a compact inverse and M22 is bounded this is equivalent, see [15], to ‖(K22 − ziM22)
−1‖ < ∞

which was the claim of the theorem. �
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Recall that under the assumption that K−122 is compact and K22 is positive definite and self-adjoint operator
we can again apply Keldysch’s theorem on the operator function z 7→ (K22 − ziM22)

−1. For any i = 1, 2 and
λi ∈ ρi(K22,M22) there exists a vicinity Ui ⊂ ρi(K22,M22) and an operator Pi and a holomorphic operator
valued function Hi such that:

R22,i(z) = (K22 − ziM22)
−1 =

1

z − λi
Pi +Hi(z), z ∈ Ui.

Let us assume (A1)–(A5) and in addition let K−1 be compact then

K =

[
K B

B∗ 0

]
is invertible. Based on the analysis in the state space Im(B)⊗Null(B∗)⊗Y and following the steps from [11,12],
we can construct 2 × 2 block matrix representation of K−1M in the product space Null(B∗) ⊗

(
Im(B) ⊗ Y

)
which has the form:

K−1M = L1

[
A

N

]
L−11 , (10)

where A is a self-adjoint compact operator and N is a nilpotent operator such that N2 = 0 and L1 and L−11 are
bounded operators. We see that the eigenvalues of the operator K−1M are directly mapped by to the eigenvalues
of Ri by either inverting them or by inverting their squares. Note that A might have a zero as an eigenvalue.
In this case, we say that this zero corresponds to the eigenvalue at infinity of the original eigenvalue problem
associated with Ri, i = 1, 2. The whole invariant space of K−1M associated with the operator N corresponds to
the eigenvalue at infinity of Ri, i = 1, 2. On the other hand, the eigenvalues of K−1M in the invariant subspace
associated with the operator A are all semisimple.

4. A model problem

As a model problem, we consider the curved rod model from [16, 17]. A discussion of the model is beyond
the scope of this article. In the weak formulation model is given for the unknowns y and θ being the displacement
of the middle curve and the infinitesimal rotation of the cross-section. Having in mind the mixed formulation of
the model, see [18] for more details, we set:

V := H1
0 (0, l;R3)×H1

0 (0, l;R3) ⊂ L2(0, l;R3)× L2(0, l;R3) =: X, Y := L2(0, l;R3),

and define the bilinear forms:

k : V × V → R, k((y, θ), (ỹ, θ̃)) =

l∫
0

QHQ∗∂sθ · ∂sθ̃ds,

b : Y × V → R, b(n, (ỹ, θ̃)) =

l∫
0

n · (∂sỹ + t× θ̃)ds,

where H ∈ R3×3 is a symmetric positive definite matrix describing the elastic properties of the material the rod is
made of and the geometry of the cross-sections, Q = [t n b] ∈ R3×3 is the orthogonal matrix whose columns are
the tangent, the normal and the binormal of the of the middle line of the curved rod, see Fig. 1. The elastic energy
of the rod is given in the form k, while the form b defines the inextensibility and unshearability conditions of the
rod (∂sy + t × θ = 0). Thus the elements of the state space X ⊗ Y are given by (y, θ) ⊕ n and also include the
Lagrange multiplier (being the contact force) related to the inextensibility and unshearability conditions.

Since V is dense in X and the form k, defined on the domain V , is closed and positive semidefinite in X and
so it defines the self-adjoint positive semi-definite operator K in X in the sense of Kato. Furthermore, this choice
of V allows us to conclude that the operator B∗ : X → Y such that:

(n,B∗(y, θ))Y = b(n, (y, θ))

is a closed operator and ‖B∗(I + K)−1/2‖ < ∞. Here it is central that Im(I + K)−1/2 = V . To prove the
assertion (A4) we use the inf − sup estimates for B. The details can be found in [18]. The form m, which defines
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FIG. 1. A 3D elastic strut modeled by the curved rod model on the middle line of length l which
is parametrized by P : [0, l]→ R3

the M , is given by the bounded form:

m : X ×X → R, m((y, θ), (ỹ, θ̃)) =

l∫
0

ρAy · ỹds, (11)

and ρ and A are the density and the area of the cross section of the rod.

4.1. Endovascular stents

Following the approach from [17] it is possible to consider the curved rod equations on the metric graph
N = (V, E), where V are vertices and E are edges which are assumed to be parametrized by P i : [0, li] → R3,
i = 1, ...,#E . Here #E < ∞ is the number of edges in N . As before deformation of the ith edge is described
by ui = (yi, θi), the displacement of the ith middle curve and the infinitesimal rotation of its cross-section. We
further impose the restriction that between edges the displacements and the rotations of the cross-sections have to
be continuous. Thus, for the domain of the form of the elastic energy, we have:

V = {u = (u1, · · · , u#E) ∈
#E∏
i=1

H1(0, li;R3)×H1(0, li;R3) :

ui((P i)−1(v)) = uj((P j)−1(v)),∀v ∈ V, v ∈ ei ∩ ej , i, j = 1, . . . ,#E}.

For the spaces X and Y , we choose:

X =

#E∏
i=1

L2(0, li;R3)× L2(0, li;R3),

Y =

#E∏
i=1

L2(0, li;R3)× R3 × R3.

The forms that define the problem are now given by:

k : V × V → R, k(u, ũ) =

#E∑
i=1

li∫
0

QiHiQi ∗ ∂sθi · ∂sθ̃ids,

b : Y × V → R, b(n, ũ) =

#E∑
i=1

li∫
0

ni · (∂sỹi + ti × θ̃i)ds+ α ·
#E∑
i=1

li∫
0

ỹids+ β ·
#E∑
i=1

li∫
0

θ̃ids.

Here, we used the notation:

n = (n1, . . . , n#cE , α, β) ∈ Y
for the Lagrange multipliers in the mixed formulations; ni is the contact force associated to the ith edge while α
and β are multipliers associated to fixing the overall center of mass and overall infinitesimal rotation.

With this, we again obtain the resolvent:

K − z2M =

[
K − z2M B

B∗ 0

]
,
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where the operator K is the “stiffness” operator, the operator B implements the inextensibility of the middle curve
of all edges and ushearability of cross-sections of all edges of the stent and fixing the overall center of mass and
rotation of the whole stent and the “mass” operator M is defined by the bounded form:

m : X ×X → R, m(u, ũ) =

#E∑
i=1

li∫
0

ρiAiyi · ỹids. (12)

Since the boundary conditions for the stent problem are homogeneous Neumann type nonuniqueness of the solution
of the problem is associated. Thus, by fixing the overall translation and rotation, we obtain uniqueness of the
problem, i.e. the operator K is invertible on NullB∗. More details on the model and its properties can be found
in [18].

This construction of the operator B and the space Y illustrates a use of the freedom in formulating the
mixed problem so that (A1)–(A5) hold. The inf − sup analysis of B can be performed in the metric graph setting
following a similar argument as in the single rod case to show that (A4) holds. For details see [18]. Also, as is
known from the Stokes problem, the freedom in the choice of Y , which is there the pressure space, is directly
used to satisfy condition (A4) possibly by restricting the size of Y . A description of the code which was used to
generate Fig. 2, as well as discretization details, is based on [19].

FIG. 2. A metric graph model of an endovascular stent. Six lowermost eigenmodes of the Palmaz
stent computed with the MATLAB based on [19]
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[15] Nakić I. On the correspondence between spectra of the operator pencil A − λB and of the operator B−1A. Glas. Mat. Ser. III, 2016,

51 (71), P. 197–221.
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This work describes the development of a model using a zigzag chain of weakly-coupled ball resonators with Neumann boundary conditions.

The chain is assumed to be constructed of identical resonators connected through point-like apertures. The connecting points are described by

their delta-coupling with a constant intensity. The model is based on the theory of self-adjoint extensions of symmetrical operators. Due to

effectively one-dimensional joints, the 3D problem can be solved with assistance from the transfer matrix approach. This allows us to study the

spectrum of the physical system. In particular, it is proven that the discrete spectrum of direct zigzag chain is empty while bending deformation

leads to the appearance of non-empty discrete spectrum. In addition, the continuous spectrum has band structure. With the help of asymptotic

study, we obtain the dependence of the spectrum structure on the geometrical and physical parameters of the system: zigzag angle, bend angle

and coupling intensity.
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1. Introduction

Various chain structures have been widely discussed recently. These structures can be constructed of elements
of different dimensions. Regarding one-dimensional elements, spectral properties of an infinite chain-like quantum
graph, which consists of identical rings, were studied in [1, 2]. In [3] authors deal with a similar chain made up
of hexagons. Two-dimensional resonators are in the focus of the papers [4–6], which studies spectral problems of
direct and zigzag-like chains of disks, and bent chain of nanospheres respectively. Finally, chains consisting of
three-dimensional resonators are presented in [7–9].

Different chains structures with resonators as cells are used in optical systems (see, for example, so called
SCISSOR device [10], optical waveguide system [11], optical delay line [12]), in nanoelectronics (see, for instance,
nano peapod and similar systems [13–17]) and in molecular biology (for example, for creation of biosensors [18]).

The spectrum of stationary Schrödinger equation in the zigzag-like chain system will be examined in the present
paper. The Hamiltonian for this model is constructed in the framework of extension’s theory (see, for example, [19]
and the extensive bibliography of [20]). We assume that resonators in our model are weakly coupled, i. e. we
employ the approach known as model of zero-width slit [21–24]. We consider Neumann boundary conditions at
resonator’s border and δ-coupling condition at its contact points. In this paper, we analyze the dependence of
spectral characteristics on the geometrical and physical parameters of the system.

2. Model and geometry

FIG. 1. Geometry of the system
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The three-dimensional zigzag chain of weakly coupled ball resonators with a kink is considered (see Fig. 1).
From geometrical point of view this system has the following properties:

• it is made up of infinite quantity of identical ball resonators (it is convenient to enumerate them: j ∈
Z− ∪ {0} ∪ Z+). Without loss of generality, we assume that all balls are of unit radius;

• any two neighboring resonators (j−1 and j) have only one common point (xj). Before applying ”bending”
deformation all such contact points lie on the same straight line;

• ω is the zigzag angle: ω ∈ (π/3;π];
• any two connected resonators can be taken as a basic cell;
• ”bending” deformation (kink) occurs at a single point (x0) shifted by an angle γ: γ ∈ [0;ω − π/3).

When geometry of the system is comprehended, the Hamiltonian can be described. We employ the theory of
self-adjoint extensions of symmetric operator to present states of non-relativistic spinless particles that are placed
into the chain in the absence of external fields. For a better understanding of the restriction-extension scheme
which is used for model construction, let one examine more scrupulously the simplest chain — two connected
resonators. And then one just needs to extend this scheme for the infinite case.

Consider two coupled resonators (Ω0, Ω1) with one common point x1 at the border. Let −∆ be the orthogonal
sum of the Laplace operators with Neumann boundary conditions in L2 (Ω0) ⊕ L2 (Ω1). Restrict this operator to
the set of smooth functions vanishing at contact point x1. This procedure gives us symmetric operator −∆0 with
deficiency indices (2, 2), however, it is a non-self-adjoint operator. Its self-adjoint extension gives us the model
of resonators coupled through point-like aperture. It is clear that the self-adjoint extension is a restriction of the
adjoint operator. Therefore, one should first describe the adjoint operator. This can be done in several ways. For
example, this can be done using the so-called boundary triplet approach (see, for example, [25, 26]) or the Von
Neumann’s formulas can be used (see, for instance, [27, 28]). In our case, the domain of the adjoint operator in
our model (due to the positivity of the operator and, correspondingly, regularity of negative points at the real axis)
can be written in such manner:

D (−∆∗0) = D
(
−∆F

0

)
uNλ0 ,

where D
(
−∆F

0

)
is the Friedrichs extension of our restricted operator and Nλ0

is a deficiency subspace that refers
to negative real regular point λ0 (see, for example, [29]). Correspondingly, elements f ∈ D (−∆∗0) have such
form:

f =

(
f0
f1

)
=

(
f00 + a−0 G0 (x,x1, λ0) + b−0
f01 + a+1 G1 (x,x1, λ0) + b+1

)
,

where f0i ∈ D (−∆0), i = 0, 1 and a−0 , a
+
1 , b

−
0 , b

+
1 are some coefficients (by signs ”+” and ”−” nearby i-th

coefficient we distinguish ones that refer to i-th resonator but to different contact points). By establishing the
cross-linking between these coefficients the self-adjoint operator can be obtained.

These algorithm can be quite easily extended to the case of an infinite chain. In this case the initial (before
including the interactions between resonators) operator is −∆: −∆ =

⊕
j∈Z

(−∆j) in
⊕
j∈Z

L2 (−∆j). Moreover,

this operator should be restricted on the set of all smooth functions from D (−∆) that vanish at contact points xj .
Such restriction is a symmetric operator with deficiency indices (∞,∞) and Green’s functions G (x,xj , λ0) as
deficiency elements.

An adjoint operator for an infinite chain is constructed similarly to the simple case of two resonators. Finally,
the self-adjointness condition is satisfied with: {

a+j = −a−j−1,
b+j = b−j−1,

(1)

where coefficients b±j are defined by coefficients a±j :

b+j = a+j lim
x→xj

(G (x,xj , λ)−G (x,xj , λ0)) + a−j G (xj+1,xj , λ) , (2)

b−j−1 = a+j−1G (xj−1,xj , λ) + a−j−1 lim
x→xj

(G (x,xj , λ)−G (x,xj , λ0)) . (3)

Moreover, when our model is supplemented by δ-coupling conditions at contact points xj (with coupling constant
α ∈ R), system of equations (1) transforms to:{

a+j = −a−j−1,
b+j − b

−
j−1 = −αa−j−1.

(4)
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3. Spectral analysis

The system being under investigation is periodic in part, and the transfer-matrix approach is a good tool for

spectral analysis (see, e.g., [30]); in fact, that the asymptotic behavior of the

∥∥∥∥(a+j a−j

)T∥∥∥∥ is determined by

the spectral properties of the transfer-matrix.
First, we consider a simple zigzag chain without kinks. By serial employment of the formulas (2)–(4), one can

easily obtain the matrix relation between coefficients a±j−1 and a±j+1 as follows:(
a+j+1

a−j+1

)
= M

(
a+j−1
a−j−1

)
,

M = Mj−1→jMj→j+1 =

 −1 − 2g−α
Gω

2g−α
Gω

(
2g−α
Gω

)2
− 1

 , (5)

where g = lim
x→xj

(G (x,xj , λ)−G (x,xj , λ0)), Gω = G (xj ,xj+1, λ) (j 6= 0) and M is a transfer-matrix that

permits one to find proper conditions for spectral analysis. Namely, the value λ belongs to the continuous spectrum
if the absolute value of the corresponding eigenvalue µ of matrix M is equal to one. Whereas for belonging of the
value λ to the discrete spectrum it is necessary for the corresponding eigenvalue µ of matrix M in absolute value
to be less than one.

From (5), one can find the explicit form of the transfer-matrix’s eigenvalues and eigenvectors:

µ± =
((2g − α) /Gω)

2

2
− 1±

√√√√( ((2g − α) /Gω)
2

2
− 1

)2

− 1, (6)

ν± =

− 2g−α
2Gω

±
√(

2g−α
2Gω

)2
− 1

1

 . (7)

Thus, keeping in mind the above-mentioned spectral properties of the transfer-matrix and (6), one can obtain the
inequality that describes the band structure of the continuous spectrum of the model Hamiltonian:∣∣∣∣2g − αGω

∣∣∣∣ ≤ 2. (8)

It is clear that the presence of one kink in the chain (introduced as a shift of one contact point) does not affect
the band structure. However, such bending deformation potentiates the appearance of bound states in the gaps.

Let us now examine the bending area more accurately. In order to find a decreasing at infinity solution, one
should first merge two semi-infinite chains via a new transfer-matrix Mγ :

Mγ = M−1→0M0→−1 =

(
−Gγ
Gω

− 2g−α
Gω

− 2g−α
Gω

(2g−α)2−G2
ω

GγGω

)
, (9)

where Gγ = G (x0,x1, λ). And then, one should satisfy the linear dependence condition:∣∣∣∣∣a+1 a+−1
a−1 a−−1

∣∣∣∣∣ = 0, (10)

where
(
a+−1 a−−1

)T
= ζν±. By substituting expressions (5), (7) and (9) into condition (10), one can obtain the

spectral equation in the most simple form as follows:

Gγ
Gω
− Gω
Gγ

+

(
2g − α
Gω

)2(
Gω
Gγ
− 1

)
= 0. (11)

Finally, one should take into account that the solution λ∗ of (11) must satisfy the corresponding condition on µ:∣∣∣∣2g − αGω

∣∣∣∣∣∣∣∣
λ∗
> 2. (12)

Thus, the solutions of problem (11)–(12) draws up the discrete spectrum of the model Hamiltonian.
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4. Results and discussions

Gathering all facts mentioned above, the Theorem representing spectrum of the model Hamiltonian is stated:
Theorem. Let the bend angle γ of the chain belong to [0;ω − π/3). The continuous spectrum has band structure
and is given by Equation (8). There are eigenvalues of infinite multiplicity which are given by the eigenvalues of
the Neumann Laplacian for the ball corresponding to the eigenfunctions vanishing at the both opposite points of
the ball (xj and xj−1). If there is no bending deformation (γ = 0), the discrete spectrum is empty. There exist
values of the model parameters α, γ, λ0 and ω such that the model Hamiltonian has eigenvalues in the gaps in
the case with γ 6= 0 and these eigenvalues are given by (11)–(12).

Figures 2–5 depict the results of numerical modelling of the spectral problem. From these graphs, one can
see how changing the parameters influence its spectral characteristics (gap widths, band’s splitting (Fig. 2–4) and
eigenvalue’s appearance (Fig. 5)).

FIG. 2. Band structure of continuous spectrum depending on α (with ω = 5π/6, γ = 0)

FIG. 3. Band structure of con-
tinuous spectrum depending on ω
during “free particle motion”
(α = 0, γ = 0)

FIG. 4. Band structure of con-
tinuous spectrum depending on ω
in the presence of δ-potentials at
contact points xj (γ = 0)

Furthermore, analytical expressions for the lowest energy band can be obtained. Specifically, the asymptotic
expressions for borders of the first energy band can be gained from (8) when λ tends to zero:

λ1 =
3

2π

 3

4πλ0
− α

2
+

∞∑
k=1,l=0

Nl,k
x2l,k

(
Pl (cosω)− λ0

x2l,k − λ0

)−1 +
(
λ21
)
,

λ2 =

α
2
− 3

4πλ0
+

∞∑
k=1,l=0

(
−Nl,k
x2l,k

(
λ0

x2l,k − λ0
+ Pl (cosω)

)) ∞∑
k=1,l=0

Nl,k (1− Pl (cosω))

x4l,k

−1 +O
(
λ22
)
,
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FIG. 5. Spectral structure depending on bending angle γ (with α = 2 and ω = 5/6): grey
bands — the two neighboring bands of continuous spectrum (do not depend on γ), curves —
values that belong to the discrete spectrum



Zigzag chain model and its spectrum 193

where xl,k is a k-th root of the equation: j′l (x) = 0 and Nl,k is a normalization factor.
Thus, this model allows us to obtain both analytical and numerical results for a non-trivial three-dimensional

system. Finally, the described model allows us to exert an influence on the spectrum of the zigzag-like chain of
resonators. Variation of the model parameters is a tool which can be utlized to control and modify the spectrum
structure.
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1. Introduction

Since the publication of famous Hofstadter paper [1], research interest in the spectral properties of two-
dimensional periodic arrays in a magnetic field has greatly increased. The fractal structure of the spectrum
has been a theoretical result for long time, but subsequently, experimental confirmation was obtained. Electron
tunneling through periodic array of quantum dots in a homogeneous magnetic field has been intensively investigated
over the last few years because it can be relevant for nanotechnology applications [2–4].

There are several different approaches for building models of quantum dot arrays. In this paper, the zero-range
potential model [5,6] based on the theory of self-adjoint extensions of symmetric operators is used (see, e.g., [7–12]
and references in [13]). One of its benefits is that the model is explicitly solvable.

In double-layer lattices, the layer number provides an additional degree of freedom, which leads to some
interesting experimentally measurable physical effects [14]. We suggest several explicitly solvable models for
double two-dimensional layer of quantum dots using the approach described in [15].

Because of high quality of nanostructure devices, large Fermi wave length (i.e. the de Broglie wavelength of
electrons with energy close to the Fermi energy) (4×10−8 m) and long mean free path of electron (10−5 m) can be
observed. Therefore, one deals with the ballistic regime of electron transport. In this case, the Landauer-Buttiker
formalism can be used to derive the conductivity σ for the nanostructure with several leads from the transmission
coefficient T (E)|E=EF (here EF is the Fermi energy).

In the simplest case (one incoming and one outgoing channel), the Landauer formula has the form
σ = e2T

h̄(1−T ) [16]. Here, e is the electron charge, h̄ is the Planck’s constant. The geometry of a nanostructure can
influence transmission coefficient significantly [17].

In this article we, consider tunneling in the system consisting of double two-dimensional periodic array (with
square or hexagonal (honeycomb) lattices in each layer) of quantum dots with two connected semi-infinite leads
orthogonal to the plane of the array. We study the influence of the magnetic field and tunneling electron energy
on the transmission coefficient and compare our results with the tunneling through the corresponding single-
layer periodic arrays studied earlier [18, 19]. The main ideas of the present paper was described in an extended
abstract [20].

We start from the Hamiltonian of a single particle in constant homogeneous magnetic field B. Let us assume
that particle has mass m and electric charge e. Since the space is R3, we choose a standard basis i, j,k such that
B is collinear to k: B = Bk, B 6= 0. Then, the particle can move freely along z axis, and the state space of the
model is L2(R2), where R2 is the plane based on vectors i, j.

The Hamiltonian H0 has the following form:

H0 =
1

2m

(
p̂− e

c
A(r)

)
, (1)

where c is the speed of light, p̂ = −ih̄∇ is the two-dimensional momentum operator, A(r) is a vector potential of
the field B (B = rotA). Vector potential is not unique, we will use the symmetric gauge (A(r) = 1

2B × r).
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The following standard notations are used: ω = |eB|/cm is the cyclotron frequency; Φ0 = 2πh̄c/|e| is the
quantum of the magnetic flux; ξ = ±B/Φ0 — number of the flux quanta through the unit area in R2. The sign
of ξ is chosen in such a way that the condition ξeB > 0 holds. We will also use the system of units in which
e = h̄ = m = c = 1, to simplify the calculations. Then, H0 can be rewritten in the following form:

H0 = −1

2

[(
∂

∂x
+ πiξy

)2

+

(
∂

∂y
− πiξx

)2
]
. (2)

We will also need the Green function of H0, which has the form ( [6]):

G0(r, r′, E) =
1

2π
Γ

(
1

2
− E

ω

)
exp

(
−πir ∧ r′ − 1

2
πξ‖r − r′‖2

)
× Φ

(
1

2
− E

ω
, 1, πξ‖r − r′‖2

)
. (3)

Here, Γ(x) is the Euler Gamma-function, Φ(a, c, x) is the confluent hypergeometric function of the second
kind [21].

2. Tunnelling through double layer

Note that different explicitly solvable models can be built here, depending on how electron tunneling between
layers is considered (see Fig. 1 and Fig. 2). Both model types will be built here for hexagonal and square lattices.

FIG. 1. Model with immediate tun-
nelling between layers

FIG. 2. Model with channel be-
tween layers represented by wire of
finite length

2.1. Model with immediate tunneling between layers

First, we build the model for the square lattice. We assume that the state space of the model is a direct sum
of two identical state spaces, one for each layer:

H = L2(R2)⊕ L2(R2). (4)

Then, the unperturbed Hamiltonian has the following form:

H0 = HL ⊕HL, (5)

where HL is the Hamiltonian for the single layer with lattice Ξ (see, e.g., [20]).
To use the Krein’s resolvent formula, we first restrict operator HL onto the set of smooth functions vanishing

at the points of the lattice, let the restricted operator be SL. Then, the restriction of H0 has the form:

S0 = SL ⊕ SL. (6)

The deficiency space for S0 is the direct sum:

G = GL ⊕ GL, (7)

where GL = l2(Ξ) is the deficiency space for operator SL.
In its turn, the Krein Q-function is the direct sum:

Q = QL ⊕QL, (8)

where QL is the Krein Q-function for the corresponding single layer.
Let f be a function from l2(Ξ), then the Krein Γ-function of pair (HL, SL) for a single layer has the following

form:
(ΓL(ζ)f)(r) =

∑
γ∈Ξ

G0(r,γ; ζ)f(γ), (9)



196 D. L. Meynster, I. Y. Popov, A. I. Popov

and the Krein Γ-function for the whole system can be defined as the direct sum:

Γ = ΓL ⊕ ΓL. (10)

Finally, using the Krein resolvent formula for infinite deficiency indices, we obtain an expression for the Green
function of H:

G(r, r′; ζ) = G0(r, r′, ζ)−
∑

γ,γ′∈Ξ⊕Ξ

[Q(z) +A]−1
γ,γ′G0(r,γ; ζ)G0(γ′, r′; ζ). (11)

Now, we need a self-adjoint operator. It is related with the properties of A. We assume that the probability
of tunneling between non-adjacent points of the lattice is negligible. Due to the periodicity of the system, the
Hamiltonian of a single layer HL should be invariant with respect to the magnetic translation group transformations
(see, e.g., [25]), therefore, we have the following property for the terms of operator AL of the single layer:

ALλ−γ,µ−γ = exp
(
iπξ(γ ∧ (λ− µ))

)
ALλ,µ . (12)

As a consequence, it is sufficient to define elements ALλ,0 (see [22] for more detailed explanation):

ALλ,0 = α
(
δ(λ1, 0)

(
δ(1, λ2) + δ(−1, λ2)

)
+ δ(0, λ2)

(
δ(λ2, 1) + δ(λ2,−1)

))
. (13)

Here α is some constant which characterizes the intensity of the interaction.
Now, we need to take into account tunneling between layers, hence, operator A takes the following form:

A =

[
AL αI

αI AL

]
. (14)

In the case of hexagonal lattice the main change is different magnetic translations group which lead to changes
of the form of operator AL [26]:

ALλi,λj = α
[
δ(λi − a1,λj − b) + δ(λi − a2,λj − b) + δ(λi − a1 − a2,λj − b)

+ exp

(
2

3
iπξ(δ(λi + a1 − b,λj)− δ(λi + a2 − b,λj))

)
×
(
δ(λi + a1 − b,λj) + δ(λi + a2 − b,λj) + δ(λi + a1 + a2 − b,λj)

)]
. (15)

2.2. Model with channel between layers

First, we need to define the state space of this model. As in the previous case, the state space of a single
layer is HL. We assume that the distance between layers is d. Let Hv be the state space of a single vertical wire,
Hv = L2([0; d]). Obviously, the state space of the whole set of wires is defined as a direct sum:

HV =
⊕
γ∈Ξ

Hv. (16)

Then, the whole model has the following state space:

H = HL ⊕HV ⊕HL. (17)

Therefore, the Hamiltonian of the system (if the interaction is switched off) has the form:

H = HL ⊕HV ⊕HL, (18)

where HV =
⊕
γ
Hvγ , Hv = − ∂

∂x2
— operator under Neumann conditions at points 0 and d.

Restrict Hv onto D = {ϕ | ϕ(0) = ϕ(d) = 0}, if Sv is the restricted (symmetric) operator and SV =
⊕
γ
Svγ ,

then, the Hamiltonian S = SL ⊕ SV ⊕ SL is the restriction of H .
The deficiency space for operator Sv is Gv = C2, for GV : GV =

⊕
γ
Gvγ . Then, for S, one has:

G = GL ⊕ GV ⊕ GL. (19)

The Green function for Hv is well-known:

Gv(x, x
′; ζ) = − 1

2k sin(kd)

(
cos(k(d− |x′ − x|)) + cos(k(d− (x′ + x)))

)
. (20)
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The Krein Γ-function for a single wire has the following form:(
Γv(ζ)

(
ξ1
ξ2

))
(x) =

(
Gv(x, 0; ζ)ξ1
Gv(x, d; ζ)ξ2

)
. (21)

Then, ΓV =
⊕
γ

Γv and Γ = ΓL ⊕ ΓV ⊕ ΓL. The Krein Q-function for a single wire has the form of 2× 2-matrix:

Qv(ζ) =

[
Gv(0, 0; ζ) Gv(0, d; ζ)

Gv(d, 0; ζ) Gv(d, d; ζ)

]
. (22)

Hence, the Krein Q-function for the set of wires is QV (ζ) =
⊕
γ∈Ξ

Qv(ζ), and for the whole system, we have:

Q(ζ) = QL(ζ)⊕QV (ζ)⊕QL(ζ). (23)

To obtain the matrix of interactions A, let us first define matrices A1V and A2V , which characterize the tunneling
from the first or the second layer, correspondingly, to the layer of vertical wires. For the single wire, we have

A1v =
[
α 0

]
. Then, one has A1V =

⊕
γ∈Ξ

A1vγ . Similarly, Av2 =

[
α

0

]
and AV 2 =

⊕
γ∈Ξ

Av2γ . Consider also

AV 1 = AT1V , A2V = ATV 2. Finally, we get the following matrix A:

A =

 AL A1V 0
AV 1 0 AV 2

0 A2V AL

 . (24)

3. Model of tunnelling

Now, we would like to construct the general model of tunneling through the quantum layer (single or double,
it doesn’t matter). To do that, we use the idea from [27, 28]: let D be any device that is connected to a pair of
semi-infinite leads at points C− and C+ (Fig. 3) We assume that the Green function GD for D is already known.
Let HD be the state space for the device, H± be the state spaces for leads, then, the state space for the whole
system is given as follows:

H0 = H− ⊕HD ⊕H+. (25)

The Hamiltonian of the system without interaction between the device and the channels is just the orthogonal sum
of the corresponding operators:

H0 = H− ⊕HD ⊕H+, (26)

where HD is the Hamiltonian of a charged particle in D, H± is the Hamiltonian of the charged particle in space

L2(R±) under Neumann conditions at the edge (it has the form − ∂

∂x2
). It is easy to find the Green functions

for H±:

G±(x, x′; ζ) =
i

2k

[
exp(ik|x− x′|) + exp(±ik(x+ x′))

]
, (27)

where k2 = ζ.

FIG. 3. Model of the device with connected leads

Using the theory of self-adjoint extensions again, we can obtain the model Hamiltonian H. To do that, we,
first, restrict H0 onto the set of smooth functions vanishing at the points C±, then, build its extension H .

After solving the scattering problem for H , we obtain the following formula for the transmission coeffi-
cient T (E):

T (E) =
|(α−α+Q

D
21)2|

E|det[Q(E) +A]|2
. (28)
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Here A is the matrix of the self-adjoint operator that characterizes the extension,

A =


0 α− 0 0

α− 0 0 0

0 0 0 α+

0 0 α+ 0

 , (29)

Q(E) is the Krein Q-function:

Q(E) =


Q−(E) 0 0 0

0 Q11
D (E) Q12

D (E) 0

0 Q21
D (E) Q22

D (E) 0

0 0 0 Q+(E)

 , (30)

Q±(E) = G±(0, 0;E) and QD is 2 × 2 Krein Q-function for the extension, where Q12
D (E) = Q21

D (E) =
GD(r1, r2;E) and Q11

D (E), Q22
D (E) are the regular parts of GD(r1, r1;E), GD(r2, r2;E), correspondingly. Values

α± describe the quality of contacts C±. This technique was used in [18] to construct a model of tunneling through
single quantum electron layer.

4. Results and comparison with single-layer arrays

For numerical experiments in this section, constants α, α−, α+ were all selected to be equal to 1. Only a finite
fragment of an infinite lattice is used for calculations since points which are far enough from contacts don’t have
much influence on transmission coefficient value. For the square lattice, the basic vectors a1 = (1, 0), a2 = (0, 1)
were used; the hexagonal (honeycomb) lattice is presented as a sum of two square lattices.

The transmission coefficient T is calculated as a function of electron energy E for different values of the
magnetic field B. The resulting function of two values is represented as a contour plot. We assume that both
contacts are in the same lattice cell, calculations show that putting them in different cells of the lattice leads to
decreasing of T but doesn’t add or remove any other significant effects.

During the investigation of tunneling through single-layer lattices, wide zones in the resulting contour plot
with very low value of T were discovered [18, 19]. The widths of these zones are greater than the product of
the Boltzmann constant and the temperature value and, thus, this phenomenon is physically measurable. Our
calculations show that these zones are preserved both in the square and the hexagonal lattice cases (see Figs. 4,
5, 6 and 7). Plots were built for the model with direct tunneling between the layers. The model with channels
between the layers gives one qualitatively analogous result – such zones exist too.

FIG. 4. Dependence of transmission
coefficient value T on electron en-
ergy E and magnetic field B: case
of single-layer square lattice. B and
E are in dimensionless units

FIG. 5. Dependence of transmission
coefficient value T on electron en-
ergy E and magnetic field B: case
of double-layer square lattice. B and
E are in dimensionless units
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FIG. 6. Dependence of transmission
coefficient value T on electron en-
ergy E and magnetic field B: case
of single-layer hexagonal lattice. B
and E are in dimensionless units

FIG. 7. Dependence of transmission
coefficient value T on electron en-
ergy E and magnetic field B: case
of double-layer hexagonal lattice. B
and E are in dimensionless units

It can be observed that the middle of each dark stripe in Fig. 4 and Fig. 5 coincides with some singularity of

Γ

(
1

2
− E

ω

)
(which is one of multipliers in (3)). The dependence of T on B and E shown in the figures is very

complicated. For the hexagonal (honeycomb) lattice, it is also complicated but local oscillations of T have less
amplitude, that is why in Figs. 6, 7 looks more monotone. Such effect is related to the complex structure of the
spectrum of the Hamiltonian for periodic array of quantum dots. Particularly, it is known that if the number of the
magnetic flux quanta through the basic cell of the lattice is rational irreducible fraction N/M , then each Landau
level (energy level for single center in a magnetic field) splits into M sublevels. For the case of irrational flux, the
spectrum has fractal structure. Correspondingly, one has so-called Hofstadter-type “energy-flux” diagram. It was
proved theoretically for different cases (see, e.g., [29,30,32]) and was observed experimentally (see, e.g., [34,35]).
As for the comparison of tunneling for single-layer and double-layer cases, one observes that in the model with
double layer, dark stripes are wider and inside zones between these stripes, T value is, generally, greater. In the
case of the hexagonal lattice, when considering double-layer model, dark stripes pairs are closer to each other and
value of T in zones between them is less than in the single-layer case. The behavior of T in a neighborhoods of
“zero transmission stripes” is shown in details in Figs. 8, 9 for a particular value of the magnetic field.

