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Waveguides with fast oscillating boundary
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We consider an elliptic operator in a planar waveguide with a fast oscillating boundary where we impose Dirichlet, Neumann or Robin boundary

conditions assuming that both the period and the amplitude of the oscillations are small. We describe the homogenized operator, establish the

norm resolvent convergence of the perturbed resolvent to the homogenized one, and prove the estimates for the rate of convergence. It is shown

that under the homogenization, the type of the boundary condition can change.
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1. Introduction

We study the problem of homogenization of boundary value problems in domains with a fast oscillating
boundary when such boundary is given by the graph of the function x2 = η(ε)b(x1ε

−1), where ε is a small
positive parameter, η(ε) is a positive function tending to zero as ε→ +0, and b is a smooth periodic function. The
parameter ε describes the period of the boundary oscillations while η(ε) is their amplitude.

In previous results, the weak or strong resolvent convergence of the solutions was proved and the resolvents
were also treated in various possible norms. In some cases, the estimates for the convergence rate were proven.
It was also shown that when constructing the next terms of the asymptotics for the perturbed solutions, one can
get estimates for the convergence rate or improve it [1–8]. In some cases, complete asymptotic expansions were
constructed [9–12].

One more type of established results is the uniform resolvent convergence for the problems. Such convergence
was established just for few models, see [13, Ch. III, Sec. 4], [8]. The estimates for the rates of convergence
were also established. In both papers, the amplitude and the period of oscillations were of the same order. At the
same time, the uniform resolvent convergence for the models considered in the homogenization theory provided
quite strong results. Moreover, recently a series of papers by M. Sh. Birman, T. A. Suslina, V. V. Zhikov and
S. E. Pastukhova have stimulated interest in this aspect (see [14–27] and references therein and further papers
by these authors). The uniform resolvent convergence was shown to hold true for the elliptic operators with
fast oscillating coefficients and the estimates for the rates of convergence were obtained. There are also similar
results for some problems in bounded domains, see [26]. Similar results but for the boundary homogenization
were established in [28–32]. Here, the Laplacian in a planar straight infinite strip with frequently alternating
boundary conditions was considered. Such boundary conditions were imposed by partitioning the boundary into
small segments where Dirichlet and Robin conditions were imposed in turn. The homogenized problem involves
one of the classical boundary conditions instead of the alternating ones. For all possible homogenized problems,
the uniform resolvent and the estimates for the rates of convergence were proven and the asymptotics for the
spectra were constructed.

In the present paper, we also consider the boundary homogenization for the elliptic operators in unbounded
domains but the perturbation is a fast oscillating boundary. As the domain, we choose a planar straight infinite
strip with a periodic fast oscillating boundary; the operator is a general self-adjoint second order elliptic operator.
The operator is regarded as an unbounded one in an appropriate L2 space. On the oscillating boundary, we
impose Dirichlet, Neumann, or Robin conditions. Apart from a mathematical interest in this problem, as a physical
motivation, we can mention a model of a planar quantum or acoustic waveguide with a fast oscillating boundary.

Our main result is the form of the homogenized operator and the uniform resolvent convergence of the
perturbed operator to the homogenized one. This convergence is established in the sense of the norm of the
operator acting from L2 into W 1

2 . The estimates for the rate of convergence are provided. Most of the estimates
are sharp. In the case of the Dirichlet or Neumann conditions on the oscillating boundary, the homogenized problem
involves the same condition on the mollified boundary no matter how the period and amplitude of the oscillations
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behave. Provided the amplitude is not greater than the period (in order), the Robin conditions on the oscillating
boundary leads us to a similar condition but with an additional term in the coefficient. If the amplitude is greater
than the period, the homogenization transforms the Robin conditions into those of Dirichlet. The last result is in a
good accordance with a similar case, treated in [33]. The difference is that in [33], the strong resolvent convergence
was proven provided the coefficient in the Robin conditions was positive, while we succeeded to prove the uniform
resolvent convergence provided the coefficient is either positive or non-negative and vanishing on the set of zero
measure. All the results stated in this paper are proved in [34].

2. Problem and main results

Let x = (x1, x2) be the Cartesian coordinates in R2, ε be a small positive parameter, η = η(ε) be a non-
negative function uniformly bounded for sufficiently small ε, b = b(t) be a non-negative 1-periodic function
belonging to C2(R). We define two domains, cf. Fig. 1:

Ω0 := {x : 0 < x2 < d}, Ωε := {x : η(ε)b(x1ε
−1) < x2 < d},

where d > 0 is a constant, and its boundaries are indicated as:

Γ := {x : x2 = d}, Γ0 := {x : x2 = 0}, Γε := {x : x2 = η(ε)b(x1ε
−1)}.