FIG. 8. Comparison of T (E) for
B = 2.0 (square lattice). Black line
is for double layer model, grey one
is for single layer model. B and E
are in dimensionless units

FIG. 9. Comparison of T (E) for
B = 2.0 (hexagonal lattice). Black
line is for double layer model, grey
one is for single layer model. B and
E are in dimensionless units
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It is also interesting to look for the dependence of transmission coefficient value T on the distance d between
the layers in the models with channels between the quantum layers. The function T (d) is oscillating. It can be
explained by some resonance effects in the quantum structure due to the additional operator for the connecting
segments (see Figs. 10 and 11).

FIG. 10. Dependence of transmis-
sion coefficient T on distance be-
tween layers d (square lattice). d is
in dimensionless units

FIG. 11. Dependence of transmis-
sion coefficient T on distance be-
tween layers d (hexagonal lattice). d
is in dimensionless units
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1. Introduction

The theory of equations of evolution plays an important role in various areas of pure and applied mathematics,
physics and other natural sciences [1–3]. We focus on a non-autonomous linear Cauchy problem of the form:

u̇(t) = −(A+B(t))u(t), u(s) = us ∈ X, 0 < s ≤ t ≤ T, (1.1)

where {A+B(t), dom(A)∩dom(B(t))}t∈I is a family of closed linear operators on the separable Banach space X ,
I = [0, T ] ⊂ R. Let I0 = (0, T ]. The solution operator {U(t, s)}(t,s)∈∆, i.e. u(t) = U(t, s)us solves (1.1) in some
sense, can be obtained using the Howland–Evans approach. The main idea of this approach is to reformulate the
non-autonomous problem (1.1) on X in such a way that it becomes equivalent to an autonomous Cauchy problem
on the Banach space Lp(I, X) of p-summable functions on I with values in X . Then solutions of the autonomous
and the non-autonomous Cauchy problem are in one-to-one correspondence, and therefore, it is equivalent which
of them one has to solve. Once, the solution is obtained, the problem of a good approximation arises. The
Trotter product formula [4] or [5, Theorem 3.5.8] provides approximation in the strong topology. In practice, a
convergence in the operator-norm topology is more useful, especially, if the error bound for approximation can be
estimated. Then, for example, independent of the initial condition, the smallness of the iteration steps and their
number can be calculated in such a way that the error bound of the approximation will be smaller than a given
accuracy.

We are going to analyze a linear non-autonomous Cauchy problem of the form (1.1) where the aim is to
find for the problem (1.1) a so-called solution operator or propagator: {U(t, s)}(t,s)∈∆, ∆ = {(t, s) ∈ I0 × I0 :
0 < s ≤ t ≤ T}, I0 = (0, T ]. It has the property that u(t) = U(t, s)us for (t, s) ∈ ∆ is a “solution” of the Cauchy
problem (1.1) for an appropriate set of initial data us. By definition, the propagator {U(t, s)}(t,s)∈∆ is a strongly
continuous operator-valued function U(·, ·) : ∆→ B(X) satisfying:

U(t, t) = I for t ∈ I0, U(t, r)U(r, s) = U(t, s) for t, r, s ∈ I0 with s ≤ r ≤ t,
‖U‖B(X) := sup

(t,s)∈∆

‖U(t, s)‖B(X) <∞.

Our goal is to find an approximation operator {Un(t, s)}(t,s)∈∆, n ∈ N, for the solution operator {U(t, s)}(t,s)∈∆,
which approximates the solution operator in the operator-norm topology, and to estimate of its convergence
rate. Such convergence rate estimates have been already found by Ichinose and Tamura for positive self-adjoint
operators [6] in the Hilbert space setting. Recently (see [7]) the operator norm convergence and an error estimate
were proved when the underlying space is a Banach space. In our paper [7], the main technical tool to construct
such approximation is the Trotter product formula. We proved that under the assumptions formulated in this paper,
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the Trotter product formula converges not only in the strong but in the operator-norm topology. To lift the strong
topology to the operator-norm, we used the Trotter product formula and the relation between solution operator and
evolution semigroup.

Following the ideas of [7], we improve in the present paper the convergence rate estimate O(1/nβ−α),
0 < α < β < 1, which was obtained there. We assume in [7] that the involved operators A and B(t) verify
conditions inspired by [6] in a Hilbert space, although we do not suppose that for each t the operator B(t) generates
a bounded holomorphic semigroup. This gives us an extension of results [6] for the rate O(ln(n)/n) in a Hilbert
space to a Banach space. On the other hand, it is not surprising that the error bound estimate in [7] is weaker than
O(ln(n)/n1−α) obtained for the first time in a Banach space by [8] under the same conditions as in [7], but for
the autonomous Cauchy problem. Note that below (Section 2.2) our conditions (A2) and (A3) are a bit stronger
conditions than in [7] or in [8]. Despite that, we were unable to reproduce the strikingly fast convergence rate
of [6] for the case of Banach spaces. Although these stronger conditions allow us to push β up to β = 1. So the
obtained in the present paper rate O(1/n1−α) is improved compared to [7] and also to [8] by elimination of the
ln(n).

2. Preliminaries and assumptions

2.1. Preliminaries

Throughout the paper, we are dealing with a separable Banach space (X, ‖ · ‖X). For a linear operator
A : dom(A) ⊂ X → X , we define the resolvent by R(λ,A) := (A− λ)−1 : X → dom(A). A family {T (t)}t≥0

of bounded linear operators on a Banach space X is called a strongly continuous (one-parameter) semigroup if it
satisfies the functional equation:

T (0) = I, T (t+ s) = T (t)T (s), t, s ≥ 0,

and the orbit maps [0,∞) 3 t 7→ T (t)x are continuous for every x ∈ X . In the following we simply call them
semigroups. For a given semigroup we define its generator by:

Ax := lim
h↘0

1

h
(x− T (h)x) ,

with domain:

dom(A) :=
{
x ∈ X : lim

h↘0

1

h
(x− T (h)x) exists

}
.

Note that the definition differs from the standard one by the minus sign. It is well-known that the generator
of a semigroup is a closed and densely defined linear operator which uniquely determines the semigroup (see
e.g. [5, Theorem I.1.4]). For a given generator A we will write T (τ) = e−τA, τ ≥ 0.

For any semigroup {T (t)}t≥0 there are constants MA, γA, such that it holds ‖T (t)‖ ≤MAe
γAt for all t ≥ 0.

Such semigroups are called of class G(MA, γA) and we write A ∈ G(MA, γA). If γA ≤ 0, {T (t)}t≥0 is called a
bounded semigroup. If ‖T (t)‖ ≤ 1, the semigroup is called contractive.

For any semigroup we can construct a bounded semigroup by adding some constant ν ≥ γA to its generator:
the operator Ã := A + ν generates a semigroup {T̃ (t)}t≥0 with ‖T̃ (t)‖ ≤ MA. It is known that for a generator
A ∈ G(MA, γA), the open half plane {z ∈ C : Re(z) < γA} is contained in the resolvent set %(A) of A and the
estimate ‖R(λ,A)‖ ≤MA/(Re(λ)− γA) holds. If Ã = A+ν, then the open half-plane {z ∈ C : Re(z) < γA−ν}
is contained in the resolvent set of Ã.

The semigroup {T (t)}t≥0 on X is called a bounded holomorphic semigroup if its generator A satisfies
ran(T (t)) ⊂ dom(A) for all t > 0 and sup

t>0
‖tAT (t)‖ < ∞. It is well-known, that in this case the semigroup

{T (t)}t≥0 can be extended holomorphically to a sector {z ∈ C : | arg(z)| < δ} ∪ {0} ⊂ C of angle δ > 0. For
generators A of bounded holomorphic semigroups with 0 ∈ %(A) one can define fractional powers Aα. Then, for
α ∈ (0, 1), it holds dom(A) ⊂ dom(Aα) ⊂ dom(A0) = X . In the following we need the well-known estimate for
generators of a bounded holomorphic semigroup:

sup
t>0
‖tαAαT (t)‖ = MA

α <∞. (2.1)
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2.2. Assumptions

Below we made the following assumptions with respect to the operator A and the family {B(t)}t∈∆.

Assumption 2.1.
(A1) The operator A is a generator of a bounded holomorphic semigroup of class G(MA, 0) and 0 ∈ %(A).
Let {B(t)}t∈I be a family of generators on X belonging to the same class G(MB , β). The function I 3 t 7→
(B(t) + ξ)−1x ∈ X is strongly measurable for any x ∈ X and any ξ > β.
(A2) There is an α ∈ (1/2, 1) such that for a.e. t ∈ I it holds that dom(Aα) ⊂ dom(B(t)) and dom((Aα)∗) ⊂
dom(B(t)∗). Moreover, it holds:

Cα := ess sup
t∈I

‖B(t)A−α‖B(X) <∞ and C∗α := ess sup
t∈I

‖B(t)∗(A−α)∗‖B(X∗) <∞, (2.2)

where A∗ and B(t)∗ denote the adjoint operators of A and B(t), respectively.
(A3) There is a constant L > 0 such that estimate:

‖A−α(B(t)−B(s))A−α‖B(X) ≤ L|t− s|,

holds for a.e. t, s ∈ I.

Remark 2.2.
(a) In [7], the assumptions are slightly weaker. It is assumed that the domains satisfy dom(A∗) ⊂ dom(B(t)∗).
(b) The assumption 0 ∈ %(A) is just for simplicity. Otherwise, the generator A can be shifted by a constant η > 0.
One can prove that the domain of the fractional power of A does not change either.
(c) In [6] both operators A and B(t) are assumed to be positive self-adjoint operators on a separable Hilbert space.
The assumptions made in [6] yield that Assumption 2.1 is valid. We note that the first results in Banach spaces for
autonomous Cauchy problem are due to [8]. The Trotter product approximation was proven there in the framework
of Assumption 2.1: (A1), (A2).
(d) The assumptions above imply that for a.e. t ∈ I the operator B(t) is infinitesimally small with respect to A.
Indeed, fix t ∈ I and assuming (A1), (A2) we conclude:

dom(A+ η) = dom(A) ⊂ dom(Aα) ⊂ dom(B(t)),

for η > 0 and hence:

‖B(t)(A+ η)−1‖B(X) ≤ ‖B(t)A−α‖B(X) · ‖Aα(A+ η)−1‖B(X) ≤
CαC0

η1−α .

Therefore for any x ∈ dom(A) ⊂ dom(B(t)), we get:

‖B(t)x‖X ≤
CαC0

η1−α · ‖(A+ η)x‖X ≤ CαC0η
α

(
1

η
‖Ax‖X + ‖x‖X

)
.

The relative bound can be chosen arbitrarily small by shifting η > 0. In particular, using standard perturbation
results ( [9, Corollary IX.2.5]), we conclude that A + B(t) is the generator of a holomorphic semigroup, i.e.
problem (1.1) is a parabolic evolution equation.

3. Construction of solution operators

We start by description of our strategy. Details can be found in [7]. Our approach to construct the solution
operator {U(t, s)}(t,s)∈∆ of (1.1) leads to a perturbation or extension problem for linear operators. It can be
used in very general settings and it is quite flexible. The idea can be described as follows: The non-autonomous
Cauchy problem in X can be reformulated as an autonomous Cauchy problem in a new Banach space Lp(I, X),
p ∈ [1,∞), of p-summable functions on the interval I with values in the Banach space X . An operator family
{C(t)}t∈I on X induces an multiplication operator C on Lp(I, X) defined by:

(Cf)(t) := C(t)f(t),

dom(C) :=

f ∈ Lp(I, X) :
f(t) ∈ dom(C(t)) for a.e. t ∈ I

I 3 t 7→ C(t)f(t) ∈ Lp(I, X)

 .
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Theorem 3.1 ( [7, Theorem 2.8]). Let {C(t)}t∈I be a family of generators on X such that for almost all t ∈ I it
holds that C(t) ∈ G(M,β) for some M ≥ 1 and β ∈ R. If the function I 3 t 7→ (C(t) + ξ)−1x ∈ X is strongly
measurable for ξ > β, x ∈ X , then the induced multiplication operator C is a generator in Lp(J , X) and its
semigroup is given by: (

e−τCf
)

(t) = e−τC(t)f(t), f ∈ Lp(I, X),

for a.e t ∈ I. In particular, for the operator-norms we get:

‖e−τC‖B(Lp(I,X)) = ess sup
t∈I

‖e−τC(t)‖B(X).

So the generators C(t) and C belong to the same class.

In particular in our case, the operator family {B(t)}t∈I induces the generator B and A induces trivially the
generator A on Lp(I, X). Assuming (A1) and (A2) it turns out that the operators BA−α and A−αB are bounded
on Lp(I, X) and it holds that ‖BA−α‖B(Lp(I,X)) ≤ Cα and ‖A−αB‖B(Lp(I,X)) ≤ C∗α.

Let us introduce the operator D0 := ∂t on Lp(I, X) defined by:

D0f(t) := ∂tf(t), dom(D0) := {f ∈W 1,p([0, T ], X) : f(0) = 0}.

Then, D0 is a generator of class G(1, 0) of the right-shift semigroup {S(τ)}τ≥0 that has the form:(
e−τD0f

)
(t) = (S(τ)f)(t) := f(t− τ)χI(t− τ), f ∈ Lp(I, X), a.e. t ∈ I.

We note that the generator D0 has empty spectrum since the semigroup {S(τ)}τ≥0 is nilpotent and therefore the

integral
∫ ∞

0

dτ e−τλS(τ)f exists for any λ ∈ C and for any f ∈ Lp(I, X).

Let us look at the operator sum D0 and A. Since A is time-independent, the operators A and D0 commute,
and, hence, also their semigroups commute. So, the operator family {e−τAe−τD0}τ≥0 defines a semigroup on
Lp(I, X). Its generator is denoted by K0. It is closure of the operator sum D0 +A, i.e. K0 = D0 +A. We note
that all the generators K0, A, A belong to the same class.

Remark 3.2. By assumption (A1) the operator A generates a holomorphic semigroup. Note that the operator K0

is not a generator of a holomorphic semigroup. Indeed, if we have:(
e−τK0f

)
(t) =

(
e−τD0e−τAf

)
(t) = e−τAf(t− τ)χI(t− τ), f ∈ Lp(I, X).

Since the right-hand side is zero for τ ≥ t, the semigroup can not be extended holomorphically to the complex
plane.

Now, look at the operator sum:

K̃ = D0 +A+ B, dom(K̃) = dom(D0) ∩ dom(A) ∩ dom(B). (3.1)

In [7], the following theorem is proved.

Theorem 3.3 ( [7, Theorems 4.3 and 4.4]). Assume (A1) and (A2). Then, the operator closure K̃ =: K is a
generator on Lp(I, X), and it holds:

K = K0 + B, dom(K) = dom(K0) ∩ dom(B). (3.2)

Moreover, it is an evolution generator, i.e. there is a unique propagator or solution operator {U(t, s)}(t,s)∈∆

such that the representation:(
e−τKf

)
(t) = (U(τ)f)(t) = U(t, t− τ)χI(t− τ)f(t− τ), τ ≥ 0, t ∈ I.

holds.

We note that for the proof it is not necessary that the operators B(t) themselves are generators. After proving
the existence of the unique solution operator the goal is to approximate the solution operator {U(t, s)}(t,s)∈∆. This
will be done by proving an operator-norm convergence for the Trotter product formula for K = K0 + B.
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4. Stability

Proving the Trotter product formula, it is important to establish stability conditions. Notice that stability is
satisfied if the contractivity of the involved semigroups is assumed which might be too strong in applications.
There are many stability conditions known for evolution equations. In particular, the Kato-stability is of interest,
cf. [10, Definition 4.1], which is equivalent to a renormalizability conditions of the underlying Banach space,
cf. [10]. We note that our following stability condition is weaker than Kato-stability.

Definition 4.1. Let A be a generator and let {B(t)}t∈I be a family of generators in X . The family {B(t)}t∈I is
called A-stable if there is a constant M > 0 such that:

ess sup
(t,s)∈∆

∥∥∥∥∥∥
n←∏
j=1

Gj(t, s;n)

∥∥∥∥∥∥
B(X)

≤M ,

holds for any n ∈ N where Gj(t, s;n) := e−
t−s
n B(s+j t−sn )e−

t−s
n A, j = 0, 1, 2, . . . , n, and the product is ordered

increasingly in j from the right to the left.

Let us introduce the notion:

T (τ) = e−τBe−τK0 , τ ≥ 0.

Lemma 4.2 ( [7, Lemma 5.8]). If the operator family {B(t)}t∈I is A-stable, then:

‖T (τ/n)
m ‖B(Lp(I,X)) ≤M,

for any m ∈ N, n ∈ N and τ ≥ 0. In particular, we have:

‖T (τ)m‖B(Lp(I,X)) ≤M,

for any m ∈ N and τ ≥ 0.

5. Convergence in the operator-norm topology

Theorem 3.3 leads to the problem, how the semigroup of K can be approximated in terms of the semigroups
generated by D0, A and B. The classical Trotter product formula gives an approximation in the strong topology.
In this section, we establish an approximation in the operator-norm topology on Lp(I, X). This is done in several
steps. This approximation in Lp(I, X) can be used to prove an convergence rate estimate in X for the propagators.

5.1. Technical lemmata

In this section, we state and prove all technical lemmas that we used to prove the convergence and estimate
of the Trotter product formula in the operator-norm in Lp(I, X). As above we set T (τ) := e−τBe−τK0 , τ ≥ 0.
Note that T (τ) = 0 for τ ≥ T . Similarly, e−τK = 0 for τ ≥ T .

Lemma 5.1. Let the assumptions (A1) and (A2) be satisfied.
(i) Then, dom(K0) ⊂ dom(Aα) and there is a constant Λα > 0 such that:

‖Aαe−τK‖B(Lp(I,X)) ≤
Λα
τα

, (5.1)

holds for τ > 0.
(ii) If {B(t)}t∈I is A-stable, then there is a constant Πα > 0 such that the estimates:

‖(T (τ)− e−τK)A−α‖B(Lp(I,X)) ≤ Πατ, (5.2)

‖A−α(T (τ)− e−τK)‖B(Lp(I,X)) ≤ Πατ, (5.3)

are valid for τ > 0.
(iii) If {B(t)}t∈I is A-stable, then there is a constant Yα > 0 such that the estimate:

‖T (τ)kAα‖B(Lp(I,X)) ≤ Yα
(
τ1−2α +

1

(kτ)α

)
, τ > 0, k ∈ N, (5.4)

holds for τ > 0.
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Proof. (i)–(ii) The assertions dom(K0) ⊆ dom(Aα) as well as (5.1) and (5.2) follow from Lemma 7.3, Lemma 7.4
and Lemma 7.6 of [7]. To prove (5.3) one has slightly to modify the second part of the proof of Lemma 7.6 of [7].

(iii) For kτ ≥ T we have T (τ)k = 0. Hence, one has to prove the estimate (5.4) only for kτ ≤ T . In fact,
using Lemma 4.2, we get ‖T (τ)k‖ ≤M , τ ∈ [0,∞). Hence:

‖T (τ)kAαf‖ ≤ ‖(T (τ)k − e−kτK0)Aαf‖+ ‖e−kτK0Aαf‖

≤ ‖
k−1∑
j=0

T (τ)k−1−j(e−τB − I)e−(j+1)τK0Aαf‖+ ‖e−kτK0Aαf‖

≤M
k−1∑
j=0

τ∫
0

dσ‖e−σBBA−α‖ ‖A2αe−(j+1)τK0f‖+ ‖e−kτK0Aαf‖,

where we have used I − e−τB =

∫ τ

0

Be−σBdσ. Moreover, from (2.1) we get:

‖A2αe−(j+1)τK0f‖ ≤ MA
2α

((j + 1)τ)2α
‖f‖ and ‖Aαe−kτK0f‖ ≤ MA

α

(kτ)α
‖f‖,

for τ > 0. Hence, using α >
1

2
, we get:

‖T (τ)kAαf‖ ≤ MMT
BM

A
2αCατ

τ2α

k−1∑
j=0

1

(j + 1)2α
‖f‖+

MA
α

(kτ)α
‖f‖

≤ MMT
BM

A
2αCαζ(2α)

τ2α−1
‖f‖+

MA
α

(kτ)α
‖f‖,

for τ ∈ I, where ζ(β) :=

∞∑
j=1

1/jβ , β > 1, is the Riemann ζ-function and we have set MT
B := sup

τ∈I
‖e−τB‖. Using

that T (τ)k = 0 for τk ≥ T we find:

‖T (τ)kAαf‖ ≤ MMT
BM

A
2αCαζ(2α)

τ2α−1
‖f‖+

MA
α

(kτ)α
‖f‖, f ∈ dom(A),

for τ > 0. Taking the supremum over the unit ball in dom(A), we prove (5.4). �

Lemma 5.2. Let the assumptions (A1), (A2), and (A3) be satisfied. Then, there is a constant Zα > 0 such that:

‖A−α(T (τ)− e−τK)A−α‖B(Lp(I,X)) ≤ Zατ1+α, τ ≥ 0. (5.5)

Proof. Let f ∈ dom(K0) = dom(K). We have:

d

dσ
T (σ)e−(τ−σ)Kf =

d

dσ
e−σBe−σK0e−(τ−σ)Kf

=− e−σBBe−σK0e−(τ−σ)Kf − e−σBe−σK0K0e
−(τ−σ)Kf + e−σBe−σK0Ke−(τ−σ)Kf

=− e−σBBe−σK0e−(τ−σ)Kf + e−σBe−σK0Be−(τ−σ)Kf

=e−σB
{
e−σK0Bf − Be−σK0

}
e−(τ−σ)Kf,

which yields:

T (τ)f − e−τKf =

τ∫
0

d

dσ
T (σ)e−(τ−σ)Kfdσ =

τ∫
0

dσ e−σB
{
e−σK0B − Be−σK0

}
e−(τ−σ)Kf . (5.6)

Now, we have the following identity:

e−σB
(
e−σK0B − Be−σK0

)
e−(τ−σ)Kf

= (e−σB − I)
{
e−σK0B − Be−σK0

}
(e−(τ−σ)K − e−(τ−σ)K0)f

+ (e−σB − I)
{
e−σK0B − Be−σK0

}
e−(τ−σ)K0f

+
{
e−σK0B − Be−σK0

}
(e−(τ−σ)K − e−(τ−σ)K0)f +

{
e−σK0B − Be−σK0

}
e−(τ−σ)K0f,
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which yields for f = A−αg:

A−αe−σB
(
e−σK0B − Be−σK0

)
e−(τ−σ)KA−αg

= A−α(e−σB − I)
{
e−σK0B − Be−σK0

}
(e−(τ−σ)K − e−(τ−σ)K0)A−αg

+A−α(e−σB − I)
{
e−σK0B − Be−σK0

}
A−αe−(τ−σ)K0g

+A−α
{
e−σK0B − Be−σK0

}
(e−(τ−σ)K − e−(τ−σ)K0)A−αg

+A−α
{

(e−σK0 − e−σD0)B − B(e−σK0 − e−σD0)
}
e−(τ−σ)K0A−αg

+A−α(e−σD0B − Be−σD0)A−αe−(τ−σ)K0g.

(5.7)

In the following, we estimate the five terms separately.
Initially, we use the fact that A and K0 commute and conclude that:

(e−(τ−σ)K − e−(τ−σ)K0)A−αg =

τ−σ∫
0

dr e−(τ−σ−r)KBA−αe−rK0g.

Thus, for the first term we get:

A−α(e−σB − I)
{
e−σK0B − Be−σK0

}
(e−(τ−σ)K − e−(τ−σ)K0)A−αg

= −
σ∫

0

dτ A−αBe−rB[e−σK0 ,B]A−α
τ−σ∫
0

drAαe−(τ−σ−r)KBA−αe−rK0g,

where:

[e−σK0 ,B]f :=
{
e−σK0B − Be−σK0

}
f, f ∈ dom(K0), τ ≥ 0 .

Using Lemma 5.1, we obtain the estimate:

‖A−α(e−σB − I){e−σK0B − Be−σK0}(e−(τ−σ)K − e−(τ−σ)K0)A−αg‖

≤ σ 2C∗αC
2
αΛαM

T
BM

2
A

τ−σ∫
0

dr
1

(τ − σ − r)α
‖g‖ ≤ σ(τ − σ)1−α 2C∗αC

2
αΛαM

T
BM

2
A

1− α
‖g‖,

(5.8)

for σ ∈ [0, τ ] and τ ≥ 0. For the second term, we get the estimate:

‖A−α(e−σB − I)
{
e−σK0B − Be−σK0

}
A−αe−(τ−σ)K0g‖ ≤ σ 2C∗αCαM

T
BM

2
A‖g‖ . (5.9)

for σ ∈ [0, τ ] and τ ≥ 0. Since we have:

e−(τ−σ)K − e−(τ−σ)K0h =

τ−σ∫
0

dr e−(τ−r−σ)KBe−rK0h , h ∈ dom(K0),

one obtains for the third term the estimate:

‖A−α
{
e−σK0B − Be−σK0

}
(e−(τ−σ)K − e−(τ−σ)K0)A−αg‖ ≤ (τ − σ) 2C∗αCαM

2
AMK ‖g‖ , (5.10)

for σ ∈ [0, τ ] and τ ≥ 0. Moreover, using:

e−σK0 − e−σD0h = −
σ∫

0

dr e−rK0Ae−(σ−r)D0h ,

we get for the fourth term:

A−α
{

(e−σK0 − e−σD0)B − B(e−σK0 − e−σD0)
}
e−(τ−σ)K0A−αg

=

− σ∫
0

drA1−αe−rK0e−(σ−r)D0BA−α +A−αB
σ∫

0

dr e−rK0A1−αe−(σ−r)D0

 e−(τ−σ)K0g,
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which yields the estimate:

‖A−α
{

(e−σK0 − e−σD0)B − B(e−σK0 − e−σD0)
}
e−(τ−σ)K0A−αg‖

≤ CαMAMA
1−α

σ∫
0

dr
1

r1−α ‖g‖+ C∗αMAM
A
1−α

σ∫
0

dr
1

r1−α ‖g‖ =
(Cα + C∗α)MAM

A
1−α

α
σα‖g‖

(5.11)

for σ ∈ [0, τ ] and τ ≥ 0. To estimate the fifth term, we note that:

(e−σD0B − Be−σD0)f = e−σD0B(·)f(·)− BχI(· − σ)f(· − σ)

= χI(· − σ)B(· − σ)f(· − σ)−B(·)χI(· − σ)f(· − σ)

= χI(· − σ){B(· − σ)−B(·)}f(· − σ),

and therefore:

‖A−α(e−σD0B − Be−σD0)e−(τ−σ)K0A−αg‖ ≤MA‖A−α{e−σD0B − Be−σD0}A−αg‖
≤ ess sup

t∈I
‖A−α{B(t− σ)−B(t)}A−α‖B(X) ‖g‖ ≤ Lσ‖g‖,

(5.12)

for σ ∈ [0, τ ] and τ ≥ 0. From (5.7) we find the estimate:

‖A−αe−σB
(
e−σK0B − Be−σK0

)
e−(τ−σ)KA−αg‖

≤ ‖A−α
(
e−σB − I

) {
e−σK0B − Be−σK0

}(
e−(τ−σ)K − e−(τ−σ)K0

)
A−αg‖

+ ‖A−α
(
e−σB − I

) {
e−σK0B − Be−σK0

}
A−αe−(τ−σ)K0g‖

+ ‖A−α
{
e−σK0B − Be−σK0

}(
e−(τ−σ)K − e−(τ−σ)K0

)
A−αg‖

+ ‖A−α
{(
e−σK0 − e−σD0

)
B − B

(
e−σK0 − e−σD0

)}
e−(τ−σ)K0A−αg‖

+ ‖A−α
(
e−σD0B − Be−σD0

)
A−αe−(τ−σ)K0g‖,

for σ ∈ [0, τ ] and τ ≥ 0. Taking into account (5.8), (5.9), (5.10), (5.11), and (5.12) we find:

‖A−αe−σB
(
e−σK0B − Be−σK0

)
e−(τ−σ)KA−αg‖

≤
{
σ(τ − σ)1−α 2C∗αC

2
αΛαM

T
BM

2
A

1− α
+ σ 2C∗αCαM

T
BM

2
A

+ (τ − σ) 2C∗αCαM
2
AMK + σα

(Cα + C∗α)MAM
A
1−α

α
+ σ L

}
‖g‖ ,

for σ ∈ [0, τ ] and τ ≥ 0. Setting:

Z1 :=
2C∗αC

2
αΛαM

T
BM

2
A

1− α
, Z2 := 2C∗αCαM

T
BM

2
A + L,

Z3 := 2C∗αCαM
2
AMK, Z4 :=

(Cα + C∗α)MAM
A
1−α

α
,

we obtain:

‖A−αe−σB
(
e−σK0B − Be−σK0

)
e−(τ−σ)KA−αg‖

≤
{
Z1 σ(τ − σ)1−α + Z2 σ + Z3 (τ − σ) + Z4 σ

α
}
‖g‖ .

(5.13)

From (5.6) we derive the representation:

A−α
(
T (τ)− e−τK

)
A−αg =

τ∫
0

dσA−αe−σB
{
e−σK0B − Be−σK0

}
e−(τ−σ)KA−αg,

which yields the estimate:

‖A−α(T (τ)− e−τK)A−αg‖ ≤
τ∫

0

dσ ‖A−αe−σB
{
e−σK0B − Be−σK0

}
e−(τ−σ)KA−αg‖.
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Inserting (5.13) into this estimate and using:
τ∫

0

dσσ (τ − σ)1−α = τ3−α
1∫

0

dxx(1− x)1−α = τ3−αΓ(1− α)

Γ(2− α)
,

we find the estimate:

‖A−α(T (τ)− e−τK)A−αg‖ ≤ Z1
Γ(1− α)

Γ(2− α)
τ3−α +

Z2 + Z3

2
τ2 +

Z4

1 + α
τ1+α,

for τ ≥ 0. We have:

‖A−α(T (τ)− e−τK)A−αg‖ ≤
(
Z1

Γ(1− α)

Γ(2− α)
τ2−2α +

Z2 + Z3

2
τ1−α + Z4

)
τ1+α,

for τ ≥ 0. Since T (τ) = 0 and e−τK = 0 for τ ≥ T we finally obtain:

‖A−α(T (τ)− e−τK)A−αg‖ ≤
(
Z1

Γ(1− α)

Γ(2− α)
T 2−2α +

Z2 + Z3

2
T 1−α + Z4

)
τ1+α,

which proves the lemma. �

Lemma 5.3. Let α ∈ [0, 1). Then the estimates:

n−1∑
m=1

1

mα
≤ n1−α

1− α
and

n−1∑
m=1

1

(n−m)αmα
≤ 2

1− α
n1−2α , (5.14)

are valid for n = 2, 3, . . . .

Proof. The function f(x) = x−α, x > 0, is decreasing. Hence:

n−1∑
m=1

1

mα
≤

n−1∫
0

dx
1

xα
≤ (n− 1)1−α

1− α
≤ n1−α

1− α
,

for n = 2, 3, . . . . Further, we have:
n−1∑
m=1

1

(n−m)αmα
≤ 2

1

nα

n−1∑
m=1

1

mα
≤ 2

1

nα
n1−α

1− α
=

2

1− α
n1−2α,

and the claim follows. �

5.2. The Trotter product formula in operator-norm topology

Now, we are able to prove and to estimate the rate of operator-norm convergence of the Trotter product
approximation.

Theorem 5.4. Let the assumptions (A1), (A2), and (A3) be satisfied. If the family of generators {B(t)}t∈I is
A-stable, then there exists a (depending on α ∈ (1/2, 1) and on the compact interval I) constant Cα,I > 0 such
that:

‖
(
e−τB/ne−τK0/n

)n
− e−τK‖B(Lp(I,X)) ≤

Cα,I
n1−α , (5.15)

for τ ≥ 0 and n = 2, 3, . . . .

Proof. Let T (σ) := e−σBe−σK0 and U(σ) := e−σK, σ ≥ 0. Then the following identity holds:

T (σ)n − U(σ)n =

n−1∑
m=0

T (σ)n−m−1(T (σ)− U(σ))U(σ)m

= T (σ)n−1(T (σ)− U(σ)) + (T (σ)− U(σ))U(σ)n−1 +

n−2∑
m=1

T (σ)n−m−1(T (σ)− U(σ))U(σ)m

= T (σ)n−1AαA−α(T (σ)− U(σ)) + (T (σ)− U(σ))A−αAαU(σ)n−1

+

n−2∑
m=1

T (σ)n−m−1AαA−α(T (σ)− U(σ))A−αAαU(σ)m,
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which yields the estimate:

‖T (σ)n − U(σ)n‖

≤ ‖T (σ)n−1Aα‖ ‖A−α(T (σ)− U(σ))‖+ ‖(T (σ)− U(σ))A−α‖ ‖AαU(σ)n−1‖

+

n−2∑
m=1

‖T (σ)n−m−1Aα‖ ‖A−α(T (σ)− U(σ))A−α‖ ‖AαU(σ)m‖.

From Lemma 5.1 we get the estimates:

‖T (σ)n−1Aα‖ ≤ Yα
(
σ1−2α +

1

((n− 1)σ)α

)
, n ≥ 2,

as well as:
‖A−α(T (σ)− U(σ))‖ ≤ Πασ and ‖(T (σ)− U(σ))A−α‖ ≤ Πα σ,

for σ ∈ (0, τ ]. Hence:

‖T (σ)n−1Aα‖ ‖A−α(T (σ)− U(σ))‖ ≤ ΠαYασ
1−α

(
σ1−α +

1

(n− 1)α

)
,

and:

‖(T (σ)− U(σ))A−α‖ ‖AαU(σ)n−1‖ ≤ ΠαΛα
(n− 1)α

σ1−α,

where we have used (5.1). Since:

‖A−α(T (σ)− e−σK)A−α‖B(Lp(I,X)) ≤ Zα σ1+α, τ ∈ [0, τ0),

by Lemma 5.2 we obtain:

‖T (σ)n−m−1Aα‖ ‖A−α(T (σ)− U(σ))A−α‖ ‖AαU(σ)m‖

≤ Yα
(
σ1−2α +

1

((n−m− 1)σ)α

)
Zασ

1+α Λα
1

(σm)α

≤ YαZαΛα

(
σ2−2α 1

mα
+ σ1−α 1

(n−m− 1)αmα

)
.

Now, using Lemma 5.3 we get:

n−2∑
m=1

‖T (σ)n−m−1Aα‖ ‖A−α(T (σ)− U(σ))A−α‖ ‖AαU(σ)m‖

≤ ZαΛαYασ
2−2α

n−2∑
m=1

1

mα
+ ZαΛαYασ

1−α
n−2∑
m=1

1

(n−m− 1)αmα

≤ ZαΛαYα
1− α

(
n1−ασ2−2α + 2n1−2ασ1−α) .

Summing up, we find that:

‖T (σ)n − U(σ)n‖ ≤Πα Yασ
1−α

(
σ1−α +

1

(n− 1)α

)
+

ΠαΛα
(n− 1)α

σ1−α+

ZαΛαYα
1− α

n1−ασ2−2α +
2ZαΛαYα

1− α
n1−2ασ1−α.

Note that setting σ := τ/n, one obtains:

‖T (τ/n)n − U(τ/n)n‖

≤ Πα Λα T
2−2α

(n− 1)2−2α
+

Πα Λα
n− 1

+
Πα Λα T

1−α

(n− 1)
+
ZαΛαYαT

2−2α

1− α
1

n1−α +
2ZαΛαYαT

1−α

1− α
1

nα
,

for τ ≥ 0 and n = 2, 3, . . .. Hence, there exists a constant Cα,I > 0 such that: (5.15) holds. �

Remark 5.5. It is worth noting that this result depends only on the domains of the operators A and B(t) and not
on their concrete realization.
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5.3. Operator-norm convergence of propagators

Theorem 5.4 allows to estimate the rate of approximation by the product formula of the solution operator
(propagator) {U(t, s)}(t,s)∈∆.

To this aim we note that due to Theorem 3.3 we have the identity:({ (
e−

τ
nBe−

τ
nK0

)n − e−τ(B+K0)
}
g
)

(t) =
{
Un(t, t− τ)− U(t, t− τ)

}
χI(t− τ)g(s− τ),

for (t, t− τ) ∈ ∆ and g ∈ Lp(I, X), where:

Un(t, s) :=

n←∏
j=1

Gj(t, s;n), (t, s) ∈ ∆,

where Gj(t, s;n) := e−
t−s
n B(s+j t−sn )e−

t−s
n A and the product is increasingly ordered from the right to the left.

Next, we introduce on Lp(I, X) the left-shift semigroup:

(L(τ)f)(t) := χI(t+ τ)f(t+ τ), f ∈ Lp(I, X).

Theorem 5.6. Let the assumptions (A1), (A2), and (A3) be satisfied. If the family of generators {B(t)}t∈I is
A-stable, then there is a constant Cα,I > 0:

ess sup
(t,s)∈∆

‖Un(t, s)− U(t, s)‖B(X) ≤
Cα,I
n1−α , n = 2, 3, . . . , (5.16)

where the constant Cα,I coincides with that one of Theorem 5.4.

Proof. We set:
Sn(t, s) := Un(t, s)− U(t, s), (t, s) ∈ ∆, n ∈ N,

and:

Sn(τ) := L(τ)
{

(e−
τ
nBe−

τ
nK0)n − e−τ(B+K0)

}
: Lp(I, X)→ Lp(I, X),

for τ ≥ 0 and n = 2, 3, . . .. Then one gets:

(Sn(τ)g)(t) = Sn(t+ τ, t)χI(t+ τ)g(t), t ∈ I0, g ∈ Lp(I, X).

Hence, for any τ ∈ I and n ∈ N, the operator Sn(τ) is a multiplication operator on Lp(I, X) induced by the
family {Sn(· + τ, ·)χI(· + τ)}τ∈I of bounded operators. Applying equation (7.27) of [7], we conclude that for
τ ≥ 0 one has the identity:

‖
(
e−

τ
nBe−

τ
nK0

)n − e−τ(B+K0)‖B(Lp(I,X)) = ‖L(τ)
{ (
e−

τ
nBe−

τ
nK0

)n − e−τ(B+K0)
}
‖B(Lp(I,X))

= ‖Sn(τ)‖B(Lp(I,X)) = ess sup
t∈I0

‖Sn(t+ τ, t)χI(t+ τ)‖B(X) (5.17)

= ess sup
t∈I0

‖{Un(t+ τ, t)− U(t+ τ, t)}χI(t+ τ)‖B(X)

= ess sup
t∈(0,T−τ ]

‖Un(t+ τ, t)− U(t+ τ, t)‖B(X).

Now, taking into account Theorem 5.4, we find:

ess sup
t∈(0,T−τ ]

‖Un(t+ τ, t)− U(t+ τ, t)‖B(X) ≤
Cα,I
n1−α , τ ≥ 0, n ∈ 2, 3, . . . ,

which yields (5.16). �

Remark 5.7.
(i) In the case of a Hilbert space Ichinose and Tamura proved in [6] that the convergence rate has order O(ln(n)/n)
if one assumes that the operators A and B(t) are positive and self-adjoint. On the other hand, the authors
proved in [7] for Banach spaces that the convergence rate estimate is O(n−(β−α)) for any β ∈ (α, 1), assuming
dom(A∗) ⊂ dom(B(t)∗). We comment here that under the same conditions for autonomous case (B(t) = B) the
estimate in a Banach has the form O(ln(n)/n1−α), 0 < α < 1, see [8, Theorem 3.6].
(ii) The key identity (5.17) that makes a contact between the evolution semigroup and the solution operator
(propagator) approaches to non-autonomous Cauchy problems, also shows that estimates (5.15) and (5.16) are
equivalent.
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(iii) We note that a prior the operator family {Un(t, s)}(t,s)∈∆ do not define a propagator since the co-cycle
equation is in general not satisfied. But one can check that:

Un(t, s) = Un−k

(
t, s+

k

n
(t− s)

)
Uk

(
s+

k

n
(t− s), s

)
,

is satisfied for 0 < s ≤ t ≤ T , n ∈ N and any k ∈ {0, 1, . . . , n}.

6. Example: diffusion equation perturbed by a time-dependent potential

We investigate the diffusion equation perturbed by a time-dependent potential. On the Banach space X = Lq(Ω),
where Ω ⊂ Rd is a bounded domain with C2-boundary (d ≥ 2) and q ∈ (1,∞), the equation reads:

u̇(t) = ∆u(t)−B(t)u(t), u(s) = us ∈ Lq(Ω), t, s ∈ I0. (6.1)

∆ denotes the Laplace operator on Lq(Ω) with Dirichlet boundary conditions defined on:

∆ : dom(∆) = H2
q (Ω) ∩ H̊1

q (Ω)→ Lq(Ω).

It turns out that −∆ is the generator of a holomorphic contraction semigroup on Lq(Ω) (cf. [11, Theorem 7.3.5/6]).
B(t) denotes a time-dependent scalar-valued multiplication operator given by:

(B(t)f)(x) = V (t, x)f(x), dom(B(t)) = {f ∈ Lq(Ω) : V (t, x)f(x) ∈ Lq(Ω)},

where:

V : I × Ω→ C, V (t, ·) ∈ L%(Ω).

For α ∈ (0, 1), the fractional power of −∆ are defined on the domain:

(−∆)α : H̊2α
q (Ω)→ Lq(Ω).

Note, that for 2α < 1/q, it holds that H̊2α
q (Ω) = H2α

q (Ω). The adjoint operator of (−∆)α is defined on the

domain dom(((−∆)α)∗) = H̊2α
q′ (Ω) ⊂ Lq

′
(Ω), where 1/q + 1/q′ = 1. The operators B(t) are scalar-valued and

hence B(t)∗ = B(t) : dom(B(t)) ⊂ Lq
′
(Ω) → Lq

′
(Ω). Moreover, one can show that K0 = D0 + A, i.e. the

operator sum D0 +A is already closed.
Now, we are going to verify the assumptions (A1)–(A3) in order to approximate the solution of (6.1). This

means, we determine the required regularity in space and in time of the potential V (·, ·) to ensure the assumptions
(A1)–(A3).

To guarantee that the operators B(t) are generators, we assume that the potential V (t, x) is positive, i.e.:

Re(V (t, x)) ≥ 0, for a.e. (t, x) ∈ I × Ω.

Then, for any t ∈ I the operator V (t, x) is a generator of a contraction semigroup on X = Lq(Ω) (cf. [5,
Theorem I.4.11–12]). In particular, the operator family B(t) is A-stable.

For fixed d ≥ 2 and α ∈ (1/2, 1), we define the following values for the parameters r̃, ρ̃, τ :

q ∈
(

1,
d

2α

)
q ∈

[ d
2α
,∞
)

q′ ∈
(

1,
d

2α

) r̃ ∈
[ d

2α
,∞
]
, ρ̃ ∈

[ d
2α
,∞
]
,

τ ∈
[ d

4α
,∞
] r̃ ∈ (q,∞], ρ̃ ∈

[ d
2α
,∞
]
,

τ ∈
[ d

2α+ dq
,∞
]

q′ ∈
[ d

2α
,∞
) r̃ ∈

[ d
2α
,∞
]
, ρ̃ ∈ (q′,∞],

τ ∈
[ d

2α+ dq′
,∞
] r̃ ∈ (q,∞], ρ̃ ∈ (q′,∞],

τ ∈ (1,∞]

Take r̃, ρ̃ from the table above and define r, ρ via:

1

r
+

1

r̃
=

1

q
,

1

ρ
+

1

ρ̃
=

1

q′
. (6.2)
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Using Sobolev embeddings of the form:

Hs
γ1(Ω) ⊂ Lγ2(Ω) for


γ2 ∈

[
γ1,

d
sγ1

d
s − γ1

]
, if γ1 ∈

(
1,
d

s

)
;

γ2 ∈ [γ1,∞), if γ1 ∈
[d
s
,∞
)

;

(6.3)

it is not hard to show H2α
q (Ω) ⊂ Lr(Ω) and H2α

q′ (Ω) ⊂ Lρ(Ω) on the one hand, and Lr(Ω), Lρ(Ω) ⊂ dom(B(t))
on the other hand. This means, dom((−∆)α) ⊂ dom(B(t)) and dom(((−∆)α)∗) ⊂ dom(B(t)∗). The operator
B(t) is a multiplication operator defined by V (t, ·) and hence, following (6.2) the regularity of V (t, ·) has to
be at least % := max{r̃, ρ̃}. Hence, assuming V ∈ L∞(I, L%(Ω)), we have ess sup

t∈I
‖B(t)(−∆)α‖ ≤ ∞ and

ess sup
t∈I

‖B(t)∗((−∆)α)∗‖ ≤ ∞. Hence, (A1) and (A2) are satisfied.

Moreover, let:

F (t) := (−∆)−αB(t)(−∆)−α : Lq(Ω)→ H̊2α
q (Ω).

For τ from the table above the relation:
1

r
+

1

τ
+

1

ρ
≤ 1 (6.4)

holds. One can show that each t ∈ I the operator F (t) is bounded for V (t, ·) ∈ Lτ (Ω). Indeed, let f ∈ Lq(Ω) and
g ∈ Lq

′
(Ω). Define f̃ = ∆−αf ∈ H̊2α

q (Ω) ⊂ Lr(Ω) and g̃ = (∆−α)∗g = (∆∗)−αg ∈ H̊2α
q′ (Ω) ⊂ Lρ(Ω). Then,

we have for t ∈ I:
〈F (t)f, g〉 = 〈(−∆)−αB(t)(−∆)−αf, g〉 = 〈(−∆)−αf,B(t)∗(−∆∗)−αg〉 = 〈f̃ , B(t)∗g̃〉.

The boundedness of 〈f̃ , B(t)∗g̃〉 is satisfied for V (t, ·) ∈ Lτ (Ω). Assuming V to be Lipschitz continuous in time,
i.e. assuming V ∈ CLip(I, Lτ (Ω)), it follows that (A3) is satisfied. We remark that since we have r ≥ q, it holds
that τ ≤ ρ̃ and hence,τ ≤ % = max{r̃, ρ̃}.

The arguments that we collected above yield the following statement concerning our example (6.1):

Theorem 6.1. Let Ω ⊂ Rd be a bounded domain with C2-boundary, let q ∈ (1,∞) and let α ∈ (1/2, 1). Let
B(t)f = V (t, ·)f define a scalar valued multiplication operator on Lq(Ω) with:

V ∈ L∞(I, L%(Ω)) ∩ CLip(I, Lτ (Ω)), (6.5)

where % = max{r̃, ρ̃} and r̃, ρ̃, τ is chosen from the above table. Moreover, let Re(V (t, x)) ≥ 0 for t ∈ I and
for a.e. x ∈ Ω.

Then, the evolution problem (6.1) has a unique solution operator U(t, s) which can be approximated in
operator-norm by:

sup(t,s)∈∆||Un(t, s)− U(t, s)||B(Lq(Ω)) = O(n−(1−α)),

where:

Un(t, s) =

−→∏n

j=1
e−

t−s
n V (n−j+1

n t+ j−1
n s,·)e

t−s
n ∆. (6.6)

Proof. The claim follows, using Theorem 3.3 and Theorem 5.6. The “ess sup” becomes a “sup”, since the solution
operator and the approximating operator are continuous. �

Remark 6.2.
(i) In [12], the existence of a solution operator for equation (6.1) is shown assuming weaker regularity in space
and time for the potential. We assumed uniform boundedness of the function t 7→ ||B(t)(−∆)α||B(X), which is
indeed too strong but important for the considerations.
(ii) We focused on domains, which are bounded and have C2-boundaries. Our considerations can be extended to
other domains, too.
(iii) Although the approximating propagator {Un(t, s)}(t,s)∈∆ defined in (6.6) looks elaborate, it has a simple
structure. The semigroup of the Laplace operator on Lq(Rd) is given by the Gauss–Weierstrass semigroup (see for
example [5, Chapter 2.13]) defined via:

(et∆u)(x) = (T (t)u)(x) = (4πt)−d/2
∫
Rd

e−
|x−y|2

4t u(y)dy.

The terms e−τV (tj) are scalar valued and can be easily computed.
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For the analysis of the Schrödinger and related equations it is of central importance whether a unique continuation principle (UCP) holds or
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1. Introduction

Unique continuation properties for various function classes have been studied for many years. They are of great
importance when addressing uniqueness of solutions of partial differential equations, the propagation or regularity
of solutions, and their growth behavior. More recently, they have been successfully applied in the spectral theory
of random Schrödinger operators, for instance to prove Wegner estimates and establish regularity properties of the
integrated density of states (IDS).

On the other hand it is well-known that for discrete Schrödinger operators on the lattice Zd the analog of
the UCP does not hold. This poses a serious difficulty for the analysis of discrete Schrödinger operators. This
is exemplified by the fact that there is still no proof of localization for the multidimensional Anderson model
with Bernoulli disorder while this has been established for the seemingly more difficult analogous problem in
continuum space in [1]. Nevertheless, a certain weaker version of unique continuation, namely non-existence of
finitely supported eigenfunctions, allows one at least to conclude that the IDS of discrete Schrödinger operators on
Zd is continuous. This, however, uses specific properties of the underlying combinatorial graph Zd and does not
need to be true for Laplace or Schrödinger operators on other graphs. A prominent example of this phenomenon
is the Laplace operator on a subgraph of Zd, generated by (random) percolation. Another example is the discrete
Laplacian on the Kagome lattice which is a planar graph exhibiting eigenfunctions with finite support. In both
examples, finitely supported eigenfunctions lead to jumps of the IDS. The two properties are actually in a sense
equivalent. However, there is a condition on planar graphs, namely non-positivity of the so-called corner curvature,
which excludes the existence of finitely supported eigenfunctions.

For quantum graphs, more precisely, for Schrödinger operators on metric graphs, the UCP does not hold in
general as well. On the one hand, this can be understood as a consequence of the phenomenon encountered for
planar graphs, since there is a way to “translate” spectral properties of equilateral quantum graphs to spectral
properties of the underlying combinatorial graph. On the other hand, as soon as the underlying combinatorial graph
has cycles, the Laplacian on the corresponding equilateral quantum graph carries compactly supported, so-called
Dirichlet eigenfunctions on these cycles which can again lead to jumps in the IDS.

The paper is structured as follows: In Section 2 we discuss unique continuation principles for Schrödinger
equations on subsets of Rd. Then, in Section 3, we turn to analogous discrete equations on the Euclidean
lattice graph Zd, where we present both positive and negative results concerning unique continuation. Section 4
is devoted to subgraphs of the Euclidean lattice Zd, generated by percolation, i.e. by random removing vertices.
There, finitely supported eigenfunctions exist leading to jumps in the IDS. After that, in Section 5, we introduce the
Kagome lattice as an example of a planar graph which exhibits finitely supported eigenfunctions and then present
a combinatorial curvature condition which can ensure the non-existence of such finitely supported eigenfunctions.
The final Section 6 is devoted to quantum graphs. We explain how properties from the underlying combinatorial
graph translate to the lattice graph and study the IDS.



UCP and their absence for Schrödinger eigenfunctions 217

2. Unique continuation for solutions in continuum space

Throughout this article we will use the following notation: A measurable function f on a domain A ⊂ Rd
is in Lp(A), if ‖f‖Lp(A) = ‖f‖p < ∞, where ‖f‖p = (

∫
A
|f |p)1/p if 1 ≤ p < ∞ and ‖f‖∞ = essupA|f |,

the essential supremum with respect to the Lebesgue measure. If B ⊂ A, we write ‖f‖Lp(B) = ‖χBf‖Lp(A),
where χB is the characteristic function of the set B, i.e. χB(x) = 1 if x ∈ B and 0 else. The function f
is said to be in Hk,p, k ∈ N, if f and all weak derivatives of f up to k-th order are in Lp. For a vector
x ∈ Rd, we will denote by |x| = (x2

1 + . . . x2
d)

1/2 its Euclidean norm. The (open) ball of radius r > 0 around
x ∈ Rd is denoted by B(x, r) = {y ∈ Rd : |x − y| < r}. Furthermore, for L > 0 and x ∈ Rd, we will call
ΛL(x) = x+(−L/2, L/2)d ⊂ Rd the d-dimensional cube of side length L, centered at x. If x = 0, we will simply
write ΛL.

Definition 2.1. A class of functions F on a connected domain A ⊂ Rd has the unique continuation property
(UCP), if for every nonempty and open U ⊂ A every f ∈ F vanishing on U must vanish everywhere. If every
eigenfunction of a partial differential operator D has the UCP, then we say that the operator D has the UCP.

Standard examples of operators having the UCP include the Laplace operator ∆ or elliptic operators with
analytic coefficients. A breakthrough result was due to Carleman [2], who in 1939 proved that −∆ + V with
V ∈ L∞loc has the UCP by using inequalities which are currently referred to as Carleman estimates. We shall first
have a look at some unique continuation properties which at first sight are weaker than the above definition. In
order to illustrate the mechanism how Carleman estimates imply unique continuation, let us recall a proof of the
following result, see [3].

Proposition 2.2 (Unique continuation from a half space, [3]). Let d ≥ 3, p = 2d/(d + 2) and V ∈ Ld/2(Rd).
Then, every u ∈ H2,p(Rd) satisfying |∆u| ≤ |V u| which vanishes on a half space must vanish everywhere.

In fact, we are going to show a slightly stronger statement. By an infinite slab of width ε, we denote a set
S ⊂ Rd which is a translation and rotation of:

{x ∈ Rd : 0 < x1 < ε, x2, . . . xd ∈ R}.
In dimension d = 2, an infinite slab would be an infinite strip.

Proposition 2.3 (Unique continuation from a slab). Let d ≥ 3, p = 2d/(d + 2) and V ∈ Ld/2(Rd). Then, every
u ∈ H2,p(Rd) satisfying |∆u| ≤ |V u| which vanishes on a infinite slab of width ε > 0 must vanish everywhere.

The proof relies on the following Carleman estimate, which can be found e.g. in [3].

Theorem 2.4. Let d ≥ 3, p = 2d/(d+ 2) and q = 2d/(d− 2). Then there is a constant C > 0 such that for all
ν ∈ Rd, all λ ∈ R and all u with eλ〈ν,x〉u ∈ H2,p(Rd) we have:

‖eλ〈ν,x〉u‖Lq(Rd) ≤ C‖eλ〈ν,x〉∆u‖Lp(Rd).

Proof of Proposition 2.3. We choose ρ > 0 such that ‖V ‖Ld/2(Sρ) ≤ 1/(2C) for all infinite slabs Sρ of width ρ
where C is the constant from Theorem 2.4. By translation and rotation, we may assume that u vanishes on the slab
{x ∈ Rd : −ε < x1 < 0} and it suffices to show u ≡ 0 in Sρ := {x ∈ Rd : 0 < x1 < ρ}. Let now χ ∈ C∞(Rd)
such that χ ≡ 0 if x1 < −ε and χ ≡ 1 if x1 > 0. We estimate, using Hölder’s inequality and |∆u| ≤ |V u| to
obtain for all λ > 0:

‖e−λx1u‖Lq(Sρ) ≤ ‖e−λx1χu‖Lq(Rd)

≤ C‖e−λx1∆(χu)‖Lp(Rd)

≤ C‖e−λx1∆u‖Lp(Sρ) + C‖e−λx1∆(χu)‖Lp(Rd\Sρ)

≤ C‖e−λx1V u‖Lp(Sρ) + Ce−λρ‖∆u‖Lp(Rd)

≤ C‖V ‖Ld/2(Rd) · ‖e−λx1u‖Lq(Sρ) + Ce−λρ‖∆u‖Lp(Rd)

≤ 1

2
‖e−λx1u‖Lq(Sρ) + Ce−λρ‖∆u‖Lp(Rd),

where q is the exponent from Theorem 2.4. Subtracting the first summand on the right hand side and multiplying
by eλρ, one finds:

‖eλ(ρ−x1)u‖Lq(Sρ) ≤ 2C‖∆u‖Lp(Rd),

for all λ > 0. This is only possible if u ≡ 0 in Sρ. �
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Now, one is in the position to conclude unique continuation properties of other domains.

Proposition 2.5 (Outside-in and inside-out unique continuation, [3]). Let u ∈ H2,p(Rd) satisfy |∆u| ≤ |V u| for a
V ∈ Ld/2(Rd).

(1) If u vanishes outside of an open ball of radius ρ > 0, it must vanish everywhere.
(2) If u vanishes on an open ball of radius ρ > 0, it must vanish everywhere.

Part (1) is a special case of Proposition 2.2, while the proof of Part (2) is based upon the transformation
u(x) 7→ ũ(x) := u(x/|x|2) · |x|−(d−2).

So far, we found that eigenfunctions vanishing on half-spaces, slabs, outside and inside of balls must vanish
everywhere. In particular, the latter implies the notion of unique continuation as in Definition 2.1. The assumption
V ∈ Ld/2(Rd) can be substantially relaxed, but we are not going to focus our attention on this issue and refer
to the references [4–6]. We emphasize, however that we exploited rotational symmetry and the transformation
x 7→ x/|x|2. On the lattice Zd, this will no longer work.

While unique continuation itself has turned out to be a useful tool for many applications [7, 8], in some
situations, more information is required. We speak of Quantitative unique continuation if a function which is
“small” on U cannot be “too large” on the whole domain A. Of course the notion of smallness needs some
clarification. It can be formulated in terms of different norms, local maxima, etc. and there is a connection to
vanishing speed of functions in the vicinity of their zero set. We are going to cite some cases of quantitative
unique continuation principles and some resulting applications.

The first example concerns vanishing speed of solutions of the Laplace-Beltrami operator on compact manifolds
with the explicit dependence e

√
E on the eigenvalue – a term that we will encounter later on. It is due to [9] and

follows by combining Thm. 4.2 (i) with the second displayed formula on p. 174 in [9].

Theorem 2.6. Let M be a closed, compact C∞ Riemannian manifold. Then, there are constants C1, C2 ≥ 0 such
that for every u 6≡ 0 and −∆u = Eu and every x0 ∈M , we have:

εC1+C2

√
E ·max

x∈M
|u(x)| ≤ max

x∈B(x0,ε)
|u(x)| for small enough ε > 0,

i.e. u can at most vanish of order C1 + C2

√
E.

In particular, if an eigenfunction u of the Laplace–Beltrami operator is zero in a non-empty open set, it
certainly vanishes of infinite order and thus u ≡ 0, i.e. it has the UCP. In [10], similar results were proven for a
larger class of second order differential operators which allowed for a potential and first order terms.

Now, we turn to vanishing properties at infinity. In this setting, one wants to understand the fastest possible
rate at which a function can decay as the norm of its argument tends to infinity.

Theorem 2.7 (Quantitative UCP for eigenfunctions of Schrödinger operator, [1]). Assume ∆u = V u + γ in Rd,
u(0) = 1, |u| ≤ C and ‖V ‖∞ ≤ C. Then there are C1, C2 > 0 such that for every x0 ∈ Rd, we have

max
|x−x0|≤1

|u(x)|+ ‖γ‖∞ > C1 exp
(
−C2(log|x0|)|x0|4/3

)
. (1)

Theorem 2.7 was an essential ingredient in proving spectral localization, i.e. almost sure occurrence of dense
pure point spectrum with exponentially decaying eigenfunctions for the Anderson–Bernoulli model:

Hω = −∆ + Vω, V (x) =
∑
j∈Zd

ωju(x− j),

where ωj are independent and identically distributed Bernoulli random variables (i.e. they are either 0 or 1) and φ
is a smooth, positive, compactly supported single-site potential.

While localization has been well established before in the case of the ωj having an absolutely continuous (with
respect to the Lebesgue measure) probability measure, see e.g. [11, 12], the case of Bernoulli distributed random
variables has been more challenging and Theorem 2.7 turned out to be an essential component of the proof. In
fact, since there is no lattice analogue of Theorem 2.7, the question of localization for the Anderson-Bernoulli
model on the lattice Zd is still open, except in the case of dimension d = 1 where different methods are available,
see [13], Theorem 2.1.

In order to formulate the next result, we need to define the density of states (DOS) and the integrated density
of states (IDS). Let V ∈ L∞(Rd) and H = −∆ + V on L2(Rd). For a d-dimensional cube Λ, we call HΛ the
restriction of H to L2(Λ) with Dirichlet boundary conditions (i.e. by prescribing the value 0 at the boundary of Λ).
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Its spectrum consists of an increasing sequence of eigenvalues of finite multiplicity with the only accumulation
point at +∞. The finite volume density of states measure ηΛ is defined by:

ηΛ(B) :=
1

|Λ|
]{Eigenvalues of HΛ in B},

for any Borel set B ⊂ R. Here and in the sequel we count eigenvalues according to their multiplicity. If the
potential V is periodic, the density of states measure can be defined as the limit:

η(B) := lim
L→∞

ηΛL(B).

More generally, if we have an ergodic random family {Vω}ω∈Ω of potentials, there is convergence of the integrated
density of states to a non-random function:

N(E) := lim
L→∞

ηΛLf ((−∞, E])

for almost every E and almost every ω ∈ Ω. For generic Schrödinger operators, η might not be well-defined but
one can still define the density of states outer-measure as:

η∗(B) := lim sup
L→∞

sup
x∈Rd

ηΛL(x)(B).

In [14], a version of Theorem 2.7 was applied to prove continuity of the density of states (outer-)measure in
dimension d = 2, 3. The case of dimension d = 1 had already been proved in [15].

Theorem 2.8 ( [14]). Let H = −∆+V be a Schrödinger operator with bounded potential V and let the dimension
d ∈ {1, 2, 3}. Then for every E0 ∈ R there are constants C1, C2, depending only on E0, ‖V ‖∞ and d such that
for every E ≤ E0 and every small enough ε:

η∗([E,E + ε]) ≤ C1

(log 1/ε)C2
,

i.e. the density of states outer-measure is continuous.

If d = 1, one can choose C2 = 1 and ε ∈ (0, 1/2) cf. Theorem 5.1 in [15]. The restriction to dimension d ≤ 3
is due to the exponent 4/3 in (an analog of) ineq. (1) which originates from the particular Carleman inequality
they use. In fact, if this exponent was to be replaced by β > 1, then Theorem 2.8 would hold for all dimensions
d < β/(β − 1), whence it is desirable to reduce the exponent 4/3 in ineq. (1) to 1. However, there is a classic
example [16] which shows that this will not be feasible using Carleman estimates, whence new approaches to
unique continuation will be required in order to lift the proof of Theorem 2.8 to higher dimensions.

We will now study scale-free unique continuation, i.e. we will study quantitative unique continuation results
which hold uniformly over a large number of scales and geometric settings. For that purpose, we introduce the
following definition:

Definition 2.9. Let 0 < δ < 1/2. We say that a sequence Z = {zj}j∈Zd is δ-equidistributed, if for every j ∈ Zd
we have B(zj , δ) ⊂ j + Λ1. Corresponding to a δ-equidistributed sequence and L > 0, we define:

Sδ(L) :=
⋃
j∈Zd

B(zj , δ) ∩ ΛL.

The simplest example of a δ-equidistributed set would be Zd itself (see Fig. 1).

FIG. 1. Examples of Sδ(5) for different δ-equidistributed arrangements
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Theorem 2.10 (Quantitative UCP for eigenfunctions, [17]). Fix KV ∈ [0,∞) and δ ∈ (0, 1/2). Then there
is a constant C > 0 such that for all L ∈ Nodd = {1, 3, . . . }, all measurable V : ΛL → [−KV ,KV ] and
all real-valued ψ in the domain of the Laplace operator on ΛL with Dirichlet or periodic boundary condition
satisfying:

|∆ψ| ≤ |V ψ|
we have:

‖ψ‖2L2(Sδ(L)) ≥
(
δ

C

)C+CK
2/3
V

‖ψ‖2L2(ΛL).

Theorem 2.10 is called a scale-free unique continuation principle because the constant on the right hand side
does not depend on the scale L. It has been used to study the spectrum of random Schrödinger operators, more
precisely the Delone-Anderson model:

Hω = −∆ + Vω, Vω(x) =
∑
y∈D

ωyu(x− y) (2)

where u is a compactly supported, positive and bounded function, the ωy are independent and identically distributed,
bounded random variables with a bounded density and D ⊂ Rd is a Delone set. The latter means that there are
0 < L1 < L2 such that for all x ∈ Rd we have ]{y ∈ D ∪ ΛL1} ≤ 1 and ]{y ∈ D ∪ ΛL2} ≥ 1. Every δ-
equidistributed set is a Delone set and every Delone set can (after scaling) be decomposed into a δ-equidistributed
set and some remaining set, see e.g. [17]. In [17], Theorem 2.10 was used to prove the following Wegner estimate:

Theorem 2.11. Let {Hω}ω∈Ω be a Delone-Anderson Hamiltonian as in (2). For every E0 there is a constant
CW such that for all E ≤ E0, all ε ≤ 1/3, all L ∈ Nodd we have:

E []{Eigenvalues of Hω,Λ in [E − ε, E + ε]}] ≤ CW · ε · |ln ε|d · |ΛL|. (3)

Wegner estimates serve as an induction anchor in the multi-scale analysis, an inductive process which estab-
lishes localization, i.e. the almost sure occurrence of pure point spectrum with exponentially decaying eigenfunc-
tions for Hω , at low energies. Note that the right hand side in Ineq. (3) is o(εθ) as ε → 0 for every θ ∈ (0, 1).
Therefore, if the integrated density of states of Hω exists, it will be (locally) Hölder continuous with respect to
any exponent θ ∈ (0, 1). Since, however, the Delone-Anderson model is not necessarily ergodic, existence of its
IDS is a delicate issue, see [18].

In [17], the question had been raised if a similar statement as in Theorem 2.11 holds uniformly all for finite
linear combination of eigenfunctions with eigenvalues below a threshold E0. Such results had been known before,
cf. [19], albeit only in the special case where both the potential V and the Delone set D were Zd-periodic and
without the explicit dependence on δ and KV . They had led to Lipshitz continuity of IDS in the usual alloy-type
or continuum Anderson model, cf. [20]. However, the proof of these unique continuation principles had relied
on Floquet theory which only allowed for the periodic setting and a compactness argument which yielded no
information on the influence of the parameters δ and KV . A partially positive answer to the question raised in [17]
was given in [21] where Theorem 2.10 was generalized to linear combinations of eigenfunctions with eigenvalues
in a small energy interval. This allowed the dropping of the ln ε term in (3). A full answer to the question raised
in [17] was given by the following Theorem.

Theorem 2.12 ( [22, 23]). There is N = N(d) such that for all δ ∈ (0, 1/2), all δ-equidistributed sequences, all
measurable and bounded V : Rd → R, all L ∈ N, all E0 ≥ 0 and all φ ∈ Ran(χ(−∞,E0](HL)) we have:

‖φ‖2L2(Sδ(L)) ≥ δ
N
(

1+‖V ‖2/3∞ +
√
E0

)
‖φ‖2L2(ΛL). (4)

Theorem 2.12 was a missing ingredient for treating new models of random Schrödinger operators such as
the standard breather model: Let {ωj}j∈Zd be i.i.d. random variables on a probability space (Ω,P) which are
distributed according to the uniform distribution on the interval [0, 1/2] and define the standard breather potential:

Vω(x) :=
∑
j∈Zd

χB(j,ωj)(x),

where χB(x,r) denotes the characteristic function of a ball of radius r, centered at x. Then, the standard breather
model is the family of operators −∆ + Vω , ω ∈ Ω on L2(Rd) and can be seen as a prototype for a random
Schrödinger operator where the random variables enter in a non-linear manner.
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Theorem 2.13 (Wegner estimate for the standard breather model, [22, 24]). For every E0 ∈ R there are C > 0,
0 < θ < 1 such that for every E < E0, every L ∈ N and every small enough ε > 0 we have:

E []{Eigenvalues of Hω,ΛL in [E − ε, E + ε]}] ≤ CεθLd. (5)

This implies (non-uniform) Hölder continuity at E of order θ of the corresponding IDS and can be used to
establish localization for the standard breather model via multi-scale analysis.

Actually, Theorem 2.13 holds in a much more general setting, see [23]. We only mention here the (general)
random breather model in which the characteristic functions of balls with random radii are replaced by random
dilations of radially decreasing, compactly supported, bounded and positive function u:

Vω(x) =
∑
j∈Zd

u

(
x− j
ωj

)
.

Examples for u (see Fig. 2) are the smooth function:

u(x) = exp

(
− 1

1− |x|2

)
χ|x|<1,

or the hat potential:
u(x) = χ|x|<1(1− |x|).

Another application of Theorem 2.12 concerns decorrelation estimates and the spectral statistics of random
Schrödinger operators in dimension 1, cf. [25].

FIG. 2. Realizations of the standard breather potential and of a general random breather potential

Theorem 2.12 can also be applied in the context of control theory for the heat equation to show null control-
lability for the heat equation. More precisely, Theorem 2.12 can be used to give more explicit statements in the
context of results obtained in [26], cf. [23].

3. Unique continuation problem for solutions on Euclidean lattice graphs

Definition 3.1 (Discrete Laplacian on Zd). We define the discrete Laplacian on functions f : Zd → C as:

(∆f)(i) =
∑
i∼j

(f(j)− f(i)) =
∑
i∼j

f(j)− 2d · f(i),

where i ∼ j means that i is a direct neighbor of j, i.e. |i− j| = 1.

Remark 3.2 (Why is this called “Laplacian”?). If we think of (f(i))i∈Zd as evaluations of a function f : Rd → C
on the points i ∈ Zd and approximate the difference quotient (f(x + ε) − f(x))/ε with ε = 1, the minimal
coarseness possible, we find:

f ′(i+ 1/2) ≈ f(i+ 1)− f(i) and f ′(i− 1/2) ≈ f(i)− f(i− 1),

whence
f ′′(i) ≈ f ′(i+ 1/2)− f ′(i− 1/2) ≈ f(i− 1)− 2f(i) + f(i+ 1).