By Aij = Aij(x), Aj = Aj(x), A0 = A0(x), i, j = 1, 2, we denote the functions defined on Ω0 and satisfying the
belongings Aij ∈W 2

∞(Ω0), Aj ∈W 1
∞(Ω0), A0 ∈ L∞(Ω0). Functions Aij , Aj are assumed to be complex-valued,

while A0 is real-valued. In addition, functions Aij satisfy the ellipticity condition:

Aij = Aji,

2∑
i,j=1

Aijzizj > c0(|z1|2 + |z2|2), x ∈ Ω0, zj ∈ C. (2.1)

By a = a(x) we denote a real function defined on {x : 0 < x2 < δ} for some small fixed δ, and it is supposed
that a ∈W 1

∞({x : 0 < x2 < d}).

FIG. 1. Domain with oscillating boundary

The main object of our study is the operator:
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where νε = (νε1 , ν
ε
2) is the outward normal to Γε. In the case of Dirichlet conditions on Γε we denote this operator

as HD
ε,η , while for Robin conditions it is HR

ε,η . The former also includes the case of Neumann conditions since the
function a can be identically zero.

Rigorously, we introduce HD
ε,η as the lower-semibounded self-adjoint operator in L2(Ωε) associated with the
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in L2(Ωε) with the domain D(hD
ε,η) := W 1

2,0(Ωε, ∂Ωε). Hereinafter D(·) is the domain of a form or an operator,

and W j
2,0(Ω, S) denotes the Sobolev space consisting of the functions in W j

2 (Ω) with zero trace on a curve S lying
in a domain Ω ⊂ R2. The operator HR

ε,η is introduced in the same way via the sesquilinear form:

hR
ε,η(u, v) :=

2∑
i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)
L2(Ωε)

+

2∑
j=1

(
Aj

∂u

∂xj
, v

)
L2(Ωε)

+

2∑
j=1

(
u,Aj

∂v

∂xj

)
L2(Ωε)

+ (A0u, v)L2(Ωε) + (au, v)L2(Γε),

with the domain D(hR
ε,η) := W 1

2,0(Ωε,Γ).
The main aim of the paper is to study the asymptotic behavior of the resolvents of HD

ε,η and HR
ε,η as ε→ +0.

To formulate the main results we first introduce some additional operators.
By HD

0 we denote operator (2.2) in L2(Ω0) subject to Dirichlet conditions. We introduce it by analogy with
HD
ε,η as associated with the form:

hD
0 (u, v) :=

2∑
i,j=1

(
Aij

∂u

∂xj
,
∂v

∂xi

)
L2(Ω0)

+

2∑
j=1

(
Aj
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, v

)
L2(Ω0)

+
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(
u,Aj

∂v

∂xj

)
L2(Ω0)

+ (A0u, v)L2(Ω0),

(2.3)

in L2(Ω0) with the domain D(hD
0 ) := W 1

2,0(Ω0, ∂Ω0). The domain of operator HD
0 is W 2

2,0(Ω0, ∂Ω0) that can be
shown by analogy with [35, Ch. III, Sec. 7,8], [36, Lm. 2.2].

Our first main result (proved in section 2 in [34]) describes the uniform resolvent convergence for HD
ε,η .

Theorem 2.1. Let f ∈ L2(Ω0). For sufficiently small ε, the estimate:

‖(HD
ε,η − i)−1f − (HD

0 − i)−1f‖W 1
2 (Ωε) 6 Cη1/2‖f‖L2(Ω0),

holds true, where C is a constant independent of ε and f .

The next four theorems describe the resolvent convergence for operator HR
ε,η . Given a0 ∈ W 1

∞(Γ0), let HR
0

be the self-adjoint operator in L2(Ω0) associated with the lower-semibounded sesquilinear symmetric form:

hR
0 (u, v) :=

2∑
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(
Aij
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2∑
j=1

(
Aj

∂u

∂xj
, v

)
L2(Ω0)

+

2∑
j=1

(
u,Aj

∂v

∂xj

)
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with the domain D(hR
0 ) := W 1

2,0(Ω0,Γ). It can be shown by analogy with [35, Ch. III, Sec. 7,8], [36, Lm. 2.2]
that the domain of HR

0 consists of the functions u ∈W 2
2,0(Ω0,Γ) satisfying Robin conditions:(

∂

∂ν0
+ a0

)
u = 0 on Γ0,

∂

∂ν0
:= −

2∑
i=1

Ai2
∂

∂xi
−A2. (2.4)

First, we consider the particular case of Neumann conditions on Γε, i.e., a = 0. Operator HR
ε,η and associated

quadratic form hR
ε,η are re-denoted in this case by HN

ε,η and hN
ε,η . By HN

0 , we denote the self-adjoint lower-
semibounded operator in L2(Ω0) associated with the sesquilinear form hN

0 which is hR
0 taken for a0 ≡ 0. Its

domain is the set of the functions in W 2
2,0(Ω0,Γ) satisfying boundary conditions (2.4) with a0 = 0. The resolvent

convergence in this case is given in following theorem (for the proof see section 3 in [34]).