In dimension d, this translates to:
(∆f)(i) ≈

∑
i∼j

f(j)− 2d · f(i).
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In the following examples we consider −∆ + V where V : Zd → R.

Example 3.3 (Unique Continuation from half spaces in Zd with border parallel to an axis, see Fig. 3). Let
f : Zd → C satisfy (−∆ + V )f = 0 on Zd and f(j) = 0 for all j = (j1, ..., jd) ∈ Zd with j1 ≤ 0. Let i ∈ Zd
with i1 = 0. Then:

−
∑
j∼i

f(j) + (2d+ V (i))f(i) = 0,

but the only unknown term is f((1, i2, . . . , id)) and therefore must be zero. We see that f must be zero on the
slab {j ∈ Zd : j1 = 1}. Inductively, we find f ≡ 0 in every slab of width 1 whence f = 0 on Zd. By the very
same argument we establish unique continuation from a slab {(j1, ..., jd) ∈ Zd : j1 = k or k + 1} of width 2.

FIG. 3. Unique continuation from a half space and a double strip in dimension 2

Example 3.4 (No unique continuation from a double slab where one point has been omitted). For the one omitted
point, we can prescribe any value. Then, there is a unique continuation (by induction over infinite slabs of width
1). Therefore, we have a 1-dimensional family of possible continuations.

Example 3.5 (No unique continuation from a double slab, where n points have been omitted). We prescribe
values for the n points and find a unique continuation. Therefore, we have an n-dimensional family of possible
continuations.

Example 3.6 (No unique continuation from a half space with border in a 45◦ angle to the axes). For simplicity,
we consider the case d = 2 and V ≡ 0. Let f : Z2 → C satisfy ∆f = 0 on Z2 and f ≡ 0 on a diagonal half-space
{(j1, j2) ∈ Z2 : j1 + j2 ≤ 0}. This does not imply f ≡ 0 on Zd. In fact, as soon as a value of f on an additional
point in the anti-diagonal line {(j1, j2) : j1 + j2 = 1} is given, then the values on the whole anti-diagonal can be
recovered successively from the equations

0 =
∑
j∼i

f(j)− 4f(i),

for i in {i ∈ Z2 : (i1 +i2) = 0}, cf. Fig. 4. Inductively, we find that there is one degree of freedom in every infinite
anti-diagonal {(j1, j2) : j1 + j2 = k}k∈N and we found an infinite dimensional family of possible continuations.

This illustrates the difference to the Rd case: While Rd is invariant under rotations, Zd is not whence some
unique continuation properties only hold in certain directions. However, the next proposition shows that on Z2, the
half-spaces with border in a 45◦ angle to the axes are the only ones for which unique continuation fails.

Proposition 3.7 (Unique continuation in Z2 from half spaces in almost all directions). Let f : Z2 → C satisfy
∆f = 0 on Z2 and f ≡ 0 on a half-space {j ∈ Z2 : 〈j, ν〉 ≤ α} where ν is not parallel to (1, 1) or (−1, 1), i.e.
the border of the half-space is not in a 45◦ angle to an axis. Then f ≡ 0 on Zd.

Proof. By symmetry between the coordinate axes and reflection, we may assume ν = (1, λ) where λ ∈ [0, 1).
Similar considerations as in Example 3.6 show that u will vanish on the anti-diagonal line {j ∈ Z2 : j1 + j2 = c}
as soon as u vanishes on a set Qc1,c2 := {j ∈ Z2 : j1 ≤ c1, j2 ≤ c2} with c1 + c2 = c. Hence, it suffices to show
that for every c ∈ Z, there is (c1, c2) ∈ Z2 with c1 + c2 = c such that Qc1,c2 ⊂ {j ∈ Z2 : 〈j, ν〉 ≤ α}. This is the
case if:

c1 + λc2 ≤ α and c1 + c2 = c,
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and a possible choice is c1 = c − d(c − α)/(1 − λ)e, c2 = c − c1, where dxe denotes the least integer larger or
equal than x. �

FIG. 4. No unique continuation from a half space with border in a 45◦ angle to the axes

Example 3.8 (Inside-out continuation does not work on Zd). If (−∆ + V )f = 0 on Zd and f = 0 on a finite set
G ⊂ Zd, we do not have f = 0 on Zd. In fact, G is contained in a half-space the border of which is in a 45◦

angle to a coordinate axis and even if f vanished on the entire half space, we have seen that this cannot ensure a
unique continuation.

Example 3.9 (Outside-in continuation works on Zd). If however (−∆ + V )f = 0 on Zd and f vanishes outside
of a bounded set G, then f vanishes on a half-space (with borders parallel to the axes) and therefore must vanish
everywhere.

So far, we have encountered a couple of negative examples in which properties valid on Rd do not hold any
more on Zd. Nevertheless, outside-in unique continuation which holds on Zd is sufficient to ensure continuity of the
IDS of operators −∆ + V for ergodic V : Zd → R on the Hilbert space `2(Zd) = {f : Zd → C |

∑
i∈Zd |f(i)|2 <

∞}, cf. [27]. Henceforth, when we speak about eigenfunctions, we always mean `2-eigenfunctions. Let us explain
their argument:

Outside-in continuation implies that there are no finitely supported eigenfunctions. In fact, if this was not
true, one could take a large box which contains the support of the eigenfunction. Outside the function is 0, but by
outside-in unique continuation, it follows that the function must be 0 everywhere. By linearity, this implies that
every eigenfunction of −∆ + V |ΛL with eigenvalue E will be uniquely determined by its entries on ∂(2)ΛL, the
set of sites in Zd with distance at most 2 to the complement of ΛL. Now, continuity of the IDS at a point E ∈ R
is equivalent to the vanishing of:

lim
L→∞

1

|ΛL|
]{Eigenfunctions of −∆ + V |ΛL with eigenvalue E}, (6)

where −∆ + V |ΛL denotes the restriction of −∆ + V to {j ∈ Zd : j ∈ ΛL} with simple boundary conditions,
i.e. the finite submatrix of {〈δi, (−∆ + V )δj〉}i,j∈Zd , corresponding to i, j ∈ ΛL ∩ Zd. By our considerations on
unique continuation of eigenfunctions, the right hand side of Ineq. (6) is bounded from above by:

lim
l→∞

|∂(2)ΛL|
|ΛL|

= 0.

For the sake of completeness, we also mention that in 1981, Wegner showed Lipshitz continuity of the IDS
and boundedness of the DOS for the usual Anderson model on Zd:

(Hωf)i = (−∆f)i + ωi · fi i ∈ Zd,

in the case where the random variables ωj are distributed according to a probability measure with a bounded
density, cf. [28]. Furthermore, with considerably more effort than in [27], Craig and Simon [29] established log-
Hölder continuity of the IDS if the potential V : Zd → R is a bounded, ergodic field. This includes in particular
the Anderson model with i.i.d. Bernoulli random variables. Finally, in [13], Thm. 2.2 it is shown that in dimension
d = 1, the IDS for the Anderson model with Bernoulli random variables is not absolutely continuous, i.e. it does
indeed inherit some irregularity from the random variables.
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4. Finitely supported eigenfunctions and the IDS on percolation graphs

We will now study site percolation on Zd. Let {qj}j∈Zd be an i.i.d. collection of Bernoulli random variables
on some probability space (Ω,P) with parameter p ∈ (0, 1), i.e.:

P(qj = 1) = p and P(qj = 0) = 1− p.

We call X(ω) := {j ∈ Zd : qj = 1} ⊂ Zd the set of active sites for the configuration ω ∈ Ω. We say that
i, j ∈ X(ω) are direct neighbors if they are direct neighbors in Zd. X(ω) can be decomposed as a disjoint union
of connected components, i.e. into subsets in which all sites are mutually joined by a path in X(ω) of direct
neighbors.

The adjacency matrix Hω on X(ω) is given by:

(Hωf)i =
∑

j∈X(ω) : i∼j

fj .

For a finite box G ⊂ Zd let Hω,G denote the restriction of Hω to G ∩X(ω). Then the finite volume normalized
eigenvalue counting function on a box ΛL ⊂ Zd of side length L is defined as:

NL
ω (E) :=

]{Eigenvalues Ek of Hω,ΛL with Ek ≤ E}
|ΛL|

.

Similarly to the continuum case, one can thus define the integrated density of states N(E) as a limit of finite
volume normalized eigenvalue counting functions, at least on the points where N(E) is continuous. We present
here some results taken from [30].

Theorem 4.1 ( [30]). There is Ω′ ⊂ Ω of full measure and a distribution function N (the IDS of Hω) such that
for all ω ∈ Ω′ and all continuity points of N we have:

lim
L→∞

NL
ω (E) = N(E).

In contrast to the usual continuum Anderson model, the IDS for percolation graphs will be more irregular and
have jumps. This is due to the fact that X(ω) almost surely contains finite connected components on which the
restriction of Hω will carry `2(Zd)-eigenfunctions of finite support. Hence, if an eigenfunction is zero outside
some large box, the box might still contain a finite component of X(ω) on which we non-zero eigenfunctions can
be found. Therefore, the outside-in unique continuation principle which had been used in the Zd case to show
continuity of the IDS, fails.

Proposition 4.2 ( [30, 31]). The set of discontinuity points of N(E) is:

D = {E ∈ R : ∃ finite G ⊂ Zd and f ∈ `2(G) such that HGf = Ef},
which is an infinite subset of the algebraic numbers.

Now, one might wonder whether one can still expect some regularity of the IDS. We start with a statement on
the finite volume approximations.

Theorem 4.3 ( [30], Theorem 2.4). The normalized finite volume eigenvalue counting functions NL
ω are right

log-Hölder continuous at E ∈ D uniformly in L, i.e. for every E ∈ D there is a constant CE such that for all
ε ∈ (0, 1), L ∈ N and ω ∈ Ω we have:

NL
ω (E + ε)−NL

ω (E) ≤ CE
log(1/ε)

.

This immediately implies right log-Hölder continuity of N and is actually sufficient to ensure the convergence
of normalized finite volume eigenvalue counting functions.

Theorem 4.4 ( [30], Corollary 2.5). The IDS N is right log-Hölder continuous and the convergence limL→∞NL
ω (E) =

N(E) holds for all E ∈ R.

We conclude our comments on the regularity of the IDS of percolation Hamiltonians by examining the effect
of adding a random potential. Let

(Vωf)i = ηifi, i ∈ X(ω),

where {ηj}j∈Zd is a process of positive, i.i.d. random variables independent of the percolation {qj}j∈Zd .

Theorem 4.5 ( [30], Theorem 2.6). If the probability measure corresponding to every ηj has no atoms then the
IDS of Hω + Vω is continuous.
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Most of the results of [30] hold for more general random operators defined on `2(G) where G is a countable
amenable group (see also [32]). Furthermore, the pointwise convergence limL→∞NL

ω (E) = N(E) not only holds
for all E, but actually uniformly in E ∈ R, see [33] and the references given there. One can even give an estimate
on the approximation error in supremum norm, see [34].

5. Existence of finitely supported eigenfunctions on planar graphs

The graph Laplacian on Zd, defined in Definition 3.1, has the following natural generalization to arbitrary
graphs G = (V, E) with vertex set V and edge set E , with the only restriction of finite vertex degrees |x| <∞ for
all x ∈ V: For a function f : V → C, the (normalized) discrete Laplacian is given by:

∆Gf(x) =
1

|x|
∑
x∼y

(f(x)− f(y)),

where x ∼ y means that x, y ∈ V are connected by an edge. The normalization by the vertex degree is just a
scaling factor of the operator in the case of a regular graph (i.e., |x| constant for all x ∈ V) such as Zd. For the
rest of this note, we will use the normalized Laplacian.

A particular family of graphs are the planar graphs, that is, graphs which have a realization in R2 with
non-crossing edges (edges can be curved and do not need to be straight lines). For simplicity, we often identify
planar realizations and their underlying discrete graphs. The faces of (a realization of) a planar graph G are the
closures of the connected components of the complement R2\G. We have already seen that the planar graph Z2

with edges between nearest neighbours does not admit finitely supported eigenfunctions (the faces of this graph
are the unit squares [k, k + 1]× [l, l + 1] with k, l ∈ Z).

A particular planar graph admitting finitely supported eigenfunctions is the Kagome lattice. The Kagome
lattice has attracted attention in the physics and mathematical physics community in connection with magnetic
properties of certain crystal structures (see, e.g., [35, 36]) and due to the emergence of butterfly spectra [37–39].

The Kagome lattice K = (V, E) can be described as follows (see, e.g., [40]): Let w1 = 1 and w2 = eπi/3.
Then the vertex set V is given by the disjoint union:

V = (2Zw1 + 2Zw2) ∪ (w1 + 2Zw1 + 2Zw2) ∪ (w2 + 2Zw1 + 2Zw2).

A pair x, y ∈ V is connected by a straight edge if and only if |y − x| = 1. The faces of this graph are regular
triangles and hexagons, cf. Fig. 5.

FIG. 5. The Kagome lattice and a finitely supported eigenfunction

It is easy to see that for a given hexagon:

H = {x0, x1, . . . , x5} = {z0 + ekπi/3 | k = 0, 1, . . . , 5},
with z0 ∈ (2Z + 1)w1 + (2Z + 1)w2, the function

FH(x) :=

{
0, if x ∈ V\H ,

(−1)k, if x ∈ H ,
(7)

satisfies −∆KFH = 3/2FH . The following result tells us that, up to (infinite) linear combinations, these are the
only `2-eigenfunctions of the discrete Laplacian on the Kagome lattice:
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Proposition 5.1 ( [40] Prop. 3.1). [(a)]
(1) Let F : V → C be a finitely supported eigenfunction of ∆K . Then −∆KF = 3/2F and F is a linear

combination of finitely many eigenfunctions FH of the above type (7).
(2) Let Hi, i = 1, . . . , k be a collection of distinct, albeit not necessarily disjoint, hexagons. Then the set

FH1
, . . . , FHk is linearly independent.

(3) If g ∈ `2(V) satisfies −∆Kg = Eg, then E = 3/2.
(4) The space of `2(V)-eigenfunctions to the eigenvalue −3/2 is spanned by finitely supported eigenfunctions.

The next proposition shows that, similarly to the situation encountered in percolation, these finitely supported
eigenfunctions give rise to a jump in the IDS.

There is a Z2-action on the Kagome lattice via T : Z2 × V → V via T (γ, x) = Tγ(x) = 2γ1w1 + 2γ2w2 + x
with combinatorial fundamental domain Q = {0, w1,−w2}. Any box ΛL ⊂ Z2 gives rise to a set:

ΛQ,L :=
⋃
γ∈ΛL

Tγ(Q).

Then Proposition 5.1 has the following consequence:

Proposition 5.2 ( [40] Prop.3.3). Let K be the Kagome lattice with the Z2 action introduced above. Then the
IDS:

N(E) = lim
L→∞

1

|ΛQ,L|
]{Eigenfunctions of −∆K |ΛQ,L with eigenvalue ≤ E},

exists and has the following properties: N vanishes on (−∞, 0], is continuous on R \ {3/2} and has a jump of
size 1/3 at E = 3/2. Moreover, N is strictly monotone increasing on [0, 3/2] and N(E) = 1 for E ≥ 3/2.

For the analysis of the IDS, in particular its jumps, an alternative formula is sometimes crucial:

N(E) =
1

|Q|
E
[
TrχQ χ(−∞,E](∆K)

]
.

Here, χQ denotes the multiplication operator with the indicator function of the fundamental cell Q, whereas
χ(−∞,E](∆K) is the spectral projector. Note that their product has finite trace.

An essential difference between the Z2-lattice and the Kagome lattice can be seen via a suitable notion of
discrete curvature, defined on certain planar graphs called planar tessellations: A planar tessellation T = (V, E ,F)
is given by a realization of a planar graph with vertex set V , edge set E , and face set F , satisfying the following
properties:

(1) Any edge is a side of precisely two different faces.
(2) Any two faces are disjoint or have precisely either a vertex or a side in common.
(3) Any face f ∈ F is a polygon (i.e., homeomorphic to a closed disk) with finitely many sides, where |f |

denotes the number of sides.
(4) Every vertex v ∈ V has finite degree |v|.

We first define a curvature notion concentrated on the vertices. For this, we view the faces adjacent to a vertex
v ∈ V as being represented by regular Euclidean polygons, that is, if |f | = k its representation as regular k-gon
has interior angles (k − 2)π/k. The vertex curvature κ(v) in the vertex v ∈ V is then defined via the angle
defect/excess to 2π of the polygons around v:

2πκ(v) = 2π −
∑
f3v

|f | − 2

|f |
π = 2π

1− |v|
2

+
∑
f3v

1

|f |

 .

Unfortunately, this notion does not distinguish the Kagome lattice and the Euclidean lattice Z2, since both tessel-
lations have vanishing vertex curvature. A finer curvature notion is defined on the corners (cf. [41]). A corner of
T is a pair (v, f) ∈ V × F such that v is a vertex of the polygon f . The set of all corners of T is denoted by
C = C(T ). Then the corner curvature of the corner (v, f) ∈ C(T ) is defined as:

κ(v, f) :=
1

|v|
+

1

|f |
− 1

2
.

It is easy to see that we have:
κ(v) =

∑
f3v

κ(v, f).

While Z2 has vanishing corner curvature in all corners, the Kagome lattice has corners with positive and negative
corner curvature. There is the following general result:
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Theorem 5.3 ( [42]). Let T = (V, E ,F) be a planar tessellation with non-positive corner curvature, that is,
κ(v, f) ≤ 0 for all (v, f) ∈ C(T ). Then ∆T does not admit finitely supported eigenfunctions.

Note that Theorem 5.3 gives another proof of the fact that Z2 does not admit finitely supported eigenfunctions.

Remark 5.4. In fact, Theorem 5.3 holds for a much larger class of operators, called elliptic or nearest neighbour
operators. Furthermore, it has been generalised to arbitrary connected, locally finite planar graphs in [43] and to
so-called polygonal complexes with planar substructures in [44].

6. Compactly supported eigenfunctions on quantum graphs

In this section, we introduce quantum graphs and study properties of the IDS in the particular example of the
quantum graph associated to the Kagome lattice both in the equilateral and random setting. The results in the
equilateral setting are based on the appearance of compactly supported eigenfunctions. The main reference for this
section is [40], providing further details. We start with some relevant definitions.

Definition 6.1. A metric graph (X, `) associated to a directed graph G = (V, E) with maps ∂± : E → V describing
the direction of the edges (i.e., ∂−(e) is the source node and ∂+(e) the target node of the edge e ∈ E) consists
of disjoint intervals Ie = [0, `(e)] for each edge e ∈ E which are identified at their end points in agreement with
G (for example, 0 ∈ I(e) is identified with `(e′) ∈ Ie′ if ∂−(e) = ∂+(e′)). The vertices and edges of (X, `) are
denoted by V(X) and E(X).

Note that every metric graph (X, `) is automatically also a metric space. The (one-dimensional) volume of a
metric subgraph (X0, `) of (X, `) with a finite number of edges is defined as:

vol(X0, `) =
∑

e∈E(X0)

`(e),

and the boundary ∂X0 consists of all vertices of X0 which are adjacent to vertices in V(X)\V(X0).
Functions on a given metric graph (X, `) are functions f =

⊕
e∈E fe with fe : Ie → C, and there is a natural

Laplacian defined as follows:

∆X,`f =
⊕
e∈E

f ′′e .

A metric graph (X, `) equipped with the Laplacian ∆X,` is called a quantum graph.
The relevant function spaces C(X), L2(X), and Sobolev spaces H2,2(X) are defined in a natural way (for

details, see, e.g., [40]). Note that for

H2,2(X) 3 f =
⊕
e∈E

fe ∈
⊕
e∈E

H2,2(Ie),

the values fe(v), f ′e(v) for all e ∈ E and v ∈ {∂±(e)} are well defined. To guarantee self-adjointness of
the Laplacian, we assume a uniform positive lower bound on the edge lengths and assume appropriate vertex
conditions for the functions fe at their end-points. For simplicity, we only consider Kirchhoff vertex conditions
(other vertex conditions can be found, e.g., in [40]): For all v ∈ V , we require:

(1) fe(v) = fe′(v) for all e, e′ ∈ E adjacent to v,
(2)

∑
∂+(e)=v f

′
e(v) =

∑
∂−(e)=v f

′
e(v).

Later, when we define the IDS via an exhaustion procedure, we will also need Dirichlet conditions on certain
vertices v ∈ V , which are defined by fe(v) = 0 for all e ∈ E adjacent to v. In this survey, we restrict our
considerations to the Laplacian, but the results hold also in the more general setting of Schrödinger operators.

In the case of an equilateral quantum graph, there is a well-known relation between the spectral components of
the Laplacian ∆X,` and the discrete graph Laplacian ∆G, by associating to a function f ∈ H2,2(X) with Kirchhoff
boundary conditions the function F ∈ `2(V) via F (v) = f(v):

Proposition 6.2. (see, e.g., [45–47]) Let (X, `) with Kirchhoff Laplacian ∆X,` be a quantum graph associated to
the combinatorial graph G = (V, E) with l(e) = 1 for all e ∈ E and ∆G be the normalized discrete Laplacian.
Then we have the following correspondence between the spectra:

E ∈ σ•(∆X,`) ⇐⇒ 1− cos(
√
E) ∈ σ•(∆G),

for all E 6∈ ΣD = {(πk)2 | k = 1, 2, . . . }, where • ∈ {∅,pp,disc, ess, ac, sc,p}.
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The values in ΣD above play a special role, since the quantum graph may have eigenfunctions ∆X,`f = Ef
vanishing on all vertices (so-called Dirichlet eigenfunctions). They will appear as soon as the undirected underlying
graph G contains a cycle and must be of the form (πk)2 for some k = 1, 2, . . . . More precisely, the multiplicity
of (πk)2 is related to the global topology of the graph, as explained in [48]. Related multiplicity calculations for
quantum graphs were carried out in [49].

Note that the Kagome lattice, given in Fig. 5 as a subset of R2, can be viewed as the corresponding metric
graph (X, `) with constant side length `(e) = 1 for all e ∈ E . The map T defined earlier can be extended to
T : Z2×R2 → R2, Tγ(x) = 2γ1w1 + 2γ2w2 +x, and induces a natural Z2-action on (X, `) as a subset of R2. The
closure of a fundamental domain of this Z2-action is given in Fig. 6 and is the induced metric subgraph (Y, `) with
vertex set {0, w1, 2w1, 2w1 − w2,−w2,−2w2,−2w2 + w1}. Any box ΛL ⊂ Z2 gives rise to a metric subgraph
(ΛY,L, `), defined as:

ΛY,L :=
⋃
γ∈ΛL

Tγ(Y ).

FIG. 6. Combinatorial fundamental domain Q = {0, w1,−w2} of the Kagome lattice and the
metric subgraph Y , introduced in Section 6

Using the above spectral correspondence, it can be shown that Proposition 5.2 has the following analog in the
equilateral quantum graph on the Kagome lattice:

Proposition 6.3. Let (X, `) be the metric graph associated to the Kagome lattice K = (V, E) with `(e) = 1 for
all e ∈ E . Then the IDS:

N(E) = lim
L→∞

1

vol(ΛY,L)
]{Eigenfunctions of −∆X,` |ΛY,L with eigenvalue ≤ E},

exists, where ∆X,` |X0 is the restriction of ∆X,` to the metric subgraph (X0, `) with Dirichlet vertex conditions
on ∂X0. Furthermore, all discontinuities of N : R→ [0,∞) are:

(1) at E = (2k + 2/3)2π2, k ∈ Z, with jumps of size 1/6,
(2) at E = k2π2, k ∈ N, with jumps of size 1/2.

Moreover, N is strictly increasing on the absolutely continuous spectrum of ∆X,`, which is explicitly given
in [40, Cor. 3.4].

Remark 6.4. Note that there are two types of compactly supported eigenfunctions on a general equilateral quantum
graph (X, `) associated to a graph G = (V, E):

(1) eigenfunctions corresponding to finitely supported eigenfunctions of the discrete Laplacian ∆G,
(2) Dirichlet eigenfunctions which appear as soon as the graph G has cycles. For such a cycle of length n in G,

the corresponding cycle in the quantum graph (X, `) can be canonically identified with the interval [0, n]
where the end-points are identified, and any eigenfunction sin(kπ) on [0, n] gives rise to a corresponding
Dirichlet eigenfunction with eigenvalue k2π2. Note that if n is odd, k ∈ Z needs to be even.

As a consequence, even though there are no jumps of the IDS of ∆Zd in the discrete lattice Zd, jumps of the
IDS of ∆X,` appear in the equilateral quantum graph (X, `) associated to Zd, due to the compactly supported
eigenfunctions in (2), in dimension d ≥ 2.
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Now we introduce randomness on the edge lengths of our metric Kagome lattice (X, `). Let 0 < `min <
`max < ∞ and (ωe)e∈E be a process of i.i.d. random variables on a probability space (Ω,P) with support in
[`min, `max] and assume that every ωe has a probability density h ∈ C1(R). For every ω ∈ Ω, we consider the
metric graph (X, `ω), where `ω(e) = ωe for all e ∈ E . This induces a random family of quantum graphs, called
the random length model associated to the Kagome lattice, consisting of (X, `ω)ω∈Ω with associated Laplacians
∆X,`ω . Then the following Wegner estimate, linear in energy and volume, holds:

Theorem 6.5. Let (X, `ω)ω∈Ω be the random length model associated to the Kagome lattice K = (V, E) and
u > 1. Then there exists a constant C > 0, only depending on u, `min, `max, ‖h‖∞, ‖h′‖∞, such that, for all
intervals I ⊂ [1/u, u] and L ∈ N,

E
(
]{Eigenfunctions of −∆X,`ω |ΛY,L,ω with eigenvalue in I}

)
≤ C · |I| · |E(ΛY,L)|,

where (ΛY,L,ω, `ω) is a metric subgraph of (X, `ω) defined analogously to the definition of ΛY,L above.

A related Wegner estimate for the quantum graph associated to the lattice Zd with random edge lengths and
its application to localization was shown in [50]. The above Wegner estimate implies that randomness improves
regularity of the IDS, as the next corollary states.

Corollary 6.6. Let (X, `ω)ω∈Ω be the random length model associated to the Kagome lattice K = (V, E). Then
there is a unique function N : R → [0,∞) such that for almost every ω ∈ Ω, the IDS corresponding to the
quantum graph (X, `ω,∆X,`ω ) agrees with N . Moreover, N is continuous on R and even locally Lipschitz
continuous on (0,∞).

Remark 6.7. In fact, the result presented for the Kagome lattice holds in the much more general setting of a
random length covering model, as explained in [40], where Z2 is replaced by a (not necessarily abelian) amenable
group, acting cocompactly and isometrically on a connected, noncompact equilateral quantum graph and the boxes
ΛL ⊂ Z2 are replaced by a tempered Følner sequence.
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1. Introduction

Quasi one-dimensional structures such as nanowires, nanorods and nanoribbons are important due to wide
range of applications, particularly as photodetectors, logic devices, thermoelectric coolers, chemical and biological
sensors etc. Knowledge of the electronic properties for this class of materials is essential for practical application.

The latest theoretical and experimental results in the field of transport in low-dimensional structures have
demonstrated that by changing particular conditions and parameters of such objects, the conductivity properties
in low-dimensional materials can be drastically changed from highly conductive to that of the insulator regime.
The transport properties of low dimensional systems is of intense interest for the physics of condensed matter
and has been the subject of investigation by many physicists and mathematicians for more than 50 years [1, 2].
Recent progress raises both general academic questions and technological demands in the understanding of transport
phenomena through low-dimensional and nanosystems.

In order to elaborate an understanding in the challenging problem of transport in low-dimensional and nanosys-
tems, a theoretical model should be created. Although various methods of calculation may give reasonable results
for conductivity in some cases, they do not provide insight into the basic concepts of transport properties in these
types of systems.

There are nanoobjects, whose transport properties non-trivially depend on the temperature and diameter of
samples [3–6]. These phenomena still need more general theoretical consideration. In pure single crystal nanowires,
boundary scattering processes are believed to be dominant. Thus, at low temperatures (up to 300 K) phonon
contribution to resistivity is not crucial. One may conclude that scattering on defects determine general resistivity
properties of the system.

The aim of this work is to create and verify general model for quasi 1D systems, based on zero range potential
(ZRP) model for atomic network and its irregularities, revealing conduction dependence on temperature and
structure parameters of real quasi 1D nanoobject. As the nodal element of our model, we take the electron-surface
impurity scattering coefficient of Bloch waves.

2. Conductivity calculation

2.1. 1D model

If one of the crystal lattice axis is aligned with nanowire direction, one can treat it as a series of homogeneous
atom layers. In order to investigate properties of electrons moving longitudinally though such a nanowire, let us
use Dirac comb potential — i.e. potential of equidistant Dirac delta functions:

V̂ = βδ(x− na), n = 0,±1, . . . (1)

where β — parameter of potential, a — period of cell, x — longitudinal axis coordinate, n — number of transversal
layer of atoms.
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To enhance the 1D model, we propose to use the fact that defects of a wire are primarily concentrated in the
vicinity of the surface. The origin of such phenomenon is due to “contradiction” between the crystal-like net of
atoms inside and the cylindrical geometry of the surface. So, going to the 1D model, we transfer all action of such
surface deformation to the plane of the wire and model it by 1D ZRP posed at x0. Next, we introduce total number
of electrons also considering 3D wire geometry. Translational symmetry of the model allows us to introduce Bloch
wave basis set [9] and corresponding set up quantum scattering problem within this basis. It was shown [7] that
scattering probability for a Bloch wave for (1) on point impurity with potential γδ(x − x0) can be expressed as
follows:

W =
(
1− |b−|2

) ∣∣∣∣∣
(
b+e

ikx0 + e−ikx0
)2
γm

(b− − b+)(ih̄2k + γm) + γm (b−b+e2ikx0 + e−2ikx0)

∣∣∣∣∣
2

, (2)

where k =
√

2mE/h̄ — electron wave number, m — electron rest mass, h̄ — Planck constant, γ — impurity
strength, x0 — impurity position and b± stands for:

b± =
e±iKae−ika − 1

e±iKaeika − 1
. (3)

Here, K = K(E) is momentum energy dispersion relation.

2.2. Kolmogorov equation

Thus, in order to study conductivity of nanostructures It’s more convenient to use Kolmogorov equation as
defects scattering process prevalent for them. The Kolmogorov [8] equation is a kinetic equation which describes
evolution of a distribution function f (k, r, t) in phase space. Generally, It can be written as:

∂f

∂t
+ k̇

∂f

∂k
+ ṙ

∂f

∂r
=
∂f

∂t

∣∣∣∣
coll

, (4)

where r — particle position vector, k — particle momentum vector.
There are two factors which cause f to evolve: scattering which causes discontinuous changing of k (right side

of equation) and acceleration of the particles (left side of equation). Taking into account semi-classical equations
of motions: ṙ = v and h̄k̇ = F , and assuming electro-magnetic field with components E and H applied to a
system, equation (4) for electron moving in this field can be written as:

∂f

∂t
+ v

∂

∂r
f − e

(
E +

1

c
[v ×H]

)
∂

∂k
f = Icoll (f) , (5)

where f = f (k, r) is ensemble average nonequilibrium distribution function, Icoll (f) is a collision integral. For
scattering on static potential one may use:

Icoll (f) =
∑
k′

W
(
k,k′

) [
f
(
k′
)
− f (k)

]
, (6)

where W
(
k,k′

)
is a collision probability.

Let’s rewrite equation (5) for electrons in solid making several simplifications. First, we will assume that

the applied filed is electrostatic (H = 0). Second, we will focus on the static conductivity problem

(
∂f

∂t
= 0

)
.

Third, we will adopt homogeneous current hypothesis

(
∂f

∂r
= 0

)
. Fourth, we will assume that the deviation of the

distribution function from its equilibrium is small (f = f0 + f1, |f1| � f0). Because the equilibrium distribution
function f0 is k-symmetric, it has no impact on the collision integral.

Applying all aforementioned simplifications, one can rewrite (5) as follows:

−eE ∂f0
∂k

=
∑
k′

W
(
k,k′

) [
f1
(
k′
)
− f1 (k)

]
. (7)

For the one dimensional case (W
(
k,k′

)
= W (k,−k) = W , f1(−k) = −f1(k)), further simplification is

possible:

f1 =
1

2W
eE

∂f0
∂k

. (8)
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Solution of this equation gives us the non-equilibrium distribution function for a given external field E and
collision mechanism I (f), which in turn can be used to determine electric current (in form of electron quasiparticle
propagation studied by Drude, Sommerfeld, Bloch, Landau):

j = − e

V

∑
k

vkf, (9)

where summation is performed over qusiparticle states k, vk is group velocity vk =
1

h̄

∂εk
∂k

, V is sample volume.

For real systems, it is useful to transform sum in (9) into integral. Thus, one can find conductivity of the system
using (8), (9) and classical definition of conductivity j = σE:

σ = − e
2

πh̄

∫
1

W

∂f0
∂k

dE. (10)

The equilibrium distribution function is the Fermi-Dirac distribution function.

2.3. Evaluation of integral for low temperatures

Let’s consider integral in the following form:

I =

∞∫
0

F (E)n′f (E, T )dE, (11)

where F (E) — some function of energy, n′f (E, T ) — first derivative of the Fermi-Dirac distribution function:

nf (E, T ) =
(
e
E−µ
kBT + 1

)−1
, (12)

where µ — chemical potential, kB — Boltzmann constant. The chemical potential can be found from the normal-

ization condition for total numbers of electrons: Ne =

∫
nf (E, T )ρ(E)dE, where ρ(E) is density of states.

It’s known, that at low temperatures n′f (E, T ) has a sharp peak at E = µ. Taking this into consideration, we
replace the lower integration limit with −∞ and expand F (E) to a Taylor series at µ point. Thus, for the integral,
we have:

I =

∞∫
0

F (E)n′f (E, T )dE =

∞∑
0

F (n)(µ)

n!

∞∫
−∞

n′f (E, T )(E − µ)ndE. (13)

Next, we introduce new variable: z =
E − µ
kBT

:

I = −
∞∑
0

F (n)(µ)

n!

∞∫
−∞

ez

(ez + 1)2
(zkBT )ndz. (14)

Obviously, ez/(ez + 1)2 = 1/2(cosh(z) +1) is an even function and (zkBT )n is either odd or even depending
on number n. Thus, integral can be transformed into:

I = −F (µ)−
∞∑
1

F (2n)(µ)(kBT )2n

2n!

∞∫
0

ez

(ez + 1)2
z2ndz. (15)

Equation (15) describes how integral (11) behaves at low temperatures. The first order approximation gives us
a quadratic temperature dependence.

It can be shown using integration by parts that:

∞∫
0

ez

(ez + 1)2
z2ndz =

(
22n − 2

22n

)
ζ(2n)Γ(2n), (16)
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where Γ(n) — Gamma function, ζ(n) — Riemann zeta function:

Γ(n) =

∞∫
0

zn−1e−zdz = (n− 1)!, (17)

ζ(n) =

∞∑
m=1

1

mn
. (18)

Further, one can rewrite (16) in terms of Bernoulli numbers. It can be shown, that for integer n:

ζ(2n) = (−1)n+1(2π)2n
B2n

2(2n)!
, (19)

where Bn — n-th Bernoulli number.
Thus, combining (16), (18) and (19) one may obtain first order approximation of integral (11) for low

temperatures:

I =

∞∫
0

F (E)n′f (E, T )dE ≈ −F (µ)− F ′′(µ)(kBT )2

8
π2B2. (20)

Applying obtained expression (20) to conductivity calculation one may obtain the following expression:

σ = − e
2

πh̄

∫
1

W (E)

∂nf
∂k

dE ≈ e2

π

√
2

m

 √µ
W (µ)

+

( √
E

W (E)

)′′∣∣∣∣∣
E=µ

π2B2

8
(kBT )2

 . (21)

3. Results and discussion

In order to test the model, one has to substitute parameters according to Bi nanowire experimental data [3] and
calculate conductivity plots. Within the given model, conductivity plots were obtained (Fig. 1). For certain model
parameters σ/σ0 peak can be clearly seen. Thus, the model can exhibit behavior similar to that of real systems.
There are two different ways of model implementation: a) choose model parameters in the way that certain basic
physical quantities of real systems agrees with ones of model, b) fit model parameters to resemble experimental
resistance behavior.

a) b)

FIG. 1. Results of numerical experiments for a) conductivity and b) conductivity normalized by
values at T = 300. Model parameters for both pictures are: a = 10, β = −0.25, x0 = a/2,
γ = −0.1

The main features of this work are as follows: obtained temperature dependence of conductivity, impurity
scattering was implied as main source of electron scattering, result was obtained for Bloch waves. In previous
work [11], the expression for d. c. conductivity was obtained for Umklapp processes within memory matrix
approach. The first non-constant term of conductivity temperature expansion (21) is quadratic which agrees
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with [11]. Depending on the parameters of the model conductivity can either increase or decrease, but there is not
enough data to compare results quantitatively [13].

It’s known that for low temperatures (up to room temperatures) main contribution to resistivity is made by
defect scattering. There is the possibility to choose the 1D model parameters on base of 3D picture, linking its
values with cylindrical geometry of a wire. For a regular structure of quasi 1D nanoobject, surface irregularities
can be treated as defect which has had its position shifted with respect to the net. Considering nanoobject has
length l and diameter d, the parameters diameter dependence is as follows: β = const, γ = γ(d) ∼ πd l. One
other parameter, which depends on d and l is the full number of electrons (which is essential for Fermi energy and
chemical potential calculation): Ne = Ne(d) ∼ πd2 l/4.

The model approbation showed promising results. The next step of the research will be two-dimensional
model with cylindrical symmetry assumed. For one of important direction of a development of the theory we
would mention [10] where a model of point-like interaction between electrons with spin account and bosons was
considered.
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1. Introduction

The problem of the influence of Brownian diffusion of nanoparticles on their sedimentation remains rele-
vant [1]. Since the experiment of Robert Brown (the movement of pollen particles in a liquid drop), many
scientists have studied the behavior of particles in different types of environments. The method of nanoparticle
synthesis plays an important role in the distribution of nanoparticles’ sizes [2]. Theoretical investigation of the
sedimentation of nanoparticles is described in [3, 4], Brownian motion of nanoparticles is described in [5–7].

In this work, we discuss the effect of the nanoparticles’ diffusion on their sedimentation along the lower
boundary of the vessel bottom, called the boundary layer [8]. To find the solution of the diffusion equation, the
Newton polygon method is used – a method allowing one to find the solution of the equation with perturbed
coefficients.

2. The calculation of particles density distribution in the boundary layer

We consider the sedimentation process of spherical nanoparticles in a liquid taking into account the Brownian
diffusion between them. The equation of convective diffusion has the form:

∂f

∂t
+ v(R)

∂f

∂x
= D(R)

∂2f

∂x2
, (1)

where v(R) is the velocity of sedimentation, f is the particle distribution function, D is the diffusion coefficient,
x is the coordinate, t is the time of sedimentation.

The initial condition:
f |t=0 = f0(R)Θ(x) ,

where f0(R) is the size distribution function, Θ(x) is the coordinate distribution function (the Heaviside step
function).

The boundary conditions:
j|x=0 = 0,

j|x=L = 0, (2)

where j = v(R)f −D df

dx
is the particles’ flux density, L is the height of the vessel.

To find the solution inside the boundary layer, we transform (1) into dimensionless form. For this, we introduce
the dimensionless parameters for variables x, t and some small parameter ε:

x = Lx̄, t = T t̄, ε =
D(R)

v(R)L
,

where T =
L

v(R)
, v(R) = γR2 =

2

9

g(ρ− ρp)
µ

R2 is the velocity of sedimentation, ρ, ρp is the liquid density and

particle density, µ is the viscosity, D =
kBT

6πµR
is the diffusion coefficient, where kB is the Boltzmann constant, T

is the temperature, R is the radius of particle, g is the gravitational constant.
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Here, the value of ε is a small considering the fact that the diffusion of the particles is small: the larger the
radius of the particle, the lower its diffusion.

Then, we rewrite the equation in the new form:

ε
∂2f

∂x̄2
− ∂f

∂x̄
− ∂f

∂t̄
= 0,

and introduce a new coordinate ξ = e−λ (1− x̄), where λ is the indefinite parameter.
After all this transformation, (1) takes the form:

ε1−2λ ∂
2f

∂ξ2
+ ε−λ

∂f

∂ξ
− ε0 ∂f

∂t̄
= 0. (3)

For sewing the solution fp(ξ) inside the boundary layer with the solution f0(x̄, t̄) outside the boundary layer, the
following asymptotic equality must hold:

lim
x̄→1

f0(x̄, t̄) = lim
ξ→∞

fp(ξ). (4)

Firstly, we consider the behavior of individual members of (3) taking into account ε→ 0 for different values of λ.
For this, we use the Newton polygon.

(1) When 0 < λ < 1, the leading term of the equation has the degree −λ. In this case, the solution of (3) has
only one arbitrary constant and satisfies only one of two boundary conditions (2);

(2) When λ > 1 the leading term of the equation has the degree 1 − 2λ. In this case, the solution of (3)
has two arbitrary constants and is satisfied by two boundary conditions (2), but in this case lim

ξ→∞
fp(ξ),

does not exist for this solution. Consequently, this solution cannot be sewed with the solution outside the
boundary layer;

(3) When λ = 1 there are two leading terms with the degrees 1− 2λ and −λ which satisfy (2).

After this, we find the solution of (3) outside the boundary layer:

f0(x, t) = ARe−λR
2

Θ(x̄− t̄),

and the solution of (3) inside the boundary layer:

fp(ξ) = A+Be−ξ,

where A = f0(R)Θ(1− t̄), B =
f0(R)Θ(1− t̄)

ε−1 + 1
, λ = 1, and carry out the sewing of this solutions in accordance

with (4).
In the result, we have the final formula for the particle size distribution:

f = f0(R)Θ

(
1− tv(R)

L

)(
1 +

D(R)

D(R) + v(R)L
e−

v(R)
D(R)

(L−x)

)
. (5)

This equation allows us to see influence of diffusion localization along the lower boundary at the bottom of
the vessel. The exponential dependence of the concentration of particles on the coordinate arises in the localization
region, while in an area remote from the bottom, conventional particle sedimentation occurs. The order of the width

of the boundary layer is
D(R)

v(R)
for different particle sizes. Sedimentation velocity and diffusion are the functions

of the particles radius. In this regard, if the thickness of the boundary layer is visually observed (optically, for
example), then it makes it possible to estimate the particle sizes without taking measurements.
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A quantum random number generator (QRNG) based on the quantum nature of vacuum fluctuations allows one to obtain random bit sequences

that can be used in applications that require a high degree of randomness. In that type of quantum random generation system, optical beam

splitters with two inputs and two outputs are normally used. A comparison of Y-splitter and spatial beam splitters shows that for two types of

optical splitters, the quantum mathematical description of output signals is identical. This allows the use of fiber Y-splitters in practical QRNG

schemes. The possibility of generating true random bits was demonstrated experimentally by using quantum random number generator based

on homodyne detection.

Keywords: quantum random number generation, beam splitter, Y-splitter, vacuum fluctuations.

Received: 14 January 2017

Revised: 1 February 2017

1. Introduction

The need to generate random numbers arises in many scientific and engineering disciplines. There are many
types of random number generators with different entropy sources. Historically, two approaches for random number
generation have been developed. According to the first method, random numbers can be generated algorithmically,
but the resulting sequences in that case are pseudorandom and not suitable for applications in which a high
degree of randomness is needed, such as classical or quantum cryptography [1]. These applications require true
random numbers obtained by the second method, used indeterminate physical processes. For example, physical
random number generators can use quantum processes. All QRNGs provide the necessary physical randomness for
generated sequences that can be used in applications requiring high quality random numbers.

Existing approaches to quantum random number generation include different implementations: using separation
of radiation [2], entangled photon states [3], quantum noise of lasers [4, 5] and photon emission and detection
processes [6]. In alternative QRNG systems, quantum vacuum fluctuations are used as the entropy source. In
this work, we investigate QRNG is based on quantum vacuum fluctuations [7–9] in which classical detectors are
used, however, they can also measure quantum values. The principle of this type of QRNG is based on extracting
randomness from quantum noise that appears upon subtracting the balanced detector signals received from beam
splitter outputs. To first splitter input (Fig. 1a) a vacuum state is sent, and to other input – a coherent state from
laser. On beam splitter these two signals are mixed, then signals from outputs of beam splitter come to balanced
detector. One signal from the output of beam the splitter is subtracted from the other and the obtained signal is
quantum noise, which can be processed using a PC.

A beam splitter is a key element for quantum random number generation schemes based on vacuum fluctuations
[7–9]. Mathematical description of a beam splitter, when a strong laser signal, described by the Poisson distribution,
arrives at one of its inputs and a vacuum state arrives to other, has been obtained in our previous research [10,11]
in the operator form. Also, we obtained mathematical description for fiber Y-splitter (Fig. 1b) and this, with the
exception of phase shift, coincided with the previously-obtained expression for the beam splitter [10, 11]. Thus, as
description for beam splitter and Y-splitter are equal, we can use Y-splitter for quantum random number generation
system, based on homodyne detection.

2. Scheme and postprocessing methods

The scheme for our experimental setup is shown in Fig. 2a. During the research, a linear relationship between
the laser power and the noise level was observed, which confirms that noise has quantum nature.

Quantum noise (Fig. 2b) obtained from our system had the following characteristics: mean value of fluctuations

µ = 7 · 10−6, standard deviation σ = 0.03, asymmetry coefficient S =
µ3

σ3
= −4.38 · 10−3 (where µ3 – third

central moment of the noise distribution), kurtosis (a measure of sharpness of the random variable maximum)

K =
µ4

σ4
= −3.87 · 10−3 (where µ4 – fourth central moment of the noise distribution), probability of the most
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FIG. 1. a) Scheme of a beamsplitter with angle θ, where to the 1st splitter input a1 a coherent
state is sent, and to other input a2 – a vacuum state. b) Scheme of optical Y-splitter, where c1,
c2, c3 – input signals of 1st, 2nd and 3rd ports, respectively, d1, d2, d3 – output signals from the
splitter

FIG. 2. a) Block diagram of the experimental setup. L – laser, OI – optical isolator, A – con-
trollable attenuator, D1, D2 – detectors, EP – electronic processing system, OSC – oscilloscope;
b) Distribution of samples on noise level

likely outcome max(Pi) = 3.02 · 10−3 (where Pi – probability of the i-th realization of random discrete variable),
min-entropy Hmin = − log2(max(Pi)) = 8.27.

In our research, we used four methods to convert samples to sequences of bits:

A) If noise level in count is above 0, then we write “1”, otherwise – “0” (Fig. 3a);
B) We apply XOR to sequence, obtained by the first method (Fig. 3a);
C) We generate three bits from one sample [9] (convert initial Gaussian distribution to uniform distribution,

applying Gaussian error function, as shown in Fig. 3b);
D) We discard most significant bits after analog-to-digital conversion (Fig. 3c).

3. Randomness tests

Knowing the probability properties of a truly random sequence, we can verify how much of the generated
sequence is genuinely random. To do this, we select the appropriate statistics for each test [12] and then compare
its value for the ideal sequence and the generated sequence. If experimental sequence does not satisfy the criteria,
then it is considered to be non-random. In our research we used five tests: monobit test, twobit test, “poker” test,
autocorrelation test and runs test.

Monobit test is the simplest of all used tests. It is based on how equally frequent “0” and “1” appear in an
ideal random number generator. If we denote the number of bits in the experimental sequence as L, quantity of
“1” – n1, quantity of “0” – n0, then in this test, we can calculate next value:

X1 =
(n0 − n1)2

L
. (1)

If the value X1 exceeds a certain threshold (which depends on the confidence level of p, indicating the probability
that test will reject a good generator, in our case p = 0.01), then the generator does not pass the test. Since X1

has approximately χ2-distribution with one degree of freedom, then the number 6.63 was taken as the threshold.
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FIG. 3. Illustration of the four postprocessing methods for obtained samples: a) Illustrations of
methods A and B; b) Illustration of method C, than convert one count to three bits; c) Illustration
of method D, where most significant bits are discarding

In the twobit test, not only quantities of “0” and “1” are calculated, but also quantities of bit pairs “00”, “01”,
“10” and “11”. Numbers of this combinations we denote as n1, n0, n00, n10, n01, n11 respectively. The function
used in this test is as follows:

X2 =
4

L− 1

(
n200 + n201 + n210 + n211

)
− 2

L

(
n20 + n21

)
+ 1, (2)

which has χ2 – distribution with two degrees of freedom. Therefore, the threshold for X2 was chosen to be 9.21.
When we use the “poker” test the experimental sequence is divided into blocks with length m. This test is

based on fact that in an ideal random sequence, all bits have equal probability. If we denote ni as quantity of
m-bit blocks, which have a binary representation of i, then we can consider the next statistics function:

X3 =
2m

k

(
2m∑
i=1

n2i

)
− k, (3)

where k = L/m is the total number of m-bit blocks in the investigated sequence. Since the X3 has the distribution
χ2 with 2m− 1 degrees of freedom, for m = 4 we need to choose a threshold of 30.6.

Runs test measures the number of occurrences of identical bits series (runs) with different lengths. In an ideal

random number sequence, the average quantity of series with length i is equal li =
L− i+ 3

2i+ 2
. If we denote Bi

and Gi as numbers of single and zero runs in tested sequences with length i, then we can calculate statistics:

X4 =

n∑
i=1

(Bi − li)2

li
+

n∑
i=1

(Gi − li)2

li
, (4)

which has the distribution χ2 with 2n− 2 degrees of freedom, and we choose a threshold equal to 32.
Autocorrelation test is based on the fact that repetitive subsequences should not be in an ideal random

sequence. In this test, we calculate the number of matching bits in the original and shifted by Nshift bit sequences.
The statistics function is shown in the next formula:

X5 =
1√

L−Nshift

(
2

(
L−Nshift−1∑

i=0

XOR (bi, bi+Nshift)

)
− L+Nshift

)
, (5)

where bi – i-th bit of sequence. Since X5 has a normal distribution with zero mean and variance equal to 1, the
threshold is 2.33.

The results of randomness tests applied to sequences, which were obtained by four different post processing
techniques, are shown in Table 1. We can see that the optimal postprocessing technique for our scheme is to
discard two or three of the most significant bits.

4. Conclusion

We use Y-splitter for experimental implementation of QRNG systems based on quantum vacuum fluctuations.
In our research, we considered four postprocessing methods to convert experimental samples to bits and after
testing, we concluded that the optimal postprocessing technique for our system is to discard two or three of the
most significant bits after analog-to-digital conversion.
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TABLE 1. Results of randomness tests applied to sequences, obtained by different post processing
techniques. “+” – test passed, “–” – test failed

Generation method Method A Method B Method C
Method D. Discarding N MSB

N = 1 N = 2 N = 3 N = 4

Monobit test + + + + – + +

Twobit test – + + – – + +

“Poker” test – – + – – + +

Runs test + + – – – + +

Autocorrelation test – – – – – + +
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Grover’s algorithm is a quantum algorithm for searching specified elements in an unsorted list. It has many valuable applications. The

utilization of Grover’s algorithm, to adapt it to accelerate the works of well-known classical algorithms, is very promising, and it is one of the

fastest algorithms to solve such problems like global optimization and graph coloring. In this regard, it is very important to study the stability

of the Grover’s algorithm, to know how distortion of the circuit’s elements affects on it results. This work presents the results of the simulation

of Grover’s algorithm, research of its stability with respect to perturbations of quantum logic circuit elements and its dependencies from the

number of qubits, used in quantum circuit. Another part of this research was realized on IBM quantum processor and shows the stability of the

2-qubit Grover’s algorithm.
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1. Introduction

Quantum computing uses a special kind of superposition, which allows exponentially many logical states
simultaneously. This is a powerful feat, and no classical computer can achieve it. Quantum computer can solve
many famous problems that classical computers cannot. For example, the problem of searching in unsorted list in
classical algorithm actually reduces to sequential scan of N values, and uses on average N/2 steps. For a quantum
computer, however, we can find the marked element use

√
N steps using Grover’s algorithm [1].

The algorithm is performed on a search condition that is enclosed in a quantum oracle operator. This condition
could be equal to some exact value, or we can for example find the minimum in some array. Such problem is
relevant in searching for the optimal path on the graph [2] when it is necessary to find the shortest path between
two vertices. In the classic case, many different methods of finding the minimum [3] could be used, and Dürr
and Høyer in 1996 presented the method based on Grover’s algorithm for finding the minimum with quantum
enhancement [4].

We now describe the general stages of Grover’s algorithm. At the initial time, the system is in the zero state.
The Hadamard gate transforms the system into a state of superposition. After this transform, the followed iterative
process consists of two functions: the first – phase rotation controlled by a search condition, which is enclosed in
a quantum oracle operator; and the second – diffusion function makes a calculation of the amplitudes relative to
its average. In the literature, this function is referred to as an inversion-about-average operator [5, 6].

The number of Grover’s iterations must be strictly defined, otherwise the algorithm returns erroneous results.
This quantity was calculated through formula (1) and it is enough to reach highest probability for algorithm with
defined number of qubits n:

I =
π

4

√
2n (1)

The need to know in advance the number of values is a drawback of this algorithm - such situation in dealing
with applications is quite rare. However, in the article [7,8] an algorithm was proposed for finding suitable search
condition values that do not require an exact number of such values. Grovers algorithm is most effective with a
large amount of data.

2. Stability of multiqubit schemes

The 3-qubit Grover’s algorithm was simulated in article [9] and its stability to the effects of quantum logic
circuit elements’ perturbations was verified. Increasing perturbation values were shown to increase the probability
of detecting the wrong state, but even the 3-qubit algorithm has good stability to the effects of quantum logic
circuit element perturbations. The goal of this work was to simulate Grover’s algorithm with more than 3 qubits,
to study how doing this changes the probability of detection states and distortion impact. For example, a system
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with 11 qubits consists of 2048 states and needs 35 iterations, so this research helps one to know how the number
of qubits affects the stability of Grover’s algorithm.

The ways to affect the amplitude values of the states can be divided into two groups – light and strong
deviations [9]. A histogram for the light deviations (Fig. 1) shows that the probability of detecting the marked
state decreases with increased perturbation values.

FIG. 1. Dependencies of detection probability and perturbation values for different number of
qubits and light deviations

Correspondingly, the probability of detecting other (wrong) states increases, causing an increase in the fre-
quency erroneous results. A larger number of qubits makes the algorithm more stable because of the number of
necessary iterations that can be calculated by the formula (1) – a larger number of qubits requires a larger number
of iterations. For example, 11 qubits with light deviations has extremely little distortion for very high value of
perturbations.

Simulation of strong deviations (Fig. 2) is similar – the algorithm is more stable with a large number of qubits.

FIG. 2. Dependencies of detection probability and perturbation values for different numbers of
qubits and strong deviations

In addition, it should be noted that the values of the probabilities for large systems is close to each other when
error values increase. This is because the ideal values of the probabilities of these systems, when perturbation
values are 0 %, are very close to one and respectively to each other. The stabilities of Grover’s algorithm in these
schemes are almost equal.

3. IBM quantum experience

IBM allows researchers to gain access to their 5-qubit quantum computer called IBM Quantum Experience
(IBM QE). They use fixed-frequency superconducting transmon qubit [10] and the quantum processor itself is
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contained inside of a printed circuit board package. This package is mounted inside of a light-tight, magnetic-field
shielding can, which sits at the coldest stage at the bottom of a dilution refrigerator, contained in IBM’s Quantum
Computing lab [11].

To perform the calculations, there is the Quantum Composer – a graphical user interface where the necessary
quantum circuit can be created. Fig. 3 shows a representation of the platform with the scheme of Grover’s
algorithm for 2 qubits and marked state |11〉.

FIG. 3. Image of 5-qubit Quantum Composer and 2-qubit Grover’s algorithm. Solid line box is
a block of quantum oracle operator, and inside the dashed box - inversion-about-average operator

It is possible to run algorithms in simulation or on a real processor. Exploring the algorithm’s running on a
real quantum processor platform, its real stability with respect to circuit distortions can be seen and compared with
theoretical calculations. There is also the opportunity to personally introduce distortions in the scheme collected
by available gates and study their impact on the operation of the algorithm.

Topology of represented processor may allow the study only of the 2-qubit algorithm, so to compare the results
in Fig. 4, the simulation of perturbation for 2-qubit Grover algorithm is presented. This is a histogram of average
values for the strong and light deviation types.

FIG. 4. Theoretical research of the distortion of 2-qubit Grover’s algorithm

In an ideal 2-qubit circuit without any distortion, algorithm finds the right solution in 1 iteration in 100% of
the cases. Due to the probabilistic nature of quantum algorithms and the existence of even the slightest noise in the
circuit, which also affects the distribution of initial amplitudes, such a high proportion of correct answer detection
is greatly reduced in the real computer. The algorithm was run by 8192 shots, and the results of every shot were
considered to build a Fig. 5 – histogram of probability of detecting quantum states on the real quantum processor
IBM.

The probability of detecting the correct state has decreased to 81.8 %. For theoretical simulation results in
Fig. 4, this value corresponds to perturbations of the initial state amplitudes of about 80–85 %. Based on the fact
that there is not only the distortion introduced by deviation of initial amplitudes, but other perturbations in the
circuit, it can be concluded that this kind of deviation does not exceed 85 %.
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FIG. 5. Results for Grover’s algorithm that have been computed by real quantum processor

4. Conclusion

By experimentation using the IBM quantum processor, computation of Grover’s algorithm has been reviewed
and compared with the theoretical results for a 2-qubit circuit. Theoretical simulation helps one to know how
the number of qubits affects the stability of Grover’s algorithm. It was shown that larger number of qubits and
iterations makes the algorithm more stable. Another useful observation obtained from the results, is that stability of
Grover’s algorithm for schemes with large number of qubits is very similar. Thus, we can assume the stability of
the algorithm on a larger number of qubits, which couldn’t be calculated due to the insufficient computing power
of classical computers.
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statements of problems with cylindrical symmetry for the integro-differential Kolmogorov equation are formulated: the dynamic Cauchy
problem and two stationary boundary regime ones. The first is for an empty cylinder with scattering of the conduction electrons on walls, the
second takes into account scattering on defects inside the wire. The integro-differential equations are transformed to integral ones and solved
iteratively. There are two types of expansions with the leading terms in the right and left sides. The iteration series is constructed and its
convergence studied.

Keywords: Kolmogorov kinetic equation, N-fold series, Bloch electrons, electrical resistivity, nanowires.

Received: 14 January 2017

Revised: 2 February 2017

1. Introduction

We consider a problem of a solid nanowires conductivity, which demonstrates an intriguing dependence on
temperature and wire diameter that is fundamentally different from its bulk counterpart (e.g. for (Bi) see [1–3]).
Conductivity is a non-equilibrium phenomenon, therefore we will use a kinetic description of charge carriers,
following the idea of Bloch electrons as quasiclassical particles [4]. Having in mind the key element of the theory,
a Bloch wave scattering problem [9], the distribution function (DF) f is interpreted as either a density number of
electrons or probability density in phase space Γ with continuous wavenumbers (velocities) approximation.

There are few parameters, typical for electrons in solids, those are:

1. de Broglie wavelength λ = h/p;
2. v – typical velocity, e.g. one that enters Fermi–Dirac distribution function (FDF) as parameter;
3. τr – transport relaxation time;
4. mean free path: l = vτr.

It is convenient to use dimensionless variables in the phase space Γ. In the next sections, we will imply that
the position coordinates are measured in free path l units, while the velocity components are measured in units
of v. One of aims of such description may be evaluation of correction to ballistic formula, or, more generally, to
reproduce the Landauer regime [4].

The main motivation of this study is to link the conductivity parameters with temperature, that is achieved
by a statement of problem formulation in such form, which includes the FDF distribution as an initial condition
or a boundary one. A statement of the problem naturally implies that the conductor geometry is cylindrical for
nanowires or other interesting cases, for example a point contact for tunnel microscopy.

For the distribution function, we take the integro-differential Kolmogorov equation [5] that was applied in [7]
to the LIDAR problem, in [6] to the neutrons and to X-rays scattering [8]. Its form is presented in Sec. 2, where
the collision terms are specified.

As the main mathematical tool of the basic equation solution, we derive an expansion in N -fold scattering
series of the Bloch electron distribution function in a conducting domain. We also present a transition to integral
equations and compact formulas for the distribution function, in particular, for the first and second iterations in
this expansion. We consider a nanowire as a cylindrical waveguide via the choice of the domain geometry and
reflective scattering by the walls.

In the Sec. 3, we describe the method of solution via the iterative scheme for the basic integro-differential
equation, using the characteristic variables for the differential part, that allows us to transform the equation to an
integral one. This problem admits studying transition regimes of switching and pulses of current.

In Sec. 4, we simplify the problem, by switching to the stationary case, which needs different characteristic
variables to transform the differential part. We also formulate two problems, one for an empty cylinder with
reflecting wall for the case in which the scattering inside the wire is much smaller than at boundary (Subsec. 4.2).
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The second problem is closer to the normal temperature regime, when scatterers (e.g. phonons) fill the volume
homogenously (Subsec. 4.3). To solve the problem, we expand the DF in series by number of collisions and derive
the operator that links the neighboring terms (Subsec 4.5). In this problem, we choose the leading FDF term in the
differential part as in [4] which results in the Fredholm equation for the next (first) term for the expansion.

Sec. 5 is devoted to the general iterative construction for the case of ε = 0, specified to 1-fold and two-fold
scattering solutions. Its explicit form allows one to evaluate the averaged values that give the formula for a current
through a wire. The paper is concluded by a series convergence theorem at some conditions, that may permit one
to estimate the number of terms and error of the corresponding calculation (Sec. 6).

2. Problem formulation

2.1. Kinetic equation and boundary conditions

Let us define the collision integral by the sum of losses by scattering with eventual account of absorption:

I− = −f(~r,~v)

∫
σ(~r,~v → ~v′)d~v′ = −σt(~r)f, (1)

and the return term:

I+ =

∫
σ(~r,~v′ → ~v)f(~r,~v′)d~v′, (2)

so that Kolmogorov kinetic equation for Bloch electron in the phase space {~r,~v} ∈ Γ under action of electric
field ~E, directed along z, have the form:

∂f

∂t
+

e

m
E
∂f

∂vz
+ ~v · ∇f = −σt(z)f + I+, (3)

where f(t, ~r,~v) is the probability density function over phase space {~r,~v} ∈ Γ, ~v = (v sin θ cosφ, v sin θ sinφ,
v cos θ) and σt(z), σ(~r,~v′ → ~v) = σ(γ, z) are total and differential cross section densities per unit volume of a
medium. In spherical coordinates of incident θ, φ and scattered θ′, φ′ particles the scattering angle is characterized
as follows:

cos γ = cos θ cos θ′ + sin θ sin θ′ cos(φ− φ′); (4)

for elastic scattering (v = v′). We will discuss two problems: initial and boundary regime ones.
Initial problem. The function f(t, ~r,~v) is used as a distribution (generalized function) defined by action on

the Schwartz space ψ(~r, v, θ, φ) ∈ S, via continuous linear functional (f, ψ) ∈ R. The initial condition for (3) is
also represented by a distribution. For example, for an initiation point with fixed velocity, we take:

f(0, ~r, v, θ, φ) = V δ(~r)δ(θ), (5)

with a constant V as normalization factor. This means that we built a solution for the probability density as a weak
limit (when t→ 0) to the δ-function at t = 0. The distribution δ(θ) is chosen as:

(δ(θ), ψ(~r, v, θ, φ)) =

2π∫
0

ψ(~r, v, 0, φ)dφ, (6)

ψ ∈ S, and, in a conventional mode, δ(~r) = δ(x)δ(y)δ(z).
Boundary problem may be used when a conductor is in electric contact with a metal, that is characterized by

some given FDF:
f(t, x, y, 0, ~v) = fF (x, y,~v). (7)

2.2. Distribution averaging. Electric current as number of particles rate

This is derived in direct applications as an integral by space variables which enter the solution as parameters,
used as a receiver (anode) geometry description. Thus, we are concerned with:

J(∆, t) =

θ1∫
θ0

(f(t, ~r, v, θ, φ), ψ)dθ. (8)

The action of the distribution f on S in the case of segmented continuous functions implies the integration with
respect to φ, x, y, z. The applications relate to observations (measurements) as the result of averaging procedure,
defined by (8). The expression (8) defines number of particles within a finite domain (∆) of a measurement
apparatus and having velocity direction between θ0 and θ1 restricted by aperture related to the apparatus window
direction.
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Our particular aim is the evaluation of number of particles per unit time which enter the round area of radius
ρ0 laying in the plane z = zc (receiver) with center in x = y = 0 and having velocity vectors inclined to z-axis
within the angle interval θ ∈ [0, θ0]. Here, an aperture angle θ0, restricts possible velocities of particles directions.
In the sample case we take here, the receiver domain ∆ has cylindrical symmetry and for the initial direction
along z, the function ψ does not depend on θ, φ, so it is defined as zero outside the receiver, and ψ(x, y, z) = 1
for internal points of the domain x2 + y2 ≤ ρ2

0, z0 ≤ z ≤ z0 + ∆t| cos θ| and zero outside, being z0 the coordinate
of anode interface, ∆t – reaction time; for instant reaction:

I(t) = e lim
∆t→0

1

∆t

ρ0∫
0

θ0∫
0

2π∫
0

vz(f(t, ρ, z, θ, φ), ψ(x, y, z)) sin θdφdθdρ. (9)

Similar geometry was used in [8] for application to the problem of X-ray scattering.

3. Method of solution. N-fold scattering expansion

3.1. Cylindrical coordinates

A solution method depends on the conductor geometry and problem symmetry, that in our case of nanowires
we have chosen as cylindrical one. Let the scattering cross section depend only on ρ and γ. For such a problem,

we take (3) in cylindric coordinates neglecting
∂f

∂φ
term, having:

Lf =
∂f

∂t
+ ε

∂f

∂vz
+ vz

∂f

∂z
+ vρ

∂f

∂ρ
= −σt(ρ)f +

π∫
0

σ(γ, ρ)fdγ, (10)

with ε =
e

m
E, cosγ = (~v,~v′)/v2.

For the first (Cauchy) problem, we take an initial condition, if the external field E is switched on at t = 0:

f(0, ρ, vz, vρ) = fF (~v)θ(ρ0 − ρ), (11)

where fF is the FDF, θ – step (Heaviside) distribution.
A solution is searched as a N -fold scattering expansion:

f = f0 + f1 + f2 + .... (12)

We choose for the leading term f0 the equation:

Lf0 =
∂f0

∂t
+ ε

∂f0

∂vz
+ vz

∂f0

∂z
+ vρ

∂f0

∂ρ
= −σt(ρ)f0, (13)

which accounts only for losses, and initial condition:

f0(0, ~ρ, vz, vρ) = fF (~v)θ(ρ0 − ρ). (14)

The general approach for solution to the kinetic equation uses the transition to characteristic variables. Let us
change variables in (13), putting t′ = t, v′ρ = vρ, and

v′z = vz + ε(z − t)− v2
z/2, (15a)

ρ′ = ρ− vρt, (15b)

z′ = −εz + v2
z/2. (15c)

Equation (13) is transformed as:
∂f0

∂t′
= −σt(ρ′ + v′ρt

′)f0, (16)

which is directly integrated including arbitrary functional parameter G:

f0 = G(~r′, ~v′) exp

− t′∫
0

σt(ρ
′ + v′ρτ)dτ

 . (17)

It is useful to introduce a function Q via:

Q(t, ρ, vρ) = exp

− t∫
0

σt(ρ+ vρτ)dτ

 . (18)
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Going back to the original variables results in:

f0 = G
(
−εz + v2

z/2, ρ− vρt, vz + ε(z − t)− v2
z/2, vρ

)
exp

[
−
∫ t

0

σt(ρ− vρ(t− τ))dτ

]
. (19)

At t = 0,

f0 = G
(
−εz + v2

z/2, ρ, vz + εz − v2
z/2, vρ

)
. (20)

The function G is found from initial conditions (14):

G
(
−εz + v2

z/2, ρ, vz + εz − v2
z/2, vρ

)
= fF (~v)θ (ρ0 − ρ) . (21)

3.2. Iterations construction

For n ≥ 0, the expansion is defined by:

dfn+1

dt′
= −σtfn+1 +

π∫
0

σ(γ, ρ)fndγ, (22)

n = 0, 1, ..., with zero initial conditions for n > 0:

fn
∣∣
t=0

= 0. (23)

Transforming (22) by (15) and plugging its inverse:

vz = v′z + z′ + εt′, (24a)

ρ = ρ′ + v′ρt
′, (24b)

z = ε−1
(
−z′ + (v′z + z′ + εt′)2/2

)
, (24c)

t = t′, (24d)

into the r.h.s. of (22) yields:

∂fn+1

∂t′
= −σt

(
ρ′ + v′ρt

′) fn+1

+

π∫
0

σ
(
γ, ρ′ + v′ρt

′) fn(t′, ε−1
(
−z′ + (v′z + z′ + εt′)2/2

)
, ρ′ + vρt

′, v′z + z′ + εt′, v′ρ

)
dγ. (25)

To have a more compact form, we define fn+1 = Qf̂n+1, which gives:

df̂n+1

dt′
= Q−1

π∫
0

σ
(
γ, ρ′ + v′ρt

′) fn(t′, ε−1
(
−z′ + (v′z + z′ + εt′)2/2

)
, ρ′ + vρt

′, v′z + z′ + εt′, v′ρ

)
dγ, (26)

where the definition of Q(t′, ρ′, vρ′) by (18) and the relation
∂Q

∂t′
= −σtQ are used. After integration, one has:

f̂n+1 = Q−1fn+1 =

t′∫
0

exp

 τ∫
0

σt(ρ
′ + v′ρτ

′)dτ ′

 π∫
0

σ
(
γ, ρ′ + v′ρτ

)
fn

(
τ, ε−1

(
−z′ + (v′z + z′ + ετ)2/2

)
, ρ′ + vρτ, v

′
z + z′ + ετ, v′ρ

)
dγdτ. (27)

In the original variables, it reads as:

fn+1 = Q

t∫
0

exp

 τ∫
0

σt (ρ− vρ(t− τ ′)) dτ ′
 π∫

0

σ (γ, ρ− vρ(t− τ))

fn

(
τ, ε−1

(
εz − v2

z/2 + (vz − ε(t− τ))2/2
)
, ρ− vρ(t− τ), vz − ε(t− τ), vρ

)
dγdτ. (28)
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4. Stationary case

4.1. Boundary regime problem

For the next topic, boundary regime problem, we study the stationary kinetic equation in cylindrical coordi-
nates:

vz
∂f

∂z
+ vρ

∂f

∂ρ
+ ε

∂f

∂vz
= −σt(~ρ)f +

∫
σ(~ρ,~v′, ~v)f(~ρ,~v′)d~v′, (29)

where
e

m
E = ε, f(z, ρ,~v) is a DF over phase space {~ρ,~v} ∈ Γ, ~v = (vz, vρ), ~ρ = (z, ρ) and σt(z), σ(~ρ,~v′, ~v) are

total and differential cross section densities per unit volume. The function f(~ρ,~v) is used as a distribution defined
by action on the Schwartz space ψ(~ρ,~v) ∈ S, via continuous linear functional (f, ψ) ∈ R. The boundary conditions
for (29) is represented by a distribution, this paper choice is restricted by:

f(0, ρ, vz, vρ) = fF (~v)θ(ρ0 − ρ), (30)

where fF =

(
exp

[
H −HF

kBT

]
+ 1

)−1

is the Fermi–Dirac electron DF. The energy H = mv2/2 for quasi free

Bloch electron, HF – Fermi energy, T – temperature. This means that we have constructed a solution for the
probability density with the boundary conditions as a weak limit (when z → 0).