Theorem 2.2. Let f ∈ L2(Ωε). Then for sufficiently small ε the estimate

‖(HN
ε,η − i)−1f − (HN

0 − i)−1f‖W 1
2 (Ωε) 6 Cη1/2‖f‖L2(Ω0)

holds true, where C is a constant independent of ε and f .
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Assume now a 6≡ 0. Here we consider separately two cases:

ε−1η(ε)→ α = const > 0, ε→ +0, (2.5)

ε−1η(ε)→ +∞, ε→ +0. (2.6)

The first assumption means that the amplitude of the oscillation of curve Γε is of the same order (or smaller)
as the period. The other assumption corresponds to the case when the amplitude is much greater than the period.
In what follows, the first case is referred to as a relatively slow oscillating boundary Γε while the other describes
relatively high oscillating boundary Γε.

We begin with the slowly oscillating boundary. We denote:

a0(x1) := a(x1, 0)

1∫
0

√
1 + α2

(
b′(t)

)2
dt. (2.7)

The proof of the following theorem is given in section 3 in [34].

Theorem 2.3. Suppose (2.5) and let f ∈ L2(Ωε). Then, for sufficiently small ε, the estimate

‖(HR
ε,η − i)−1f − (HR

0 − i)−1f‖W 1
2 (Ωε) 6 C(η1/2(ε) + |ε−2η2(ε)− α2|)‖f‖L2(Ω0)

holds true, where function a0 in (2.4) is defined in (2.7), and C is a constant independent of ε and f .

We proceed to the case of the highly oscillating boundary Γε. Here, the homogenized operator happens to
be quite sensitive to the sign of a and zero level set of this function. In the paper, we describe the resolvent
convergence as a is non-negative. We first suppose that a is bounded from below by a positive constant.
Surprisingly, but here the homogenized operator has the Dirichlet condition on Γ0 as in Theorem 2.1. The
proof of the following Theorem is given in section 4 in [34].

Theorem 2.4. Suppose (2.6),
a(x) > c1 > 0, c1 = const, (2.8)

and that the function b is not identically constant. Let f ∈ L2(Ω0). Then, for sufficiently small ε, the estimate:

‖(HR
ε,η − i)−1f − (HD

0 − i)−1f‖W 1
2 (Ωε) 6 C

(
η1/2 + ε1/2η−1/2

)
‖f‖L2(Ω0) (2.9)

holds true, where C is a constant independent of ε and f .

In the next theorem, that is proved in section 4 in [34], we still suppose that a is non-negative but can have
zeroes. An essential assumption is that zero level set of a is of zero measure. We let b∗ := max

[0,1]
b.

Theorem 2.5. Suppose (2.6),
a > 0, (2.10)

and that the function b is not identically constant. Assume also that for all sufficiently small δ, the set
{x : a(x) 6 δ, 0 < x2 < (b∗ + 1)η} is contained in an at most countable union of the rectangles
{x : |x1 −Xn| < µ(δ), 0 < x2 < (b∗ + 1)η}, where µ(δ) is a some nonnegative function such that µ(δ) → +0
as δ → +0, and numbers Xn, n ∈ Z, are independent of δ, are taken in the ascending order, and satisfy uniform
in n and m estimate:

|Xn −Xm| > c > 0, n 6= m. (2.11)

Let f ∈ L2(Ω0). Then, for sufficiently small ε, the estimate:

‖(HR
ε,η − i)−1f−(HD

0 − i)−1f‖W 1
2 (Ωε)

6 C
(
η1/2 + ε1/2η−1/2δ−1/2 + µ1/2(δ)| lnµ(δ)|1/2

)
‖f‖L2(Ω0)

(2.12)

holds true, where C is a constant independent of ε and f , and δ = δ(ε) is any function tending to zero as
ε→ +0.