4.2. Stationary problem solution for empty cylinder with reflecting wall

Let us change the variables in (29) as:

z′ = z − ερ+ vρvz, (31a)

ρ′ = ερ− vρvz, (31b)

v′z = v2
z − 2εz. (31c)

The inverse transformation reads as:

z = z′ + ρ′, (32a)

ρ = ε−1
(
ρ′ + vρ

√
v′z + 2ε(z′ + ρ′)

)
, (32b)

vz =
√
v′z + 2ε(z′ + ρ′). (32c)

Hence, for a homogeneous along z elastic scattering at the cylinder wall ρ = ρ0, with the differential cross-section:

σ(ρ, vz, vρ, ...) = sδ(ρ− ρ0)δ(vz − v′z)δ(vρ + v′ρ), (33)

as a function of the parameter vρ, simplifies the collision integral, giving the equation:

Lf(z, ρ0, vz, vρ) = ε
∂f

∂vz
+ vz

∂f

∂z
+ vρ

∂f

∂ρ
=

− sδ(ρ− ρ0)f +

∫
sδ(ρ− ρ0)δ(vz − v′z)δ(vρ + v′ρ)f(~ρ,~v′)d~v′ =

sδ(ρ− ρ0) [f(z, ρ0, vz,−vρ)− f(z, ρ0, vz, vρ)] . (34)

Taking the equation at the opposite vρ point and combining the results, yields:

L
[
f(z, ρ0, vz, vρ) + f(z, ρ0, vz,−vρ)

]
= Lf+ = 0,

L
[
f(z, ρ0, vz, vρ)− f(z, ρ0, vz, vρ)

]
= Lf− =

2sδ(ρ− ρ0)
[
f(z, ρ0, vz,−vρ)− f(z, ρ0, vz, vρ)

]
= 2sδ(ρ− ρ0)f−.

(35)

Transition to the variables (31) first gives:
∂f+

∂z′
= 0, (36)

and, secondly:

∂f−

∂z′
= 2s

δ
(
ε−1(ρ′ + vρ

√
v′z + 2ε(z′ + ρ′))− ρ0

)
√
v′z + 2ε(z′ + ρ′)

f−
(
z′ + ρ′, ρ0,

√
v′z + 2ε(z′ + ρ′), vρ

)
. (37)

The direct integration results in the first case as:

f+ = Φ+(ρ′, v′z, vρ), (38)
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while the second one yields in:

f− =

z′∫
0

sδ
(
ε−1(ρ′ + vρ

√
v′z + 2ε(τ + ρ′))− ρ0

)
√
v′z + 2ε(τ + ρ′)

f−
(
z′ + ρ′, ρ0,

√
v′z + 2ε(τ + ρ′), vρ

)
dτ + Φ−(ρ′, v′z, v

′
ρ).

(39)

Solving the equation:
ρ′ + vρ

√
v′z + 2ε(τ + ρ′)− ερ0 = 0

with respect to τ , we obtain:

τ0 = z − ερ+ vρvz +
ε

2

{
(ρ0 − ρ)

vρ

}2

− vz
(ρ0 − ρ)

vρ
,

which defines the only zero value of the δ-function argument. We plug it into (40), using δ(f(τ)) =
δ(τ − τ0)

|f ′(τ0)|
,

while:
d

dτ

[
ε−1

(
ρ′ + vρ

√
v′z + 2ε(τ + ρ′)

)
− ρ0

]
=

vρ√
v′z + 2ε(τ + ρ′)

,

and return to original variables by (32):

f− =

z′∫
0

sδ
(
ε−1

(
ρ′ + vρ

√
v′z + 2ε(τ + ρ′)

)
− ρ0

)
√
v′z + 2ε(τ + ρ′)

f−
(
z′ + ρ′, ρ0,

√
v′z + 2ε(τ + ρ′), vρ

)
dτ

=


s

vρ
f−
(
z, ρ0,

ερ0 − ερ+ vρvz
vρ

, vρ

)
, if τ0 ∈ [0, z − ερ+ vρvz]

0, otherwise.
(40)

We introduce t̂ =
ρ0 − ρ
vρ

, then, inside the interval τ0 ∈ [0, z − ερ+ vρvz], we write:

f− (z, ρ, vz, vρ) =
s

vρ
f−
(
z, ρ0, vz + εt̂, vρ

)
, (41)

and
τ0 = z − ερ+ vρvz +

ε

2
t̂2 − vz t̂.

Its border values are:
τ0 = z − ερ+ vρvz +

ε

2
t̂2 − vz t̂ = z − ερ+ vρvz,

and
τ0 = z − ερ+ vρvz +

ε

2
t̂2 − vz t̂ = 0.

The first one gives the condition:
ε

2
t̂2 − vz t̂ = 0,

which is equivalent to either relation: t̂ = 0, that fix the point

ρ = ρ0,

or defines a hyperbolic curve in velocity space for each ρ
ε

2

ρ0 − ρ
vρ

− vz = 0.

The second one also defines the curve:

vz =
z − ερ+

ε

2
t̂2

t̂− vρ
. (42)

Both curves determine the integration domain for a mean value of DF in velocity subspace evaluation as in Sec. 2.3.
The symmetry of the boundary regime with respect to reflection vρ → −vρ yields:

f−(0, ρ, vz, vρ) = 0, (43)
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while (30) gives:
f+(z, ρ, vz, vρ) = Φ+

(
ερ− vρvz, v2

z − 2εz, vρ
)

= 2fF (~v)θ(ρ0 − ρ).

Taking the functional equation (40) at the point z = 0, at τ0 ∈ [0, z − ερ+ vρvz], the condition (45) reads:

f− (0, ρ, vz, vρ) =
s

vρ
f−
(
0, ρ0, vz + εt̂, vρ

)
= 0. (44)

The final step gives the DF:
f = (f− + f+)/2. (45)

4.3. Stationary problem for cylinder filled with scatterers

In this section, we suppose that the scattering inside the wire admits homogeneous distribution along z
(l� λB), looking for the further simplification. Let f(ρ, vz, vρ) be a distribution function for Bloch electrons, that
solves the equation (cf. (29)):

ε
∂f

∂vz
+ vρ

∂f

∂ρ
= −σt(~ρ)f +

∫
σ(~ρ,~v′, ~v)f(~ρ,~v′)d~v′. (46)

Adding to the expression (33) the term that model elastic scattering with a given dependence on the only scattering
angle inside the cylinder, we have:

σ(ρ, vz, vρ, ...) = sδ(ρ− ρ0)δ(vz − v′z)δ(vρ + v′ρ) + σ0(γ)δ(v − v′)θ(ρ− ρ0). (47)

Simplifying the model by σ0(γ) = σ0 and plugging (47) in (29) gives:

ε
∂f

∂vz
+ vρ

∂f

∂ρ
= −

[
sδ(ρ− ρ0) + σ0θ(ρ− ρ0)

]
f(ρ, vz, vρ)−

sδ(ρ− ρ0)

∫
δ(vz − v′z)δ(vρ + vρ′)f(ρ, v′z, v

′
ρ)dv

′
zdv
′
ρ+

σ0θ(ρ0 − ρ)
[
f(ρ, vz, vρ) +

∫
δ(v2 − v′2)f(ρ, v′z, v

′
ρ)dv

′
zdv
′
ρ

]
. (48)

After integration, in collision terms with δ(f(τ)) =
∑
j

δ(τ − τj)
|f ′(τj)|

account, we write:

ε
∂f

∂vz
+ vρ

∂f

∂ρ
= sδ(ρ− ρ0)

[
f(ρ, vz, vρ)− f(ρ, vz,−vρ)

]
+

σ0θ(ρ0 − ρ)

f(ρ, vz, vρ) +

∫
f(ρ, v′z+, v

′
ρ) + f(ρ, v′z−, v

′
ρ)

2
∣∣∣√v2

ρ + v2
z − v

′2
ρ

∣∣∣ dv′ρ

 , (49)

where:

v′z± = ±
√
v2
ρ + v2

z − v
′2
ρ . (50)

For this case, the characteristic variables are defined by the direct transform:

ρ′ = ρ/vρ, v′z = vz − ερ/vρ, (51)

and the inverse one as:
ρ = ρ′vρ, vz = v′z + ερ′. (52)

This gives:

∂f

∂ρ′
= sδ(ρ′vρ − ρ0)

[
f(ρ′vρ, v

′
z + ερ′, vρ)− f(ρ′vρ, v

′
z + ερ′,−vρ)

]
+

σ0θ(ρ0 − ρ′vρ)

f(ρ′vρ, v
′
z + ερ′, vρ) +

∫
f(ρ′vρ, v

′
z+, v

′
ρ) + f(ρ′vρ, v

′
z−, v

′
ρ)

2
∣∣∣√v2

ρ + v2
z − v

′2
ρ

∣∣∣ dv′ρ

 , (53)

where now:

v′z± = ±
√
v2
ρ + (v′z + ερ′)2 − v′2

ρ . (54)
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Integrating, we arrive at the integral equation:

f(ρ′, v′z, vρ) = s

ρ′∫
0

δ(rvρ − ρ0)
[
f(rvρ, v

′
z + εr, vρ)− f(rvρ, v

′
z + εr,−vρ)

]
dr+

σ0

ρ′∫
0

θ(rvρ − ρ0)

f(rvρ, v
′
z + εr, vρ) +

∫
f(rvρ, v

′
z+, v

′
ρ) + f(rvρ, v

′
z−, v

′
ρ)

2
∣∣∣√v2

ρ + (v′z + εr)2 − v′2
ρ

∣∣∣ dv′ρ

 dr. (55)

Now

v′z± = ±
√
v2
ρ + (vz − ερ/vρ + εr)2 − v′2

ρ . (56)

In primary variables, it is:

f(ρ, vz, vρ) = s

ρ/vρ∫
0

δ(rvρ − ρ0)
[
f(rvρ, vz − ε(ρ/vρ − r), vρ)− f(rvρ, vz − ε(ρ/vρ − r),−vρ)

]
dr+

σ0

ρ/vρ∫
0

θ(ρ0 − rvρ)
∫

f(rvρ, v
′
z+, v

′
ρ) + f(rvρ, v

′
z−, v

′
ρ)

2
∣∣∣√v2

ρ + (vz − ερ/vρ + εr)2 − v′2
ρ

∣∣∣dv′ρdr. (57)

Changing the variable of integration as rvρ = t, vρ > 0, yields:

f(ρ, vz, vρ) =

s

vρ

ρ∫
0

δ(t− ρ0)

[
f

(
t, vz −

ε

vρ
(ρ− t), vρ

)
− f

(
t, vz −

ε

vρ
(ρ− t),−vρ

)]
dt+

σ0

vρ

ρ∫
0

θ(ρ0 − t)
∫

f(t, v′z+, v
′
ρ) + f(t, v′z−, v

′
ρ)

2
∣∣∣√v2

ρ + (vz + ε t−ρvρ )2 − v′2
ρ

∣∣∣dv′ρdt =


σ0

2vρ

ρ∫
0

∫
f(t, v′z+, v

′
ρ) + f(t, v′z−, v

′
ρ)∣∣∣∣∣

√
v2
ρ +

(
vz + ε t−ρvρ

)2

− v′2
ρ

∣∣∣∣∣
dv′ρdt, if ρ < ρ0,

s

2

[
f(ρ0, vz, vρ)− f(ρ0, vz,−vρ)

]
, if ρ = ρ0,

(58)

with vz+ under square root.

4.4. Alternative expansion for stationary case

Neglecting the longitudinal inhomogeneity (the second term) in (34) let us study it as the basic equation.
The structure of the integro-differential equation and physical sense of its terms in conditions of constant current
suggest an alternative expansion with the leading term in the l.h.s. [4]. A solution is searched as an expansion
(12), but we choose for the link between f0 and f1, the equation:

Lf0 = ε
∂f0

∂vz
+ vρ

∂f0

∂ρ
= −σtf1 +

∫
σ(~ρ,~v′, ~v)f1(~ρ,~v′)d~v, (59)

taking the FDF distribution for f0 inside the cylinder of radius ρ0:

f0(ρ, vz, vρ) = fF (vz, vρ)θ(ρ0 − ρ). (60)

Differentiating in the l.h.s., and switching to angle variables in collision integral as in (13), one has:

ε
∂fF (vz, vρ)

∂vz
θ(ρ0 − ρ) + vρfF (vz, vρ)δ(ρ− ρ0) = −σtf1 +

π∫
0

σ(~ρ, γ)f1(~ρ,~v′)dγ. (61)

Equation (61) is the Fredholm II integral equation with continuous kernel for the function f1. The theory of such
equations guarantee the existence and methods of its solution outside the integral operator spectrum, which depends
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on details of the kernel σ(~ρ, γ) behavior and needs special investigation after the kernel (cross-section) is specified
for given material.

5. Approximate solutions

5.1. N -fold iteration (ε = 0)

In this section, we consider the problem of zero field transport for conductors contact pulse current excitations
as a Cauchy problem. Let us return to the spherical coordinates for the basic equation (3). Integration and
transformation yields:

fn+1(x, y, z, θ, φ) =

t∫
0

Q(τ, z, θ)

π∫
0

2π∫
0

σ(cos γ, z − τ cos θ)

fn

(
t− τ, x− τ sin θ cosφ, y − τ sin θ sinφ, z − τ cos θ, θ′, φ′

)
sin θ′dθ′dφ′dτ, (62)

where

Q(t, z, θ) = exp

− t∫
0

σt(z − τ cos θ)

 dτ. (63)

This expression defines the recurrence operator:

fn+1 = Knfn, (64)

the form of which determines the properties of approximate solutions and convergence of the multiple scattering
series (12). The basic equation for f0 is integrated as:

f0 = G(~r,~v) exp

− t∫
0

σt(z
′)dτ

 . (65)

The functional parameter G is found from initial conditions (see (5)), modeling a point pulse contact:

f0(0, ~r, θ, φ) = V δ(x)δ(y)δ(z)δ(θ), (66)

that results in:
f0(t, ~r, θ, φ) = V δ(z − t)δ(x)δ(y)δ(θ)Q(t, z, θ). (67)

For the first iteration, f1 one obtains from (62):

f1 = V

t∫
0

Q(τ, z, θ)E(t− τ, z − τ cos θ, 0)

σ(cos θ, z − τ cos θ)δ(x− τ cos θ − (t− τ))δ(y − τ sin θ sinφ)δ(z − τ sin θ cosφ)dτ. (68)

Similar expressions are obtained and interpreted in the case of N -fold scattering terms, the two-fold one is presented
in the following sections.

5.2. One-fold scattering for a point receiver

As mentioned above, the integrand in (68) is considered as distributions on Schwartz space S of functions
x, y, z which depend on φ, θ, τ as parameters. For example, f1 acts on an element ψ(~r) ∈ S as:

(
f1(t, ~r, θ, φ), ψ

)
= V

2π∫
0

t∫
0

Q(τ, τ cos θ + t− τ, θ)E(t− τ, t− τ, 0)

σ(cos θ, τ cos θ + t− τ)ψ(τ sin θ cosφ, τ sin θ sinφ, τ cos θ + t− τ)dτdφ, (69)

where ψ describes a receiver. It is determined in Sec. (2.2) as ψ(~r) = 1 at:

x2 + y2 ≤ ρ2
0, z0 ≤ z ≤ z0 + ∆t| cos θ|

and zero outside, being z0 the boundary coordinate of the cylindrical contact.
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From the definition (8) for the forward scattering and aperture angle θ0 we have:

J1(t) =

θ0∫
0

(f1, ψ) sin θdθ. (70)

Therefore, we get for (68) when going to the intensity of a point receiver that we do as the limit:

I1p(t, 0, 0, z0) = − lim
∆t→0

lim
ρ0→0

z0+cos θ0∆t∫
z0

2π∫
0

ρ0∫
0

θ0∫
0

t∫
0

Q(τ, z0, θ)

∫
σ(cos θ cos θ′, z − τ cos θ)

f0(t− τ, x− τ sin θ cosφ, y − τ sin θ sinφ, z − τ cos θ, θ) sin θ′dθ′dτdθdρdφdz, (71)

or, plugging f0, one has:

I1p(t) = − lim
∆t→0

lim
ρ0→0

1

∆t

ρ0∫
0

θ0∫
0

t∫
0

z0+cos θ0∆t∫
z0

Q(τ, z, θ0)Q(t− τ, z − τ cos θ0, θ0)

∫
σ(cos θ0 cos θ′, z − τ cos θ0)ψ(τ sin θ0 cosφ, τ sin θ0 sinφ, τ cos θ0) sin θ′dθ′dτdφdρdz. (72)

The area of integration lies between the horizontal lines z = z0, z0 + ∆z and inclined lines z = cos θ0 + a
and z = cos θ0 + b, where a, b are boundaries of domain, filled with scatterers under consideration: e.g. a
“cloud” of defects. The vertical line marks a current pulse arrival time z = t. In the case of a fixed angle θ0,
z′ = τ(cos θ0 − 1) + t, τ = (cos θ0 − 1)−1(z′ − t), hence the argument of the δ-function is:

z0 + t− τ − z′ = z0 + t− (cos θ0 − 1)−1(z′ − t)− z′ = z0 − bt+ az′ = a

(
z′ − b

a

)
t+

z0

a
,

where

a = −1− (cos θ0 − 1)−1 =
cos θ0

1− cos θ0
, b = 1 + (cos θ0 − 1)−1.

The second argument of the scattering amplitude σ is therefore:

z0 − τ cos θ0 = z0 − (cos θ0 − 1)−1(z′ − t) cos θ0.

The result of 1-fold scattering for zero angle for the point receiver is almost trivial from a geometrical point
of view, the arriving pulse is infinitely short. The expression for intensity contains natural spherical divergence,
exponential decay due to absorption and forward scattering in a level inside the layer:

Jp1 (t) = lim
∆i→0

1∏
∆i

π∫
θ0

2π∫
0

(f1, ψ) sin θdφdθ, i = 1, 2, 3, (73)

where the function ψ have nonzero components if:

|x| ≤ ∆x = ∆1, |y| ≤ ∆y = ∆2, |z| ≤ ∆t| cos θ| = ∆3,

and 0 outside the domain. Plugging f1 from (68) yields:

Jp1 (t) = lim
∆i→0

1∏
∆i

π∫
θ0

2π∫
0

t∫
0

E(τ, τ cos θ + t− τ, θ)E(t− τ, t− τ, 0)

σ(cos θ, τ cos θ + t− τ)ψ(τ sin θ cosφ, τ sin θ sinφ, τ cos θ + t− τ)dτ sin θdφdθ. (74)

5.3. Alternative variables of integration. One- and two-fold solutions for a point receiver

Let us change the variables of integration, having in mind more convenient (compared to [7]) description of
the integration domain and limiting procedure:

x = τ sin θ cosφ,

y = τ sin θ sinφ,

x = τ cos θ + t− τ.
(75)
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The inverse ones are found as:

τ =
x2 + y2 + z2 − 2zt+ t2

2(t− z)
,

cosφ =
x√

x2 + y2
,

cos θ =
x2 + y2 + z2 − 2zt+ t2 − 2(t− z)2

x2 + y2 + z2 − 2tz + t2)
.

(76)

We calculate the Jacobian:

J sin θ =
2

x2 + y2 + z2 − 2zt+ t2
. (77)

Let us define the integration intervals by means of:

0 ≤ τ ≤ t, 0 ≤ φ ≤ 2π, π − θ0 ≤ θ ≤ π,
0 ≤ τ cos θ + t− τ ≤ ∆t,

|τ sin θ cosφ| ≤ ∆x, |τ sin θ sinφ| ≤ ∆y, t− τ + τ cos θ ≥ 0,

(78)

then |x| ≤ ∆x, |y| ≤ ∆y, 0 ≤ z ≤ ∆t.
1-fold again. The explicit expression for the integral J1, corresponding to (74), in new variables takes the

form:

J1 = lim
1

2∆x∆y∆z

∆x∫
−∆x

∆y∫
−∆y

0∫
−∆t

Q′Q′′σ

x2 + y2 + z2 − 2zt+ t2
dxdydz, (79)

where Q′ = Q(τ, z, θ), Q′′ = Q(t− τ, z − τ cos θ, 0), is defined by (63). In arguments of Q′, Q′′, σ the variables
τ , θ expressed in new ones (76).

Performing the limiting transition ∆x → 0, ∆y → 0, ∆z → 0, ∆t → 0 for a point receiver, we obtain the
simple formula for back scattering:

Ip1 (t) =
2

t2
E′
(
t

2
, 0, π

)
E′′
(
t

2
,
t

2
, 0

)
σ

(
−1,

t

2

)
. (80)

This reproduces the one-fold LIDAR formula for a small receiver in convenient form.
The dependence of I1(t) is shown for the homogeneous distribution of scatterers at Fig. 1 and for a layer of

scatterers and for a layer of scatterers at Fig. 2.

FIG. 1. Homogeneous scatterers distribution case I1(t)

5.4. 2-fold case

From (62), similar to (68), when using the correspondingly modified transformations (75), (76), one arrives at
the distribution term f2:

f2 =

t∫
0

Q(τ2, z, θ)

2π∫
0

π∫
0

σ(cos γ, z−τ2 cos θ)

t−τ2∫
0

Q1(τ, z−τ2 cos θ, θ′)Q(t−τ2−τ, t−τ−τ2, 0)σ(cos θ′, t−τ−τ2)

δ(x− τ2 sin θ cosφ− τ sin θ′ cosφ′)δ(y − τ2 sin θ sinφ− τ sin θ′ sinφ′)

δ(z − τ2 cos θ − τ cos θ′ − (t− τ2 − τ))dτ sin θ′dθ′dφ′dτ2. (81)
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FIG. 2. I1(t), 1-fold scattering from a layer of scatterers

In new variables, (75) the integral J2 takes the form:

J2 = lim
∆V→0

1

2∆x∆y∆z

∆x∫
−∆x

∆y∫
−∆y

∆t∫
0

t/2∫
0

2π∫
0

π∫
π−θ0

Q∗σ(cos γ, τ1(cos θ1 − 1) + t− τ2)σ(cos θ1, t− τ1 − τ2)

(τ2 sin θ2 cosφ2 − x)2 + (τ2 sin θ2 sinφ2 − y)2 + (t− (1− cos θ2)τ2 − z)2
sin θ2dθ2dφ2dτ2dzdxdy, (82)

where:

Q∗ = Q(τ, z − τ2 cos θ, θ′)Q(t− τ2 − τ, t− τ − τ2, 0). (83)

The corresponding intensity from 2-fold scattering for a layer of scatterers is shown at Fig. 3.

FIG. 3. I2(t), intensity: 2-fold scattering from a layered medium

6. Convergence theorem

6.1. Resulting estimation

Let the norm of σ be denoted as ‖σ‖ = max
γ,z

σ:

JN ≤ 23n−1‖σ‖n exp [−σmint]π
n−1tn−3 (n− 1)2

((n− 1)!)1/3
θ

2/3
0 . (84)

The series generated by r.h.s. of the inequality (84) converge because:

lim
n→∞

n

√
23n−1‖σ‖n exp [−σmint]πn−1tn−3

(n− 1)2

((n− 1)!)1/3
→ 0. (85)

(root test). Therefore, the radius of convergence is infinity.
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On proof. Divide the integration domain D to subdomains D1, D2 so that for a positive εn, the following
holds: (

t−
n∑
2

τi(1− cos θi)

)2

+

(
n∑
2

τi cos θi sinφi

)2

+

(
n∑
2

τi cos θi cosφi

)2

≤ εn ∼ D1,

≥ εn ∼ D2.

(86)

This determines the choice of εn.

6.2. Error estimation

If 8π‖σ‖t < 1, the following estimate for error is the following:∣∣∣∣∣I(t)−
n∑
1

Ik(t)

∣∣∣∣∣ ≤ 4‖σ‖e−σmintθ
2/3
0 t2

∞∑
k=n

(8π‖σ‖t)k−1 = 4t2θ
2/3
0 ‖σ‖

e−tσmin

1− 8π‖σ‖t
. (87)

Having such an estimation, one can decide what number of N -fold contributions should be taken into account for
a given error.

7. Conclusion

We do understand that the approximations for the differential cross-sections as (47) are too rough. We have
chosen such models to move the theory in explicit form as far as possible. Modifications of the formulas should
improve the description and may be compared with the presented results. The convergence theorem is certainly
generalized for nonzero field.

In transport problems, the electron Bloch wave scatters either on phonons or on a solid crystal lattice inho-
mogeneities (point defects or dislocations). Such contribution may be incorporated into the suggested scheme.
One of the simplest, to say a “textbook” version of the model, accomplished in a sense of possibility to plot the
dependences of the conductivity on temperature and wire radius, see our contribution with Botman, see also [9].

Account of electron-electron scattering implies transition to Boltzmann equation. The quantum corrections also
use its generalizations [10].
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Ultrasonic near-field levitation allows suspension of a moderately large object at a height of tens of microns above sound actuator. We developed
an asymptotic approach to describe the air dynamics in the gap between an acoustic source and the levitating object. The suggested method
allows computation of the lifting force. Due to resolving of both viscous and inertial effects, it remains applicable across a wide range of
levitation distances. The paper explains theoretical background of the model and presents a numerical solution of the obtained equations. The
results are compared to published numerical and experimental data showing very good agreement.
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1. Introduction

This work focuses on a specific kind of acoustic levitation, which is called ultrasonic near-field levitation. This
name comes from the observed small levitation heights: from 5 um to 500 um. The phenomenon is employed in
contactless transportation systems. The suspension of an object at extremely small distance was reported in 1964
by Salbu [1]. The first implementation of this technology for transport systems was utilized soon thereafter. A
system based on flexural traveling waves of a guideline were studied in [2, 3]. The works [4, 5] suggested another
approach: they used a trolley with ultrasonic source.

The theoretical base of acoustic levitation was founded by Lord Rayleigh [6, 7], who considered acoustic
pressure in inviscid fluid. His theory was finally finished much later in the papers [8, 9]. This approach was used
for lifting force estimation in the works [2,3]. However, this method is not applicable for small levitation distances.
The reason is that for the heights comparable with acoustic boundary layer thickness, viscous effects begin to play
a larger role. There is a plenty of purely viscous approaches. The absence of inertia terms is beneficial in terms
of analysis. In some particular cases, it allows exact analytical description of flow in a domain with distributed
velocity on the border [10]. However, the most wide-spread method is based on lubrication theory. In particular,
this theory was used in the works [4, 5] for lifting force estimation. The papers [12–14] also discuss this matter in
greater detail. Unfortunately, the lubrication theory is limited to very small levitation heights.

Direct numerical simulation is more accurate. There are many computational methods for wave propagation
in a medium (i.e. one is based on the cellular automation rules [11]). However, the most studied are mesh-based
methods, such as finite differences or finite element methods. The paper [15] suggests a numerical scheme which
gives results in good agreement with those obtained experimentally. A similar study was carried out in [16]. These
papers also show that simplified approaches, e.g. purely acoustic and purely viscous, are much less accurate than
numerical solution; however, the latter requires enormous computation resources.

The present paper suggests a new semi-analytical approach which allows one to resolve both inertial (acoustic)
and viscous effects. The implemented model covers a wide range of levitation distances but remains computation-
ally easy.

The next section describes the problem and gives basic equations of fluid dynamics. In section 3, the governing
equations are derived. We sequentially carry out scaling analysis, asymptotic analysis and Fourier analysis. The
results are discussed in the section 4, and then are summed up in conclusion.

2. Problem statement

We study the levitation of a rigid disk of radius R, as shown in the Fig. 1. Consider a flat ultrasonic transducer
which vibrates with amplitude a and circular frequency ω. Displacement of the radiating face is described by:

Hs(t) = a cos(ωt). (1)

The levitating disk is assumed to be motionless and floating at the levitation height H0. Then, the gap
thickness is given by:

h(t) = H0 −Hs(t). (2)
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FIG. 1. Levitation of a disk

We start with basic equations of fluid dynamics (e.g. see [17]). First, we consider Navier–Stokes equations for
a compressible fluid:

ρ (∂tv + (v · ∇)v) = ∇ · (−pI + τ) , (3a)

∂tρ+∇ · (ρv) = 0, (3b)

where ρ is the gas density, v = (vr, vz) is the velocity vector, p is the pressure, I is the unit tensor, and τ is the
viscous stress tensor given by:

τ = µ
[
∇v + (∇v)

T
]

+

(
µb − 2

3
µ

)
(∇ · v) I, (4)

with µ for the dynamic viscosity of gas, and µb for the bulk viscosity.
The dynamic equations have to be accompanied by the energy equation:

ρT (∂ts+ v · ∇s) = ∇ · (k∇T ) + Φ, (5)

where T is the temperature, s is the gas entropy, k is the thermal conductivity of the gas, and Φ describes viscous
dissipation of energy:

Φ = τjk
∂vi
∂xk

.

In addition, the viscosity-temperature dependence is given by Sutherland’s law [18]:

µ = µ0

(
T

T0

)3/2
T0 + C

T + C
, (6)

where µ0, T0, C are empirical constants.
Finally, we assume that the pressure, density and temperature are connected by the ideal gas law:

p = ρ
R
M

T, (7)

where R is the universal gas constant, and M is the molar mass of the gas.
The lifting force is computed by integration of σzz over the disk’s surface:

F = −
∫∫

(σzz|z=H) dx1 dx2, (8)

where

σzz = −p+ µ

[
2
∂vz
∂z

+

(
µb − 2

3
µ

)
∇ · v

]
. (9)
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3. Governing equations

The general equations may be significantly simplified in a few steps. First, scaling analysis is performed.
Doing so allows us to neglect some terms in the equations. Then, the dimension of the continuity equation is
reduced by averaging it through the thickness. After that, we introduce a small parameter, the ratio of the vibration
amplitude a to the gap thickness H0, and seek solution in the form of an asymptotic series. Finally, we focus on the
stationary part of the solution, which creates time-independent lifting force. In addition, non-reflective boundary
conditions are developed on the gap’s edge.

3.1. Scaling analysis

We introduce dimensionless variables:

r̃ =
r

R
, z̃ =

z

H0
, t̃ = ωt, ṽ =

vz
ωH0

, ũ =
vr
ωR

,

p̃ =
p

p0
, ρ̃ =

ρ

ρ0
, µ̃ =

µ

µ0
, s̃ =

s

cv
, T̃ =

T

T0
,

where cv is the specific heat capacity at constant volume, and p0, ρ0, µ0, T0 are pressure, density, viscosity, and
temperature at normal conditions.

The developed theory relies on the following assumptions:

• the gap thickness is much smaller than the acoustic wavelength;
• the gap thickness is much smaller than its length;
• the vibration amplitude is much smaller than the gap thickness.

For ultrasonic near-field levitation, the typical gap thickness is 20–400 um, acoustic wavelength at 20 kHz is about
2 cm, and the disk radius is 1–10 cm; the vibration amplitude varies in the range 1–10 um. Therefore, the first two
assumptions always hold. The third one will be used to introduce a small parameter.

The given assumptions allow significant simplification of the governing equations. First, the energy equa-
tion (5) is reduced to the adiabatic relation:

ρ̃ = p̃1/γ . (10)

Using the ideal gas law (7) and viscosity-temperature dependence (6), one expresses viscosity in terms of pressure.
The dynamic equations (3a)–(3b) take simpler form as well:

∂z̃ p̃ = 0, (11a)

γK2ρ̃ (∂t̃u+ (ũ∂r̃ũ+ ṽ∂z̃ũ)) = −∂r̃p̃+ Σ∂z̃ (µ̃∂z̃ũ) , (11b)

∂t̃ρ̃+ ∇̃ · (ρ̃ṽ) = 0, (11c)

where K2 = ω2R2γ−1ρ0/p0 is the squared dimensionless acoustic wavenumber, and Σ = µ0ωR
2/(p0H

2
0 ) is the

so-called squeeze number.
The equation (11a) implies constant pressure across the gap. Together with (10), (7), (6) it results in z-

independence of density, temperature, and viscosity.
There are no-slip boundary conditions on the sound source’s and disk’s surfaces:

ũ|z̃=H̃s
= ũ|z̃=1 = 0, (12a)

ṽ|z̃=H̃s
= −∂t̃h̃ = −a/H0 sin(t̃), ṽ|z̃=H̃ = 0. (12b)

Further, we will omit tilde over the dimensionless variables.
In addition, it is convenient to average the continuity equation (11c) across the gap:

∂

∂t
(ρh) +

1

r

∂

∂r
(rρhū) = 0, (13)

where the gap-averaged velocity is:

ū =
1

h

1∫
Hs

u dz. (14)
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3.2. Asymptotic analysis

We introduce the small parameter ε = a/H0 — ratio of the vibration amplitude to the average gap thickness.
The solution is sought in the form of asymptotic series:

ρ = 1 + ερ(1) + ε2ρ(2) +O(ε3), p = 1 + εp(1) + ε2p(2) +O(ε3),

µ = 1 + εµ(1) + ε2µ(2) +O(ε3), u = 0 + εu(1) + ε2u(2) +O(ε3),

v = 0 + εv(1) + ε2v(2) +O(ε3),

h = 1 + εh(1)(t), h(1)(t) = − cos(t).

The equations (10) and (6) give expressions for the density terms:

ρ(1) =
1

γ
p(1), ρ(2) =

1

γ
p(2) − γ − 1

2γ2

(
p(1)
)2
, (15)

and the viscosity term:

µ(1) =
(γ − 1)

2γ

T0 + 3C

T0 + C
p(1) = Mp(1). (16)

Since we focus on the steady levitation process, it is natural to look for solution in the form of the Fourier
series:

p(m) =

∞∑
n=1

p(m)
n eint, u(m) =

∞∑
n=1

u(m)
n eint, (17)

h(1) =

∞∑
n=1

h(1)n eint = − cos(t) = −1

2

(
eit + e−it

)
. (18)

Substituting these expressions into the equations above we get the system on the coefficient of the Fourier
series (17). The first order gives non-trivial solution only for the terms with numbers n = ±1. However, the time-
averaged lifting force is zero. Therefore, a second-order solution is required. In order to compute the time-averaged
lifting force, it is enough to study only zero-harmonic solution of the second-order problem.

The final governing equations which describe fluid flow in the gap are listed below. First-order continuity
equation has the form:

i

γ
p
(1)
1 +

1

r

∂

∂r
(rū) =

i

2
. (19)

It is equipped with non-reflective boundary condition on pressure on the edge of the gap. This condition allows
propagation of outgoing acoustic waves outside the gap:

∂rp
(1)
1

∣∣∣
r=1

= iKp
(1)
1 . (20)

The momentum equation with its boundary conditions are written as:

iγK2u
(1)
1 = −∂rp(1)1 + Σ∂2zzu

(1)
1 , (21a)

u
(1)
1

∣∣∣
z=0

= 0, u
(1)
1

∣∣∣
z=1

= 0, (21b)

ū
(1)
1 =

1∫
0

u
(1)
1 dz, (21c)

and the transversal velocity is given by:

v
(1)
1 =

i

2
−

z∫
0

(
i

γ
p
(1)
1 +

1

r

∂

∂r

(
ru

(1)
1

))
dz′. (22)

The second-order equations for time-averaged (zero harmonic) values are the following. The continuity
equation with the pressure boundary condition are

1

r

∂

∂r

(
rū

(2)
0 + r

[(
p(1)/γ − h(1)

)
ū(1)

]
0

)
= 0, (23a)

p
(2)
0

∣∣∣
r=1

= 0, (23b)
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and velocity can be found from:

iK2
[
np(1)n u

(1)
−n

]
0

+ γK2
[
u(1)∂ru

(1) + v(1)∂zu
(1)
]
0

= −∂rp(2)0 + Σ
(
∂2zzu

(2)
0 +M

[
p(1)∂2zzu

(1)
]
0

)
, (24a)

u
(2)
0

∣∣∣
z=0

=
[
h(1)∂zu

(1)
]
0
, u

(2)
0

∣∣∣
z=1

= 0, (24b)

ū
(2)
0 =

1∫
0

u
(2)
0 dz −

[
h(1)ū(1)

]
0
, (24c)

where [·]0 denotes zero harmonic of the expression (e.g.

[(
p(1)
)2]

0

= p
(1)
1 p

(1)
−1 + p

(−1)
1 p

(1)
1 ).

The first-order equations (19), (21a) with the boundary conditions (20), (21b) are solved first. Then, one can
calculate the transversal velocity (22). Substituting the first-order solution into the second-order equations: (23a),
(24a) with the boundary conditions (23b), (24b), one obtains the time-averaged pressure.

Finally, the total lifting force can be calculated as:

F0 = −2π

∫
σzz|z=1 r dr = 2π

∫
p
(2)
0 r dr. (25)

4. Results and discussion

The governing equations show that there are two mechanisms of ultrasonic near-field levitation: inertial
(acoustic) and viscous. Their intensity is described by the wavenumber K and squeeze number Σ respectively.
The ratio of γK2 to Σ, which is included into equations (21a), (24a), is proportional to squared ratio of the gap
thickness to the acoustic boundary layer thickness:

Π =
γK2

Σ
=
H2

0ωρ0
µ0

= 2

(
H0

δ

)2

, (26)

where δ =
√

2µ0/(ωρ0) is the boundary layer thickness [17]. Its value is δ ≈ 15 um in the case of air and 20 kHz
vibration frequency. When the gap is large, Π� 1, inertial effects are more important and acoustic models can be
used; otherwise, when the gap is smaller than boundary layer, Π� 1, viscous effects dominate and viscous models
are applicable. For intermediate regimes, Π ≈ 1, both effects are important, and the presented model resolves
them.

The obtained equaitons were solved by FEM in COMSOL Multiphysics software.
Figure 2 shows the comparison of the presented approach with a full numerical simulation and experimental

data from the work [15]. The agreement is very good. However, our model requires the solution of 5 linear
time-independent PDEs which is much easier computationally than direct simulation based on the general fluid
dynamics equations.

FIG. 2. Levitation height as a function of velocity of vibrating face. Disk radius 20 mm, disk
thickness d = 0.5− 1 mm, frequency 19.5 kHz. Solid lines denote the presented model; dashed
line corresponds to numerical results of [15]; dots represent experimental data from [15]
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5. Conclusion

We presented a new approach for modeling of ultrasonic near-field levitation. In comparison to existing
analytical works, our method covers a wide range of levitation distances and resolves both viscous and acoustic
effects. However, it remains computationally simple in contrast to straightforward numerical simulation.

Our approach allows us to distinguish three regimes of levitation: viscous one for small levitation heights;
acoustic one for large levitation distances; and intermediate visco-acoustic for moderate heights.

The model was successfully validated against published modeling and experimental results.
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The correlation between the structure, resistance and UV-irradiation impact on conductivity of polystyrene-based composites with multilayered

graphene oxide flakes was observed. It is established that composites structure and conducting properties depend on concentration, surface

modification and the methods by which graphene oxide was incorporated into the polystyrene matrix.

Keywords: graphene oxide flakes, polystyrene, composite, conductivity, UV-irradiation.

Received: 3 February 2017

Revised: 24 February 2017

1. Introduction

It is known polymer/graphene nanocomposites show superior electrical properties in comparison to unfilled
polymers [1–4], so the conductivity level for polystyrene/graphene nanocomposites can reach even more than
20 S·m−1 [4]. Moreover, recent experimental observations demonstrate that the graphene-based composite synthe-
sized in [5] displays superconducting features at temperatures higher than that of liquid helium and even in the
structures Cu/Graphene-based composite/Cu [6, 7] without superconducting electrodes. Since graphene is a mono-
layer of graphite, it is important to compare the electrical properties of graphene with those of graphite. To date,
a significant number of indirect experiments indicating the existence of a superconducting state up to room tem-
perature in graphite-based compounds have been reported [8–12]. The main problem of these indirect observations
lies in the fact that the superconducting regions occupy only a small areas of carbon materials, and for this reason,
the observable effects of superconductivity are negligible in bulk samples [9]. Evidence for superconductivity in
graphite lamellae at temperatures above 150 K has been demonstrated in [13]. Considering graphene, the classical
theory of superconductivity does not predict the occurrence of intrinsic superconductivity in such low-dimensional
structure without doping. To promote intrinsic superconductivity in graphene, the authors of [14] suggested re-
constructing the electronic density of states by inducing elastic deformations. The strain field in graphene can
probably be created by introducing it into a polymer host material [6] when chemical bonds are formed between
the graphene and polymer. In this case, one can expect graphene flakes with a variety of different deformations.
These specific deformations of graphene may be the reason of superconducting state in graphene-based polymer
composites.

The aim of this work was to determine why high conductivity and superconductivity arise in polystyrene
(PS)-based films with graphene oxide flakes (GF). Polystyrene was used as a polymer matrix because electrization
is most expressed in polymers with high resistivity [15, 16]. Multilayered GF after heat treatment in an aqueous
medium [17] becomes semiconductor and can even have a zero bandgap. After special treatment, GF may
copolymerize with styrene [5].
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2. Experimental

The methods, described in [17, 18] was used for GF production. Natural crystalline graphite was used as a
starting material. After series of chemical reactions in liquid medium, the prepared GF was extracted from an
aqueous suspension by aerobic drying at a room temperature. As a result, multilayered GF were obtained (Fig. 1).
Surface modification of the GF was carried out by treating 3-(trimethoxysilyl)propyl methacrylate (TMPMA)
for subsequent reaction with styrene [5, 19]. Polystyrene and polymer-GF composites ((PS/TMPMA/GF)syn and
(PS/GF)syn) were synthesized by free radical polymerization in solution [5]. In order to produce the composites,
3 ampoules were used and 19.5 mg of 2,2

′
-azobis(2-methylpropionitrile) (AIBN) was dissolved in 4 ml mixture of

styrene and toluene (1:1 by volume). The prepared solution (1 ml) was dispensed into each ampoule containing
4.8 mg of GF (1 wt.%), 4.8 mg (1 wt.%) and 14 mg (3 wt.%) of functionalized GF correspondingly. Then
ampoules were purged with argon for 10 min and sealed, after that the ampoules were sonicated for 0.5 hour.
Polymerization was carried out for 28 hours at 70◦C. Polystyrene was prepared in an analogous manner. Polymer
yield was 70 %. Molecular mass average weight of synthesized polystyrene was determined using viscosimetry
method and formulae from [19] as 50000. These composites were also obtained by mechanical mixing of PS with
GF and PS with functionalized GF: (PS/GF)mix and (PS/TMPMA/GF)mix.

FIG. 1. SEM images of graphene oxide flakes

The distribution and agglomeration of GF particles in a polystyrene matrix was investigated by Zeiss Supra
55VP field emission scanning electron microscope (Germany). Cross sections of polystyrene-GF films for SEM
investigation were prepared by cryofracture in liquid nitrogen.

Films of the polymer composite were deposited on copper electrodes through the dispenser by casting from the
1 wt.% solution. Thickness of the films was controlled by the interference microscope using the method described
in [20–22]. Current-voltage characteristics of the metal-composite-metal structures were obtained by the modified
two-probe method. The area of electrodes was 1 cm2. Measurements were carried out at the pressure not higher
than 1 kg/cm2. The resistive nature of obtained current-voltage characteristics exclude the presence of a breakdown
in films which have been investigated.

UV- irradiation of the composite films was performed by full spectrum of Hg-lamp DKB-9 with energy 220 kW
and having effective wavelength range of 185–270 nm.

3. Results and discussion

The surfaces of polystyrene films are rather smooth, even for very thin films. The surface of polystyrene
films without graphene oxide is presented in Fig. 2a,b. The conductivity of polystyrene films for was observed
only on thickness not higher than 0.02 µm. Surface topographies of (PS/GF) mix film cleavages are presented in
Fig. 2c,d. For (PS/GF)syn and (PS/TMPMA/GF)mix, SEM images are similar. As revealed by SEM (Fig. 2f,g)
in the case of the (PS/TMPMA/GF)syn composite with 1 wt.% of GF, the inclusions of GF are distributed rather
evenly in the polystyrene matrix obviously due to the formation of chemical bonds between the graphene and
polystyrene. For the mechanically-mixed (PS/TMPMA/GF)mix and composite with 3 wt.% of functionalized GF
(PS/TMPMA/GF-3)syn, the GF particles are not distributed in significant amount on the surface of the composite
film (Fig. 2c,d,h,i). Therefore, the conductivity values for these films do not increase significantly compared
to pure polystyrene, as it can seen from current-voltage characteristics (Fig. 3). Apparently, GF particles in
(PS/TMPMA/GF)mix, (PS/GF)mixand (PS/GF)syn composites have a large chemical affinity for the polymer
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FIG. 2. SEM images of the polystyrene (a, b), (PS/GF)mix (c, d), (PS/TMPMA/GF)syn (f, g),
(PS/TMPMA/GF-3)syn (h, i) films
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FIG. 3. Typical current-voltage characteristics for Cu/GF composite/Cu systems, 1 – for
(PS/TMPMA/GF)syn and 2 – f or (PS/GF)syn, films thickness 2 µm

matrix of polystyrene and are preferentially immersed in it completely, simultaneously leaving defects on the
polymer surface. Films of (PS/GF)mix demonstrate random GF inclusions on the surface which are fully cov-
ered by polystyrene (Fig. 2c,d). The surface topography of (PS/TMPMA/GF-3)syn at the same time drastically
changes from that of others composites’ surfaces probably due to the excess of GF which did not form cova-
lent bonds with polystyrene matrix completely and directed to agglomeration under van der Waals forces. For
the case of composites (PS/GF)syn,mix as also for (PS/TMPMA/GF)mix, conductivity was low as it can be
seen from current-voltage characteristics (Fig. 3, curve 2). It is worth noting that the GF concentration rise in
(PS/TMPMA/GF)syn (from 1 to 3 wt.%) significantly increased films resistance up to values of tens of kΩ as
it was for (PS/TMPMA/GF)mix, (PS/GF)mix and (PS/GF)syn composites. To the contrary as it was shown ear-
lier [19], composite films (PS/TMPMA/GF)syn with thickness less than 3 µm conduct electric current and for
(PS/TMPMA/GF)syn ohmic behavior of current-voltage characteristic is observed indicating a metallic type of
conductivity.

Observations of the composites’ SEM images and their resistance values show that in fact the systems under
considerations could be divided into 3 categories: 1) polystyrene, 2) (PS/TMPMA/GF)syn and
3) (PS/TMPMA/GF)mix, (PS/GF)mix, (PS/GF)syn, (PS/TMPMA/GF-3)syn. So we can suppose resistance of
composite films is dependent on composites structure and consequently on surface topography. The prepara-
tion methods of composites obviously also have an influence on the formation of films’ surface. Composite
(PS/TMPMA/GF)syn with low resistance demonstrates specific distribution of GF on films surface that substantiate
the formation of chemical bonds between styrene and GF during synthesis. Obviously in this case, the chemical
bonds formed between GF and PS prevent mutual adhesion of graphene sheets and create substantial stretches and
deformations for erasing high conductivity. The scheme of GF modification and evident chemical reaction with
styrene is shown in Fig. 4.

After that, measurements of resistance of GF composites films were performed before and after UV-irradiation.
UV-irradiation was carried out for 2 hours for films of 2 µm thickness. The resistance was lowered by 1 order
of magnitude for composites (PS/TMPMA/GF)syn, being reduced from 20 to 2 Ω. This result correlates with
measurements of resistance for UV-irradiated graphite in [23]. For (PS/GF)syn,mix, (PS/TMPMA/GF)mix as for
individual GF, the influence of UV-irradiation on films’ resistance has not been observed. Resistance value
remained unchanged and was near 30 kΩ for (GF/PS)mix,syn and (PS/TMPMA/ GF)mix composites. This effect
can be explained as the impact of UV-irradiation on GF directly when some edges of GF are situated on films’
surface as in the case of (PS/TMPMA/GF)syn.

These above-presented results for (PS/TMPMA/GF)syn can be explained by the formation of covalent bonds
firmly holding GF particles in given positions; then some edges of the GF are distributed on the surface of
polystyrene film. Additionally, during the synthesis and formation of covalent bonds between the polystyrene and
GF special mechanical stresses can be created. As known, they contribute to the emergence of superconductivity [6,
7], predicted for graphite [8–12].
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FIG. 4. Procedure of GF surface modification (a) and subsequent synthesis with styrene (b)

4. Conclusions

The differences in the conductivity of composites based on polystyrene with chemically bonded and unbonded
GF have been determined. The films of (PS/TMPMA/GF)syn composite with chemically bonded GF showed
metallic type conductivity and demonstrated low resistance up to 2 µm thickness. All other composite films had
rather high resistance because of lack of conducting GF particles on the surface. Thus, a correlation between the
structure of the films and conductive properties was observed. The influence of UV-radiation exposure on the
composite films was also found for (PS/TMPMA/GF)syn, where the direct absorption of radiation by graphene
flakes is possible.
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There are many quantum computing systems, some of which are still being developed today. To develop quantum calculation systems, IBM
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due to environmental disturbances. Quantum systems cannot be completely isolated. Noise can be a cause of different errors in the quantum
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1. Introduction

Quantum systems have interactions with the environment. These interactions are presented as noise in quantum
computing systems. The loss of information due to environmental disturbances is termed decoherence [1]. We
need to develop an understanding of these noise processes so that they may be better controlled.

The evolution of the quantum system is considered in [2,3]. For different types of quantum computing systems,
there are several ways to increase the system stability with respect to the effect of noise. Interactions between
superconducting quantum systems, used in ‘IBM Quantum Experience’, and the most significant sources of noise,
are investigated in [4–7]. The effect of noise in quantum circuits is considered in [8–10]. The errors may result
in distortions of quantum algorithms. Research on the Grover’s algorithm stability with respect to perturbations of
quantum logic circuit elements is represented in [11]. Quantum computers use quantum error correction to protect
information from decoherence errors and other quantum noise. Quantum error correction is considered in [8, 10].

In this work, we use an open access to the ‘IBM Quantum Experience’ computer [12], to investigate distortions
of quantum circuits. This gives us the opportunity to observe known quantum circuits with respect to noise. Various
circuits can be used for implementation of the same quantum gate. We consider different circuits for implementation
of the same well-known quantum single-qubit and two-qubit gates, such as NOT and CNOT. Also, we investigate
the NOT gate and two types of controlled NOT gate, such as CNOT and ‘Toffoli’ gates with respect to noise
stability.

A superconducting qubit called ‘transmon’ is used in ‘IBM Quantum Experience’ [4]. We investigate a method
for calculating the quantum state of this superconducting qubit after interaction with the quantum operator, which
includes a source of noise. Thus, we can calculate the quantum state without using the quantum computer and
investigate the qubit with respect to noise stability.

2. Quantum circuits

A graphical user interface for programming a quantum processor in ‘IBM Quantum Experience’ is ‘Quantum
Composer’ [12]. There are single-qubit gates in ‘Quantum Composer’, such as Pauli operators and Clifford
operators. Also, it contains a two-qubit gate CNOT. We will consider different circuits for implementation of the
same X gate, which is equivalent to a classical NOT, and different circuits for implementation of the same CNOT
gate.

The single-qubit X gate is a Pauli operator, which represents bit-flip. The X gate is represented in the library
of ‘Quantum Composer’. If the initial state is |0〉, after an interaction with the X gate, the probability of the
expected state |1〉 is 0.976. We can observe that there are some errors, which are due to noise processes in the
circuit.
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We can create a circuit which works like the X gate. X = HZH, where Z – Pauli operator, H – Hadamard
gate. If the initial state is |0〉, after an interaction with this circuit for implementation of the X gate, the probability
of the expected state |1〉 is 0.934.

Two different circuits for implementation of the same quantum gate with respect to the noise stability can be
compared. We notice that the quantum circuit for implementation of the X gate is worse with respect to the noise
stability than the X gate which is represented in the library of ‘Quantum Composer’.

The two-qubit CNOT gate functions as an exclusive OR gate in conventional digital logic. If the initial state is
|00〉, after an interaction with the CNOT gate, the probability of the expected state |00〉is 0.913. In this experiment,
there are more decay channels, and there is the interaction between two qubits.

We can create a circuit for a controlled-V operation if we can find three circuits A, B, C, such that ABC=I
and eiaAXBXC=V [13]. We have added a control qubit to X gate to implement a controlled-X operation, which is
an equivalent to a CNOT. For the controlled-X operation eiaAXBXC=X, where a = π/2, the circuits A, B, C, is
given by the Pauli and Clifford gates: A=HY, B=HXT, C=T. Combining these circuits as shown in [13], we will
obtain the controlled-X gate (Fig. 1).

FIG. 1. Controlled-X operation

If the initial state is |00〉, after an interaction with this controlled-X gate, the probability of the expected state
|00〉 is 0.901.

After this experiment, we compare different circuits for implementation of the same quantum gate with respect
to the noise stability. The quantum circuit for implementation of the CNOT gate, which was created, is worse with
respect to the noise stability than the CNOT gate, which is represented in the library of ‘Quantum Composer’. But
we can see that the values from the second experiment approximately equal the values from the first experiment.

Also, it is interesting to investigate the NOT gate and two types of controlled NOT gates, such as CNOT and
Toffoli, with respect to the noise stability.

The set of allowed connections is defined by the schematic of the device. We cannot use the known three-qubit
CCNOT gate, however, we can use another circuit for implementation of the quantum three-qubit gate CCNOT. It
is important to investigate this quantum circuit with respect to the noise stability. The CCNOT gate is illustrated
in the Fig. 2 [8, 13].

FIG. 2. Circuit for implementation of the quantum three-qubit CCNOT gate

If the initial state is |00〉, after the interaction with the circuit for implementation of the quantum three-qubit
gate CCNOT gate, the expected state |00〉 is 0.746. The probability of the expected state after the X gate is 0.976,
and the probability of the expected state after the CNOT gate is 0.913. We can notice a significant decrease in the
noise stability of the quantum circuit for implementation of the quantum three-qubit gate.

3. Interaction with an external field

A promising type of a quantum bit is the Josephson-junctions based quantum bit. There are three types of
these qubits: phase [5]; flux [6]; and charge [5, 7, 14]. These types of qubits have a great scalability, advanced
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capabilities for managing states, relatively high coherence time. Such macroscopic quantum systems have been
described previously [5]. The impact of the most significant sources of noise is considered in [4–7]. A new type
of superconducting qubit was introduced in [4]. They proposed a superconducting qubit called a ‘transmon’. The
‘transmon’ is closely related to the ‘Cooper pair box’ qubit; it has a superconducting ‘island’ with two Josephson
junctions (with Josephson energy Ej , which can be controlled by an external magnetic field) and gates capacitance,
which control the charge energy Ec for one Cooper pair. If there is only one or zero Cooper pair in the ‘island’,
we can get a two-level system (qubit). The Hamiltonian for this system [4, 5] is given by:

H0 = −1

2
Bzσz −

1

2
Bxσx, (1)

where Bz – is determined by the charging energy Ec, Bx – is determined by the Josephson energy Ej and the
magnetic field through a superconducting ring. σz and σx are the Pauli operators. The ‘transmon’ is designed to
operate in a regime of significantly increased ratio of Josephson energy to the charging energy of Ej/Ec. Its charge
dispersion decreases exponentially with the Ej/Ec. Analysis of the full system in [4] shows that this benefit is not
compromised by the increased noise in other channels. This type of qubit is used in IBM Quantum Experience.

It is interesting to investigate the dynamics of a superconducting qubit proposed in [4]. We present a method
for calculating the quantum state of this superconducting qubit, after interaction with the quantum operator which
includes a source of noise.

We will observe the interaction between the qubit and the external field. The impact of the external field can
change the qubit state. Firstly we consider the ideal unitary evolution, which is represented by the logical operator
NOT.

Evolution of the quantum system with time is given by:

ih̄
∂ |φ (t)〉
∂t

= H0 |φ (t)〉 . (2)

If we integrate this equation, we get:

|φ (t)〉 = e−
i
h tH0 |φ (t)〉 . (3)

Here, the H0, Hamiltonian of the system with a spin 1/2 is given by (1).
Then the operator of the evolution is given by:

e
−i
h̄ tH0 = exp

[
i

2h̄
t(Bzσz +Bxσx)

]
= E. (4)

If only the external field Bx is applied to the system, E will be given by:

E (ψ) = exp

[
itBxσx

2h̄

]
=

(
cos ψ2 i sin ψ

2

isinψ2 cos ψ2

)
, (5)

where ψ = Bxt/h̄.
In other words, we can obtain a unitary evolution. For certain Bx and t values, we can get the operator X

accurate to a phase factor.
There is some noise in real quantum systems. Control pulses create unwanted external fluctuations. In

contact with its surroundings, the coherence decays with time in a process called quantum decoherence. The
time evolution of a system with noise can be described with the master equations [8]. Secondly, we consider
the interaction between the system and a control pulse with a Gaussian noise as a reversible process [2]. In
work [15], the minimum energy path was calculated with Gaussian process regression for transitions such as spin
rearrangements.

We will consider evolution of system, which is represented by the logical operator NOT with some noise.
We write Hamiltonian of the system H (t) as a sum H0 and the component σxV (t), which describes the time-
dependent noise field V(t) [5]. For the system, which is observed, the noise field can be created by the externally
applied flux [2]:

H (t) = H0 + σxV (t) . (6)

Evolution of the system is given by:

|φ (t)〉 = e−
i
h̄ tH0 |φ (t)I〉 , (7)

e−
i
h̄ tH0 = E (ψ), where ψ = 1.57. Thus, this evolution operator, accurate to the phase factor, equals the Pauli

operator X. Thus, |φ(t)I〉 is the state vector in the interaction picture, and |φ (t)I〉 is given by:

|φ (t)I〉 = e
i
h̄ tH0V (t) |φ (0)〉 , (8)
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where |φ (0)〉 = |φ (0)I〉,
|φ (t)I〉 = U(t)I |φ (0)I〉 , (9)

where U(t)I = e
i
h̄ tH0U(t).

Then:
U(t) = e−

i
h̄ tH0U(t)I . (10)

This quantum operator describes the system with a unitary evolution operator, which has been described, and
a time-dependent noise field.

From the equation for the motion of the operator U(t), we obtain:

ih̄
∂U (t)

∂t
= (H0 + σxV (t)) e−

i
h̄ tH0U (t)I . (11)

Then:

ih̄
∂U (t)I
∂t

= V (t)I U (t)I , (12)

where V (t)I = σxV (t). If we integrate this equation, we will get an accurate, to the second order, small
parameter ε = 1

h̄

∫ t
0
V (τ) dτ :

U (t)I = I− i

h̄
σx

t∫
0

V (τ) dτ +
1

2

− i
h̄
σx

t∫
0

V (τ) dτ

2

. (13)

Then, U (t) is given by:

U (t) = iσx +
1

h̄
I

t∫
0

V (τ) dτ − i

h̄22
σx

 t∫
0

V (τ) dτ

2

. (14)

We consider V (τ) as a Gaussian process [5], U (t) will be random, the expected value of the variable part
in (14) is the integral of the expected value of V (τ). Typical parameters of the system: the flux field magnitude
is ≈ 10−6 Φ0, where Φ0 is the magnetic quantum flux [2, 6], and the interaction time t is 1 ns [2]. Thusly, we
derive the evolution operator:

U =

(
0.196 0.981

0.981 0.196

)
. (15)

We have obtained the operator NOT with a bit flip channel. There are errors in a circuit because of the
interaction with an external field.

If the initial state is |0〉, we get:
U |0〉 = a |0〉+ b |1〉 , (16)

where a = 0.196, b = 0.981. The probability of the state |0〉 is |a|2 = 0.038, the probability of the state |1〉 is
|b|2 = 0.962. We have calculated the quantum state of this superconducting qubit, after the interaction with the
quantum operator, which includes a source of noise. These values are approximately equal to the values from the
experiment, which we have got from the quantum computing platform. If the initial state is |0〉, after an interaction
with the X gate, the probability of the state |0〉 is 0.024, and the probability of the expected state |1〉 is 0.976. So,
we have calculated the quantum state without using the quantum computer and investigate the qubit with respect
to the noise stability.
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The present study examines the electric field distribution in the structure made of two eccentric dielectric cylinders. In oder to find the potential

of electric field, we employ a bipolar coordinate system. The obtained results allow one to quantify the impact of the eccentricity on effective
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1. Introduction

Currently, composites are one of the most promising materials for use in new technologies [1, 2]. The
most widespread are laminates, fibrous (reinforcing component – the fibrous structure), and filled materials (the
reinforcing component – particles). In turn, compared with laminated composites, cylindrical composites (fibers)
have more compact structure, which is beneficial for device miniaturization [3, 4]. Such composites are usually
modeled by periodic sets of cylinders made of one material (filler) and placed in the second material (matrix). The
calculation of effective parameters of the composite medium is based, as a rule, on the solution of the problem
for the single cylinder (inclusion) in the surrounding external field and subsequent averaging procedure [5]. To
be more precise, for the description of corresponding inclusions it is necessary to use the equations considering
interactions of all possible fields: electromagnetic, elastic and thermal.

The surface and nonlocal effects start to play a significant role for the inclusions of size about one nanometer.
Therefore, in general there is a need to solve the integro-differential equations. In our work, an average diameter
of inclusions is assumed to be tens of nanometers and, thus, we can restrict ourselves by differential equations.
Moreover, we analyze the case where the electrical properties of composites can be considered independently of
the elastic ones. That is, it is sufficient to find the electric potential by means of the Laplace equation. In a classic
work by Rayleigh [6], the electric potential was computed for a conducting composite consisting of a periodic array
of inclusions (cylinders and spheres). More complex core-shell structures, which have appeared in recent years,
allow one to improve the desired properties of composites. However, these structures complicate the determination
of their properties even in the elementary cases [7–9].

Future prospects for the development of composites are associated with the finding of non-smooth fillings of
untypical shapes. As already well known [9], the presence of peaks or edges of a filling leads to the appearance of
singularities in the electric field that has a strong impact on the effective permittivity. The numerical calculation of
such structures is not an easy task and requires skilled techniques for its solution (see, e.g. [9, 10]). In this study,
we investigate the possibility to control the dielectric constant by changing the distance between the boundaries of
the different layers (shells). We consider the electric potential in the medium consisting of cylindrical inclusion
in which one more cylinder is placed (see, Fig. 1). In other words, two dielectric cylinders are considered. If the
cylinders have no common points, then the solution of an electrostatic problem can be found in [9, 11]. Summing
it up, this paper examines a cylinder completely immersed inside another one. A case of intersecting cylinders
remains unexplored.

Note that due to the analogy between the stationary electric and thermal fields, the effective thermal capacity
of a composite with inclusions in the form of eccentric cylinders can be determined by the same procedure.

2. The solution of the general problem

2.1. The problem statement

As a starting point, we consider an electric field in the system illustrated in Fig. 1. Inclusion consists of two
eccentric circles of radii of r1 and r2 which centers are located at distance d from each other. The surfaces of
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FIG. 1. The mutual arrangement of two dielectric cylinders

circles are S1,2. To describe electrostatic field, we employ a Cartesian coordinate system (x, y). By ε1, ε2 we
denote dielectric permeability of circles and dielectric permeability of external space (matrix) by ε0.

Similarly, we will use the subscripts 1, 2 to identify quantities related to circles and subscript 0 for the matrix
parameters. In the absence of any subscript, the expression is fulfilled in all environments. The intensity of the
external electric field is supposed to be a constant vector of length E. In the solution of our problem it is necessary
to find the potential u, which satisfies the two-dimensional Laplace equation:

∆u = 0, (1)

and is continuous at the interfaces S1,2 together with the normal component of the electric displacement:

u0

∣∣∣∣∣S1
= u1

∣∣∣∣∣S1
, ε1

∂u0

∂n

∣∣∣∣∣
S1

= ε2
∂u1

∂n

∣∣∣∣∣
S1

, u1

∣∣∣∣∣S2
= u2

∣∣∣∣∣S2
, ε1

∂u1

∂n

∣∣∣∣∣
S2

= ε2
∂u2

∂n

∣∣∣∣∣
S2

. (2)

Moreover, at the distance far from the inclusion, the potential u tends to the potential of the external field:

u0 → −E0(x cos γ + y sin γ). (3)

Here, n is normal to the surfaces S1,2, E0 is the electric stress, and γ is an angle between the external field and
the x-axis. Because of the lack of symmetry, the solution of Eqs. (1)-(3) depends on the angle γ.

If we introduce the potential U that tends to U0 = x+iy at large distances from the inclusion, then the desired
potential u can be expressed in terms of U as:

u = −E0(ReU cos γ + ImU sin γ). (4)

Further, it is reasonable to switch to a bipolar coordinate system (α, β) [12] associated with the Cartesian by the
relations:

x+ iy = c tanh

(
α+ iβ

2

)
. (5)

If we define the parameters α1, α2 and c from:

coshαj =
r21 − r22 + (−1)jd2

2rjd
, c = r1 sinhα1, (6)

then the circles’ boundaries are the coordinate lines α = α1,2. The solution of the stated problem will be sought
in the form:
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U0 = x+ iy +
∑
n=1

a0nen(α−2α1+iβ),

U1 =
∑
n=1

[
a1nen(α−2α1) + b1ne−nα

]
einβ ,

U2 =
∑
n=1

b2neinβ−nα.

(7)

The Fourier coefficients ajn and bjn in Eq. (7) are uniquely determined by taking into account boundary conditions.
In particular

a0n = 2c(−1)n
λn − 1

λn + 1
, λn =

ε1
ε0

δn + 1

δn − 1
, δn =

ε2 + ε1
ε2 − ε1

e2n(α2−α1). (8)

The coefficients a1n and b1,2n have a similar form. For simplicity we do not write down explicit equations for
these coefficients.

2.2. The Maxwell–Garnett theory

Let us now discuss the influence of the cylinder eccentricity on the effective characteristics of the medium.
First, we consider the main principles of the Maxwell–Garnett theory for the set of identical inclusions randomly
arranged in the matrix. Each of these inclusions consists of n dielectric layers with permeabilities εi, i = 1, 2, ..., n.
The effective dielectric constant εeff can be defined from:

〈D〉 = εeff 〈E〉, (9)

where D is the electric displacement and the symbol 〈·〉 denotes averaging of corresponding values. If we introduce
quantities fj characterizing volume part of the j-th layer and f0 = 1−

∑
fj for the matrix, then the average electric

displacement and electric field are given by:

〈D〉 =

n∑
j=1

fjεj〈Ej〉+ f0ε0E0, 〈E〉 =

n∑
j=1

fj〈Ej〉+ f0E0. (10)

By the linearity of the electrostatic problem, the values of average electric field strength are proportional to
the external electric field 〈Ej〉 = pj〈Em〉 with coefficients of proportionality pj . According to Eqs. (9)–(10) the
expression for the effective dielectric permittivity is approximately given by:

εeff =

n∑
j=1

fjεjpj + fmεm

n∑
j=1

fjpj + f0

. (11)

For n = 1 Eq. (11) is known as the Maxwell–Garnett formula [5]. More accurate results can be obtained with the
T-matrix method [13]. In the case of concentric circles and n = 2 we have [7]

p1 =
2εm(ε1 + ε2)

(ε1 + ε2)(ε0 + ε1) + (r2/r1)2(ε1 − ε2)(ε0 − ε1)
, (12)

p2 =
4εmε1

(ε1 + ε2)(ε0 + ε1) + (r2/r1)2(ε1 − ε2)(ε0 − ε1)
. (13)

It is possible to define the polarizability of a two-layer system as a p = (p1f1 + p2f2)/(f1 + f2). Exactly this
quantity is included in Eq. (11) for the effective dielectric constant. After performing numerical averaging of the
series (7) and taking into account [12]

dxdy =
c2

(coshα+ cosβ)2
dαdβ, (14)

we find the polarizability p. The dependencies of p on the distance between the cylinders centers and relative
dielectric constants ε1/ε0 are shown in Fig. 2.