Let us discuss the main results. We first observe that under the hypotheses of all theorems we have the cor-
responding spectral convergence, namely, the convergence of the spectrum and the associated spectral projectors –
see, for instance, [37, Thms. VIII.23, VIII.24]. We also stress that in all Theorems 2.1–2.5 the resolvent convergence
is established in the sense of the uniform norm of bounded operator acting from L2(Ω0) into W 1

2 (Ωε).
In the case of the Dirichlet conditions on Γε, the homogenized operator has the same condition on Γ0 no

matter how the boundary Γε oscillates, slowly or highly. The estimate for the rate of convergence is also universal
being O(η1/2). Despite here we consider a periodically oscillating boundary, in the proof of Theorem 2.1 this fact
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is not used. This is why its statement is also valid for a periodically oscillating boundary described by the equation
x2 = ηb(x1, ε), where b is an arbitrary function bounded uniformly in ε and such that b(·, ε) ∈ C(R). The estimate
is Theorem 2.1 is sharp, see the discussion in the end of Sec. 2 in [34].

A similar situation occurs if we have Neumann conditions on Γε. Here, Theorem 2.2 says that the homogenized
operator is subject to Neumann conditions on Γ0 and the rate of the uniform resolvent convergence is the same as
in Theorem 2.1, namely, O(ε1/2). This estimate is again sharp, as the example in the end of Sec. 3 in [34] shows.

Once we have Robin conditions on Γε, the situation is completely different. If the boundary oscillates slowly,
the homogenized operator still has Robin conditions on Γ0, but the coefficient depends on the geometry of the
original oscillations, cf. (2.7). The estimate for the rate of the resolvent convergence in this case involves an
additional term in comparison with the Dirichlet or Neumann cases, cf. Theorem 2.3. The estimate in this theorem
is again sharp, see the example in the end of Sec. 3 in [34].

As boundary Γε oscillates relatively highly, the resolvent convergence changes dramatically. If coefficient a is
strictly positive, the homogenized operator has Dirichlet conditions on Γ0. A new term, ε1/2η−1/2, appears in the
estimate for the rate of the uniform resolvent convergence, cf. Theorem 2.4. We are able to prove that this term is
sharp, see the discussion in the end of Sec. 4 in [34].

Provided function a is non-negative and vanishes only on a set of zero measure, the homogenized operator
still has Dirichlet conditions on Γ0, but the estimate for the rate of the uniform resolvent convergence becomes
worse. Namely, the behavior of a in a vicinity of its zeroes becomes important. This is reflected by functions
µ(δ) and δ in (2.12). The latter should be chosen so that δ → +0, ε1/2η−1/2δ−1/2 → +0, ε→ +0, that is always
possible. The optimal choice of δ is so that:

µ1/2(δ)| lnµ(δ)|1/2 ∼ ε1/2η−1/2δ−1/2,

δµ(δ)| lnµ(δ)| ∼ εη−1. (2.13)

As we see, the choice of δ depends on a particular structure of µ(δ). The most typical case is µ(δ) ∼ δ1/2, i.e.,
the function a vanishes by the quadratic law in a vicinity of its zeroes. In this case, condition (2.13) becomes:

δ3/2| ln δ| ∼ εη−1,

which implies:
δ ∼ ε2/3η−2/3| ln εη−1|−2/3.

Then, the estimate for the resolvent convergence in Theorem 2.5 is of order O
(
(η1/2 + ε1/6η−1/6| ln εη−1|1/3

)
.

We are not able to prove the sharpness of estimate (2.12), but in the end of Sec. 4 in [34] we provide some
arguments showing that estimate (2.12) is rather close to being optimal.

In conclusion, we discuss the case of Robin conditions on highly oscillating Γε when the coefficient a does
not satisfy the hypotheses of Theorems 2.4, 2.5. If it is still non-negative but vanishes for a set of non-zero values,
and at the end-points of this set the vanishing happens with certain rate like in Theorem 2.5, we conjecture that
the homogenized operator involves mixed Dirichlet and Neumann conditions on Γ0. Namely, if a(x1, 0) ≡ 0 on
ΓN0 and a(x1, 0) > 0 on ΓD0 , Γ0 = ΓN0 ∪ ΓD0 , it is natural to expect that the homogenized operator has Neumann
conditions on ΓN0 and Dirichlet one on ΓD0 . This conjecture can be regarded as the mixture of the statements of
Theorems 2.2 and 2.5. The main difficulty of proving this conjecture is that the domain of such homogenized
operator is no longer a subset of W 2

2 (Ω0) because of the mixed boundary conditions. At the same time, this
fact was essentially used in all our proofs. An even more complicated situation occurs once a is negative or
sign-indefinite. If a is negative on a set of non-zero measure, it can be shown that the bottom of the spectrum of
the perturbed operator goes to −∞ as ε → +0. In such cases, one should study the resolvent convergence near
this bottom, i.e., for the spectral parameter tending to −∞. This makes the issue quite troublesome. We stress that
under the hypotheses of all Theorems 2.1–2.5, the bottom of the spectrum is lower-semibounded uniformly in ε.
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