From these graphs follows that if the distance between the cylinders centers d is not too large, then the
polarizability p(d) is close to its value p(0) for the concentric cylinders. Significant changes in polarizability
have place only in the case where the outer and inner circles are almost touching each other. The proximity of
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FIG. 2. The dependence of the polarizability p on the ratio ε1/ε0 for the different relative
distance d between the cylinders centers

the cylinders boundaries leads to a noticeable decrease in the polarizability. The polarizability dependence on the
dielectric constant of the inner cylinder is shown in Fig. 3.

FIG. 3. The dependence of the polarizability p on the ratio ε2/ε0

3. Conclusion

We have presented a new approach to describe the effective characteristics of a periodic set of eccentric
cylinders. If the distance between the axes of the cylinder is small (d/dmax < 0.997), the effective dielectric
constant depends only on volume fractions of fillers. In this case it is possible to use the Maxwell-Garnett
approximation. In turn, if the cylinders are almost touching each other (d/dmax > 0.003), then the Maxwell–
Garnett method cannot be employed and the effective dielectric constant depends on the interaxial distance d. This
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dependence allows one to control the permittivity of composites. Perhaps, such a mechanism is realized in living
cells. The cell nucleus might move inside the cell volume [14] and change its thermal and electrical conductivity
when approaching the cell surface.

Also note that the dependence of the properties of eccentric cylinders on d specifies the need for major
modifications of classical averaging methods as Maxwell–Garnett, Bruggeman, etc. In these techniques, the
effective dielectric constant depends only on the specific volume of the composite component. In more complex
cases, however, the surface area of each component also can be taken into account (the Maxwell–Wagner effect).
The change in the effective dielectric constant, as discussed in this paper, occurs at identical volumes and surface
areas of each component. In addition, in our opinion, the angles of the edges and vertices at the boundaries
of the various components need to be entered in the generalization of the formula for the effective permittivity
of composites. Since no assumptions about the reality or positivity of cylinder dielectric constants (ε1 and ε2)
have been made, the resulting expressions are applicable for calculation of the metal cylinders with a complex
permittivity and cylinder of metamaterials. It is also important also to emphasize, that the solution of piezoelectricity
equations for eccentric circular fibrous composites under the generalized anti-plane shear deformation [15] may be
constructed in precisely the same manner.
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Modern methods of cancer treatment include chemotherapy and radiotherapy, but they are often characterized by low efficacy and high

toxicity. The effectiveness of cancer therapy is often limited by a lack of effective systems for drug delivery to the tumor site. Cerium oxide

nanoparticles are able to act as radioprotectors and as radiosensitizers exhibiting selective toxicity in the tumor microenvironment, providing

for their tremendous potential in treating cancer. However, methods for controlled delivery of CeO2 nanoparticles to the tumor have not been

investigated nor described yet. In this article, we consider different approaches to the development of new ceria nanoparticle-based theranostic

agents. Modification of polyelectrolyte microcapsules with nano-ceria appears to be the most promising method. Our design proposals are

based on the synergistic pharmacological action of ceria-based nanomaterials and anticancer pharmaceuticals with the ability to control and

visualize their sites of localization.
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1. Introduction

Radiation therapy is one of the leading methods of cancer treatment [1]. According to WHO recommendations,
radiation therapy is advised for more than 70 % of cancer patients within a particular plan of treatment or as part of
combined and complex therapy. Treatment of patients with locally advanced tumors corresponding to stages III–IV
is particularly difficult due to their sheer numbers of 54–68 % (even when modern diagnostic tools are used) [2].
Radiation therapy is often the only possible means of medical care for these patients. Apart from a purely technical
solution to the problem by improving radiotherapy techniques today, much attention is paid to the control of
tissue radiosensitivity, i.e. to the development of methods for selective effect on the radiosensitivity of tumor and
normal tissue to expand the boundaries of a radiotherapy interval. Prospects for the combination of radiotherapy and
chemotherapy for patients with locally advanced tumors are associated with the development of radiochemotherapy.
Radiochemotherapy treatment is a method in which radiation and chemical substances are used simultaneously,
wherein the special drugs have not only cytostatic effects but also exhibit radiosensitizing properties [3, 4]. The
procedure for selecting chemotherapy drugs as photosensitizers, their dosages, optimal modes of administration, as
well as the development of adequate dose fractionation schemes of ionizing radiation are still relevant. Methods
of administering already known radiomodifiers that increase efficiency and reduce toxic side effects also need
improvement.

The present level of nanotechnology development allows the synthesis of new multifunctional nanomaterials
with unique physical and chemical properties which are widely used in biomedical applications, including the
radiotherapy of tumors. For example, heavy metal nanoparticles (mostly gold nanoparticles) are used in radio-
theranostics (radiodiagnostics and radiotherapy) of tumors [5–8]. Bismuth oxide nanoparticles have also been
shown to enhance the effect upon irradiation [9] and can replace gold nanoparticles. Multifunctional bismuth
sulfide nanocapsules can be used in combined ultrasonic and radiation therapy [10]. The complex therapy uses
magnetic iron oxide particles that also have low toxicity [11], and dextran-coated iron oxide nanoparticles decrease
tumor growth in a breast cancer model by the combined action of hyperthermia and radiation [8]. Gadolinium oxide
nanoparticles (Gd2O3) are also considered an alternative to gold nanoparticles. Ultra-small Gd2O3 nanoparticles are
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accumulated in brain tumors after intravenous injection and can be used for visualization by MRI and subsequent
radiation therapy [12]. Hafnium oxide nanoparticles increase the destructive effect of radiation due to the emission
of Auger electrons and increase the generation of ROS [13]. The intratumoral injections of 50-nm-sized HfO2

followed by radiation therapy sessions have shown good results in Phase 1 clinical trials with locally advanced soft
tissue sarcoma patients [14].

One of the most promising materials having a multifaceted mechanism of radioprotective action is nanosized
cerium oxide [15, 16]. Cerium oxide nanoparticles have SOD-mimetic activity and inactivate superoxide radi-
cals [17], and their ability to inactivate hydrogen peroxide is comparable to that of catalase [18, 19]. Using a
variety of surface modifiers and synthetic methods allows one to vary the size, shape, and charge of cerium oxide
nanoparticles that affect their physical and chemical characteristics, including the level of antioxidant activity, and
consequently intracellular biological effects [16, 20–22]. The presence of oxygen vacancies (defects in a crystal
lattice) and auto-regenerative oxidation-reduction cycle (Ce3+ ←→ Ce4+) enable the use of cerium oxide nanopar-
ticles as broad-spectrum antioxidant drugs at the neutral pH found in healthy tissues [23, 24]. Conversely, in the
tumor, cerium oxide nanoparticles are able to perform as both peroxidase (effective pro-oxidant) and a radiosensi-
tizer. The key external condition determining the pathway of the biological activity for cerium oxide nanoparticles
in cancer therapy is the pH of the medium [16, 25–29] and the power of X-rays used [30]. Previously, it was
shown [21] that cerium oxide nanoparticles significantly reduce the level of ROS and increase cell survival in the
non-malignant normal cells (pH ≥ 7) after exposure to ionizing radiation, while emerging as strong pro-oxidants
in cancer cells of the pancreas (pH ≤ 7) increasing cell death. On the other hand, Briggs et al. [30] showed that
the use of radiation of different intensities may have a different impact on the radioprotective properties of cerium
oxide nanoparticles. When exposed to low-intensity X-rays (150 kVp), cerium oxide nanoparticles do not exhibit
radioprotective properties and increase cell death, generating additional Auger electrons that act as radiosensitiz-
ers. However, when high-intensity X-ray radiation (10 MV) is used, cerium oxide nanoparticles exhibit a strong
radioprotective effect by inactivating a broad range of ROS and free radicals produced by radiolysis, i.e. work
as radioprotectors. The key factor determining the effectiveness of radiation therapy of cancer is the localization
of cerium oxide nanoparticles while the development of the targeted delivery of cerium oxide nanoparticles is an
urgent task of modern biomedicine.

In this article, we propose the use of biodegradable polyelectrolyte microcapsules modified with cerium oxide
nanoparticles, other comprising functional components and anticancer pharmaceutical preparations (Fig. 1) for
complex therapy of cancer. This microcapsule structure will provide a synergistic effect for the encapsulated
anticancer drug and cerium oxide nanoparticles in a combined therapy of oncological diseases. The presence of
specific antigens on the surface of the microcapsules will facilitate its targeted delivery to tumor cells.

2. The hypothesis assessment and review

Polyelectrolyte microcapsules are one of the most promising means for effective controlled delivery of sub-
stances to target organs and tissues. Previously it was shown that they can be used for encapsulating proteins [20],
DNA [31], RNA [32], pharmaceutical formulations [33] and other compounds. A layer-by-layer method of synthe-
sizing polyelectrolyte microcapsules is based on the use of differently charged polyelectrolytes that are alternately
adsorbed on an organic (polymeric) or inorganic (oxides, calcium carbonate) substrate [34]. For example, a pos-
itively charged substrate is placed in a solution of polyanions, the deposition of which leads to recharging the
surface, and the substrate becomes negatively charged preventing further adsorption of polyanions. Adsorptive
saturation occurs and the molecular layer is formed with a thickness of about 1 nm. The substrate is then rinsed
in water and placed in a solution of positively charged macromolecules. Polycations are deposited, forming ionic
bonds between oppositely charged ionic groups, and then they again recharge the surface. These mild synthetic
conditions allow the encapsulation of biologically active materials (proteins, peptides, pharmaceuticals, etc.) while
retaining their native properties. Thus, a bilayer is formed which can be repeated a number of times. The stratified
character of polyelectrolyte microcapsule formation provides ample opportunities for managing their physical and
chemical properties. The degradation rate of microcapsules and release of the contents into the cell can be adjusted
by varying the type of polyelectrolyte and the number of adsorbed layers. Using a polyelectrolyte matrix can also
maintain the physicochemical properties and biological activity of its constituent nanoparticles.

Cerium oxide nanoparticles can be introduced into the microcapsule by a variety of ways (Fig. 1): as a
component of the polyelectrolyte shell (A), core (B), or the gap between the core and the shell (C).

The layer-by-layer method allows the integration of CeO2 nanoparticles by replacing one of the polyanion or
polycation layers (Fig. 1, A). In [35], the authors used a similar approach to introduce titanium dioxide into micro-
capsule shells. Using photoactive TiO2 nanoparticles allows one to control the release rate of the microcapsules’
contents by irradiation. The incorporation of magnetic particles into the shell (e.g. iron oxide) allows control
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FIG. 1. Possible synthetic scheme of biodegradable polyelectrolyte microcapsules by LbL (layer-
by-layer) assembly with cerium oxide nanoparticles: (A) located in shell; (B) located in core
and (C) covering the core. A – Encapsulation of anticancer drug (a), step-by-step deposition of
differently charged polyelectrolytes (b, d), their modification by cerium oxide nanoparticles (c)
functionalization by antibody (e), and removal of the core supporting shell (f). B – Formation of
hybrid particles consisting of a drug, cerium oxide nanoparticles and binding polymer (alginate or
alginate + chitosan) (a) encapsulation of anticancer drug (b), step-by-step deposition of differently
charged polyelectrolytes (s), functionalization by specific antibodies (d) and removal of the core
supporting shell (e). C – Encapsulation of anticancer drug with cerium oxide nanoparticles (a),
step-by-step deposition of differently charged polyelectrolytes (b) and functionalization by anti-
bodies (c).
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over the delivery. In the latter case, the shell modification may be carried out using both previously synthesized
magnetite nanoparticles [36] and in situ formation of Fe3O4 nanoparticles directly on the capsule shell [37, 38].
In the first case, because of the mutual repulsion of charged nanoparticles, their adsorption is limited. In the second
case, the nanoparticles formed in the solution are adsorbed on the surface of the polyelectrolyte capsules wherein
they are partially stabilized by the shell’s polymers. Silver nanoparticles have also been incorporated into micro-
capsules’ shells by the in situ method [39]. To introduce CeO2 nanoparticles into the shell of the microcapsules,
both approaches can be used (via pre-synthesized nanoparticles and in situ approach). The techniques described
herein allow control of the final nanoparticle concentration in each microcapsule up to 1 unit.

Unstabilized (“naked”) cerium oxide nanoparticles in solution have a positive ζ-potential (ca. 40 mV) [40],
and thus, can replace a polycation layer during microcapsule synthesis. Conversely, polycarboxylic (citric, poly-
acrylic) acids normally used for the stabilization of cerium oxide nanoparticles provide a negative ζ-potential
(ca. −15 mV) [41, 42], and these particles can be incorporated into the microcapsule shell in place of one of
the polyanion layers. In terms of electrostatic interaction and the DLVO theory (a physical theory of stability
of colloidal systems), with an increase in the particle charge, the rate of adsorption equilibrium increases, but
the amount of adsorbed particles per cycle application decreases (fewer particles are required to compensate the
charge of a previous layer). Thus, using CeO2 sols with different ζ-potentials (both in sign and in absolute value)
allows one to adjust the loading of a microcapsule with nanoparticles during its synthesis as well as the rate of
nanoparticle release during its degradation.

To implement the approach in situ after the next polyanionic layer is applied, microcapsules must be transferred
into a solution with a predetermined amount of cerium ions in the form of a soluble Ce(III) salt, then, after the
adsorption equilibrium is achieved the medium should be made alkaline. At pH > 7, the Ce(III) salts are hydrolyzed
and rapidly oxidized by dissolved oxygen to Ce(IV), and cerium oxide nanoparticles are generated on the surface
of the microcapsule. Subsequently, microcapsules can be transferred into a solution of polyanion to generate
additional layers.

If the therapeutic agent and the cerium oxide nanoparticles are chemically compatible, (as happens in most
cases), then, the latter can be introduced into the core of the microcapsule together with the drug (Fig. 1, B). The use
of an auxiliary binder polymer allows the formation of the core of hybrid organic-inorganic particles. Thus, alginic
acid is often used as a biologically acceptable binding carrier polymer (the compound is a heteropolysaccharide
formed by residues of polyuronic acid). The water-soluble alginate forms solid insoluble particles and films
in the presence of polyvalent metal ions (calcium salts are most commonly used). Introduction of the cationic
polymer (chitosan, poly-L-arginine or poly-L-lysine) can adjust the size of the particles formed. For example,
250–850 nm (depending on the alginate concentration) particles were synthesized as drug carriers; these particles
are formed in solution by adding sodium alginate, calcium chloride and then poly-L-lysine [43]. The particle
size can also be controlled by the volume of “nanoreactors” (micelles); reverse micelles were successfully used
to synthesize nanocarriers (from alginate and calcium salts) with an average size of about 80 nm in diameter
exhibiting a high degree of endocytosis by NIH 3T3 cells [44]. It is also possible to combine the surfactant and
the cationic polymer to tune the size of alginate particles. In [45], a weakly polar natural polyphenol curcumin
(diferulometan) which is widely used in cancer treatment (including radiotherapy) and prevention was encapsulated
into 100±20 nm calcium alginate particles. Cationic polymers (chitosan and a non-ionic surfactant (Pluronic)) were
used as auxiliary compounds, and their absorption by HeLa cancer cells was recorded using curcumin fluorescence.
In a series of preliminary experiments, we found that sols of ceria nanoparticles (“naked” or stabilized by citrate)
can be successfully used instead of calcium salts for alginate gelation. In addition, water-soluble salts of cerium
may also be used for that purpose. Alginate+CeO2 nanoparticles systems can serve as a template for the storage
and transport of biologically active compounds. Furthermore, the resulting combined nanodrug can be used as a
constituent in the formation of an LbL-microcapsule core (Fig. 1, B).

Finally, cerium oxide nanoparticles can be used as a microcapsule core coating and as the basis for the
application of polyionic layers (Fig. 1, C). For this purpose, the drug (a part of the microcapsule core) can be
treated with a solution of cerium salt or a sol of cerium oxide nanoparticles prior to addition of the polyelectrolyte.
Moreover, if the drug has an acidic functional group and is insoluble in water or if the drug is a slightly polar liquid
(a slightly polar solid soluble in non-polar or weakly polar liquid), then the particles capable of performing the
function of the microcapsule core can be formed directly in the sol of ceria by injection/homogenization (to form
a Pickering emulsion [46]). In the literature, there are many examples of the preparation of drug-based sols using
nanoparticles. The above mentioned curcumin was successfully stabilized in the aqueous sol by SiO2 nanoparticles
(the sol’s stability is 100 times higher than in water) [47]; silica+curcumin composite has great promise in cancer
therapy [48]. Our preliminary studies have shown that stability of the aqueous curcumin sols in the presence of
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cerium oxide nanoparticles also increases. The resulting hybrid particle may be used as an LbL-microstructure core
(Fig. 1, C).

Polyelectrolyte microcapsules may be functionalized by specific surface ligands or antibodies to a particular
type of receptor on the surface of cancer cells (Fig. 1, A–C). For example, for the treatment of breast cancer
polyelectrolyte microcapsules can be functionalized by selective antibody to the HER2 antigen which is over-
expressed on the surface of this type of cancer cells [49]. Antibodies to HORMAD1, CXorf61, ACTL8, PRAME,
MAGE and CSAG antigens [50] can be used for treating testicular cancer (those are also over-expressed on the
surface of tumor cells of this type). The level of expression varies, depending on the stage of tumor development;
however, there is the possibility of selecting both specific antibodies and an encapsulated pharmaceutical preparation
at a particular stage of development of the disease.

It was earlier noted that the pro- and antioxidant activity of cerium oxide nanoparticles correlates with the
concentration of oxygen vacancies and lattice defects in CeO2. This parameter can be adjusted, for example,
via the introduction of CeO2 nanoparticles doped with other rare earth elements [51]. The use of gadolinium
is quite promising indeed [52–54]. Gadolinium doped cerium oxide nanoparticles not only demonstrate superior
antioxidant properties but also can serve as a contrast agent in tumor diagnostics (X-ray CT and enhanced MRI).
The microcapsules designed with the use of gadolinium doped cerium oxide nanoparticles could thus serve both
therapeutic and diagnostic purposes.

The functionality of microcapsules can be increased by fluorescent label introduction. Organic luminophores
or nanoparticles of rare earth elements oxides doped by europium or terbium ions can be used as such a label.

For example, if in a microcapsule design one polyanionic layer is replaced with a fluorescein isothiocyanate-
dextran conjugate (FITC-Dextran) or if a layer of polycation is replaced with a rhodamine isothiocyanate-dextran
conjugate (RITC-Dextran), these microcapsules will become luminescent. Additionally, the behavior of these
microcapsules in the cell can be monitored from the time of administration (accumulation) to degradation. If
cerium oxide nanoparticles functionalized with calcein are included in the composition of the microcapsules, these
microcapsules will exhibit fluorescent properties only when reacting with active oxygen species [55], which would
permit their monitoring during therapy. Moreover, if those luminophores have different emission wavelengths (e.g.,
calcein in nanoparticles and rhodamine in the shell), this combination would allow monitoring the pharmacokinetics
and pharmacodynamics at all stages of the introduction, distribution and degradation of microcapsules.

As nanocrystalline luminophores for microcapsules, it is preferable to use yttrium or gadolinium orthovanadate
doped with europium (Gd/YVO4:Eu) [56,57] or cerium fluoride doped by terbium (CeF3:Tb) [58]. In the synthesis
of “smart” multi-layered microcapsules, it is expedient to replace one ionic nanoparticle layer with CeF3:Tb [58]
or polyacrylic acid with YVO4:Eu nanoparticles synthesized in [56] to visualize the nanoparticles of cerium
oxide doped with gadolinium. In addition to the fluorescent properties, these compounds exhibit an independent
antioxidant and radioprotective activity [57–59]. Similar to CeO2, nanocrystalline CeF3 is involved in redox
processes (and in some cases is even superior to cerium oxide nanoparticles in its protective effect [58]). Cerium
fluoride is one of the most efficient scintillators [60]. The use of CeF3 (and CeF3:Tb) nanoparticles in radiological
diagnostics and therapy has great promise. For example, in microcapsule construction, a photosensitizer (of
porphyrin or phthalocyanine series) can be placed near to cerium fluoride nanoparticles so that during radiotherapy
under the influence of light emitted by the scintillator the photosensitizer will generate oxygen radicals and singlet
oxygen. Reactive oxygen species will accelerate the degradation of the microcapsule shell, releasing its contents
during radiotherapy, as well as provide additional damaging factors in tumor cells through photodynamic (radio
dynamic) action.

Figure 2 shows one possible mode of action for smart polyelectrolyte microcapsules in tumor cells. Due to the
presence of surface ligands (antibodies), microcapsules can be selectively accumulated at the site of oncogenesis,
making it possible to define the size and location of the tumor (A) and to select a subsequent procedure of
radiotherapy (B) using diagnostic methods (CT and MRI). Once inside the tumor cell, the microcapsules will be
destroyed releasing the anti-cancer drug and cerium oxide nanoparticles into the cytoplasm of a cancer cell. Further
irradiation of the cells by low-intensity X-rays will cause the surface of ceria oxide nanoparticles to generate
secondary Auger electrons, and the anti-cancer drug will provide a specific effect inhibiting the metabolism of
cancer cells. The acidic pH of “tumor microenvironment” promotes the pro-oxidant activity of cerium oxide
nanoparticles and the generation of reactive oxygen species. This multifaceted effect of all components of the
polyelectrolyte microcapsules should result in a rapid accumulation of reactive oxygen species in cancer cells and
in their DNA damage that ultimately leads to the destruction of malignant tumors.

This article describes possible methods for the synthesis and functionalization of the polyelectrolyte micro-
capsules by cerium oxide nanoparticles to form novel drug delivery and theranostic systems. However, detailed
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FIG. 2. Role of “smart” polyelectrolyte microcapsules in a cancer cell in radiation diagnostics (A)
and treatment (B). Targeted entry into the cell (1), degradation of the microcapsules, and release
of cerium oxide nanoparticles and encapsulated anticancer drug (2), the effect of low-intensity
X-rays (3). The mechanism of action of polyelectrolyte microcapsules in a cancer cell: a –
pro-oxidant properties of cerium oxide nanoparticles in the site of carcinogenesis; b – generation
of Auger electrons by cerium oxide nanoparticles; c – chemotherapy by anti-cancer drug.

research is required to determine cytotoxicity and effectiveness in vitro and in vivo as well as confirm the mecha-
nism of action.
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Gd0.1Ti0.1Zr0.1Ce0.7O2 solid solution with crystallite size of 10 nm, specific surface area of 85 m2/g and pore size of 2–6 nm has been

prepared by a simple co-precipitation method with sonication and characterized by several methods. Among the characterization methods was

laser desorption ionization-time of flight mass spectrometry (LDI-TOF) which was used to characterize the surface of the catalyst (fresh and

used in CO oxidation) and thereby determine the catalytic sites (active sites of oxidation).
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1. Introduction

Nanocrystalline ceria based materials are playing an important role in environmental and energy related
applications, especially in areas such as catalysis. Doped ceria materials are considered as more promising solid
solutions for the use in these applications. The choice of a suitable dopant however, still remains a major challenge
to the scientific community in terms of oxygen storage capacity, thermal stability, and economical considerations.
Substitution of Ce4+ by other dopants in ceria leads to solid solutions which are found to increase both the oxygen
storage capacity (OSC) and ionic conductivity as well as directly impact the catalytic activities. The activity is
also dependent on other parameters such as the size, morphology and type of dopants. The presence of oxygen
vacancies, especially for occurring interface reactions, in ceria-based materials is one of the key factors in oxidation
reactions. Therefore, the investigation and characterization of the surface (interface) is an important goal [1–5].
To explore this key factor, the structural and morphological properties of fresh and spent catalysts were examined
using XPS, EXAFS, XANES and other techniques. At the same time, mass spectrometry is widely used to measure
molecular mass by ionizing the sample and report information [6,7], but did not in catalyst surface characterization.
To obtain information on the nanoparticle’s surface, they have to not undergo decomposition during ionization and
detection. Clusters or nanodomains [8] of reduced ceria in the form of nonstoichiometric phase over the surface,
likely originated from the reduction of ceria at the ceria interface, are giving direct evidence of the important role
of the redox of ceria based materials. This means that the use of “soft ionization” methods to study such labile
structures cannot be overestimated, it remains the only available method to accurately determine the mass, the
number of atoms and molecules inside the nanodomain (cluster). Therefore, laser desorption ionization-time of
flight mass spectrometry (LDI-TOF) method was used in this work to characterize the surface and establish active
sites of oxidation [9, 10]. This method can be used to characterize the surface of nanoparticles, bulk materials,
ceramics and other relevant materials.

2. Material and methods

2.1. Synthesis

Ce(NO3)3 ·6H2O, ZrO(NO3)2 ·6H2O, Gd(NO3)3 ·6H2O, TiCl4 (Acros Organics) were used as metal precursors.
Appropriate amounts of salts were dissolved in 500 mL distilled water containing of nitric acid (pH = 2) to give
total concentrations of metals of 0.04 M. Then, the co-precipitation of hydroxides was carried out by addition of
aqueous ammonia up to pH 10 at 30 ◦C under stirring. Ultrasonic processing (10 min, 35 kHz, 150 W, Sapphire
UZV-4.0) was used during dissolution of salts in distilled water and after precipitation. The resulting precipitates
were filtered, washed with distilled water-ethanol solution (H2O/C2H5OH = 9 vol.), dried at 150 ◦C for 12 h, and
calcined in static air by heating at a rate of 4 ◦C/min from room temperature to 500 ◦C and kept at 500 ◦C for 1 h
in a muffle furnace.
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2.2. Characterization

Powder XRD data were collected at room temperature (Rigaku MiniFlex 600) with CuKα radiation. Particle
size (dXRD) was calculated by Scherrer equation taking into account the instrumental broadening using germanium
as reference; dXRD was calculated from (111), (220), (311) peaks. Quantitative phase analysis was calculated by
the Rietveld method.

Specific surface area (SBET) of the powders was measured by a conventional nitrogen adsorption method at
77 K (TriStar 3000 Micromeritics). Pore-size distributions were calculated from desorption isotherm, using BJH
method. Samples were degassed at 120 ◦C for 5 h prior to measurement.

TEM analyses were conducted on an Omega Leo-912AB transmission electron microscope with accelerating
voltage of 100 kV.

The XPS spectra were measured on an Axis Ultra DLD spectrometer (Kratos Analytical) using a monochro-
matic AlKα source (1486.6 eV, 150 W). The spectrometer was operated in fixed analysis energy mode, with a
pass energy of 20 eV for high resolution spectra and 160 eV for survey spectra. The photoelectron spectra were
recorded with 0.1 eV increments. The energy scale of spectrometer was calibrated according to the standard
procedure with respect to Au 4f7/2, Ag 3d5/2, and Cu 2p3/2 photoelectron peaks of pure metals at 83.96, 368.21
and 932.62 eV, respectively. The surface charging effect in the spectra was compensated against the C–H states
in the C 1 s spectra with the energy assumed to be 285.0 eV. The measurements were carried out at a pressure
of 10−7 Pa at room temperature. Quantitative surface chemical analyses were calculated from the high-resolution
core-level spectra, following the removal of a non-linear Shirley background.

Mass spectrometric analysis was performed using a MALDI-TOF mass spectrometer (Bruker UltraFlex 2)
equipped with a 337 nm 110 µJ nitrogen laser. All measurements were performed in the linear mode by detecting
positive and negative ions. Mass spectra were recorded with a laser power of 80–95 % of maximum. “Shots” were
carried out in different parts of the samples. At the target, a surface double-sided tape was placed on stainless
steel, on which the samples were applied and then dried at room temperature. On the basis of the molecular-mass
isotope distribution patterns, formulas of proposed compounds corresponding to the m/z ratios are proposed.

The catalytic activity of the synthesized samples in the oxidation of CO was determined by the flow method
at atmospheric pressure. The process was conducted in a U-shaped quartz reactor at a gas hourly space velocity of
1800 h−1 within a temperature range of 20–500 ◦C. The temperature was measured with a thermocouple placed
in the center of the catalytic bed. The model gas mixture had the following composition, vol. %: CO – 4.2; O2 –
9.6; N2 – balance. The concentrations of gases were measured on a Konik-Tech HRGC 5000B gas chromatograph.

3. Results and discussion

XRD patterns (Fig. 1a) of fresh and used catalysts are perfectly indexed as the pure cubic phase, indicating
the formation of solid solutions by the incorporation of respective dopant ions into the ceria lattice and stability
of this system during catalysis. According to TEM (Fig. 1b), the images reveal that the particle size is about
10 nm and nearly spherical in shape with an agglomerated structure. All samples have IV type adsorption curves
with a hysteresis loop of H2, indicating the presence of mesopores in the systems [11]. The pore size distribution
of samples (polymodal distribution of pores, 2–6 nm) is presented in Fig. 1c. Table 1 traces the evolution of
the microstructure of the catalysts before and after catalytic test. It is clearly demonstrated that no phase and
morphological changes were observed and the catalyst was stable.

TABLE 1. Main characteristics of ceria-based catalysts

No Sample
dXRD,

nm

dTEM,
nm

SBET,
m2g−1

Pore diameter,
nm

T50 (T100) CO
conversion, ◦C

fresh
Gd0.1Ti0.1Zr0.1Ce0.7O2

9 6–12 83 2–6 210 (263)

used 10 7–13 82 2–6 —

Ce 3d photoelectron peaks displayed a complex nature of spectrum originated from the existence of multiple
oxidation states and overlapping of Ce 4f levels with O 2p states during the primary photoemission process.
According to XPS data [12] Ce, Ti, and Zr cations have charge +4, and Gd has +3; also the existence of another
phase or cation coordination on the surficial region is possible that can be interpreted in terms of the interaction
between dopant and cerium species, i.e. Ce–O–Me bond formation, which induced more number of oxygen defects
at the interface by the substitution of Ce4+ with the dopant. XPS spectrum indicated the absence of the Ce3+ state
in these spectra in contrast to other many works, and significant changes were not observed [12].
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FIG. 1. XRD pattern (a), TEM images (b) and pore size distribution (c) of samples. Blue –
before catalysis, red – after catalysis

Figure 2 shows LDI-TOF spectra of the samples in the positive and negative ion recording modes. The positive
spectra are almost identical, and no evident changes were observed after the catalytic reaction. The main structural
cationic fragments in the mass spectra (besides collateral fragments, containing of Na, K, Mg, Ca. . . , being only
impurities) are presented in Table 2. Fragments of Ce with other dopants are detected. Gd-containing fragments
are difficult to identify due to equal m/z ratio of Gd (157) and CeOH (157) fragments. Also the repeatability
of CeO(CeO2)n and (CeO2)n fragments (see example in Fig. 2a) are presented. Another situation is in negative
spectra (Fig. 2b). The cleaning of surface by CO was occurred during catalysis. MeO−

4 fragments are detected,
and Cl- and (Na, K, Mg, Ca)CO3-containing fragments are not. Fig. 3 shows interesting area of the spectra: CeO−

4

fragment, CO2 and H2O adsorbed molecules on it were presented in the fresh sample, but after catalytic test CeO
and CeO2 fragments with CO3 functional group (CeOCO−

3 and CeO2CO−
3 fragments, accordingly) were. This

is in agreement with a redox mechanism where ceria reduction is initiated at the contact-interface area, forming
reduced ceria (active catalytic site (special domains [8], like CeO−

4 ) and transforms to used site (CeOCO−
3 and

CeO2CO−
3 ), which is then oxidized by gas-phase oxygen and transforms again to CeO−

4 . So, it can be assumed that
the vicinity of the oxidized sites, promoting the adsorption of CO, and reduced sites, promoting the dissociative
adsorption of O2, can accelerate the reaction, provided that the reaction limiting step is the reaction of adsorbed
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CO and dissociative adsorbed oxygen, thus results in a Langmuir-Hinshelwood model, or the chemisorption of CO
takes place on the surface, while the lattice oxygen in ceria also involves in the reaction, thus resulting in a Mars
van-Krevelen model [13]. Therefore, based on previous and presented LDI-TOF spectra data the proposed steps
of the reaction can be suggested (Fig. 4). During the CO oxidation Ce4+ is reduced to Ce3+, accompanied by
extraction of oxygen from the lattice, which is consumed to oxidize CO to CO2. The defect mobility of oxygen
on the surface has a large influence on the CO oxidation activity and is determined critically by the structure, size
and morphology of catalyst. The nanosize ceria contributes a high surface area to volume ratio, and doping with
transition metal oxides could create even more active defect sites and lead to enhanced CO conversion [14].

FIG. 2. LDI-TOF spectra of the samples in positive (a) and negative (b) ion recording modes.
Blue – before catalysis, red – after catalysis

4. Conclusions

Mesoporous materials based on nanosized ceria were synthesized by a sonochemical method and characterized
by complex methods. The method of laser desorption ionization-time of flight mass spectrometry (LDI-TOF)
was used to characterize the surface of fresh and used after CO oxidation catalyst and thereby determine the
catalytic sites. It was demonstrated that the active sites of oxidation could be proposed by using LDI-TOF data of
positive and negative ion fragments and probable steps (possible mechanism) of the reaction could be suggested.
Consequently, this work demonstrated that the LDI-TOF mass spectrometry is a promising method for these goals.
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TABLE 2. The main structural cationic fragments in the mass spectra

ions m/z, Da

Ti+ 48

TiO+ 64

TiO2
+ 80

Zr+ 91

ZrO+ 107

ZrO2
+ 123

Ce+ 140

CeO+ 156

CeOH+ 157

Gd+ 157

CeO2
+ 172

GdO+ 173

CeO2·H2O
+ 190

CeOTi+ 204

CeOOTi+ 220

OCeOOTi+ 236

ions m/z, Da

CeOZr+ 247

OCeOOTiO+ 252

CeOOTi+ 263

OCeOOZr+ 279

OCeOOZrO+ 295

CeOOCe+ 312

CeOGd+ 313

CeOOCeO+ 328

CeOOCeOH+ 329

CeOOGd+ 329

OCeOOCeO+ 344

OCeOOCeO+ 345

CeOOGdO+ 345

CeO(CeO2)
+
n

(CeO2)
+
n

FIG. 3. LDI-TOF spectra of the samples in negative ion recording mode (delineated area in
Fig. 1b). Blue – before catalysis, red – after catalysis
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FIG. 4. Representation of possible steps of CO oxidation reaction in according to LDI-TOF
spectra (anionic fragments with charge of −1)
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