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Model of tunnelling through double quantum layer in a magnetic field
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Several explicitly solvable models are constructed for electron tunneling in a system of double two-dimensional periodic arrays of quantum dots

with two laterally coupled leads in a homogeneous magnetic field are constructed. The theory of self-adjoint extensions of symmetric operators

is used for modelling of electron transport. Dependencies of the transmission coefficient on the magnetic field, the energy of electron and the

distance between layers are investigated. The results are compared with those of tunnelling through the corresponding single-layer periodic

arrays.
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1. Introduction

Since the publication of famous Hofstadter paper [1], research interest in the spectral properties of two-
dimensional periodic arrays in a magnetic field has greatly increased. The fractal structure of the spectrum
has been a theoretical result for long time, but subsequently, experimental confirmation was obtained. Electron
tunneling through periodic array of quantum dots in a homogeneous magnetic field has been intensively investigated
over the last few years because it can be relevant for nanotechnology applications [2–4].

There are several different approaches for building models of quantum dot arrays. In this paper, the zero-range
potential model [5,6] based on the theory of self-adjoint extensions of symmetric operators is used (see, e.g., [7–12]
and references in [13]). One of its benefits is that the model is explicitly solvable.

In double-layer lattices, the layer number provides an additional degree of freedom, which leads to some
interesting experimentally measurable physical effects [14]. We suggest several explicitly solvable models for
double two-dimensional layer of quantum dots using the approach described in [15].

Because of high quality of nanostructure devices, large Fermi wave length (i.e. the de Broglie wavelength of
electrons with energy close to the Fermi energy) (4×10−8 m) and long mean free path of electron (10−5 m) can be
observed. Therefore, one deals with the ballistic regime of electron transport. In this case, the Landauer-Buttiker
formalism can be used to derive the conductivity σ for the nanostructure with several leads from the transmission
coefficient T (E)|E=EF (here EF is the Fermi energy).

In the simplest case (one incoming and one outgoing channel), the Landauer formula has the form
σ = e2T

h̄(1−T ) [16]. Here, e is the electron charge, h̄ is the Planck’s constant. The geometry of a nanostructure can
influence transmission coefficient significantly [17].

In this article we, consider tunneling in the system consisting of double two-dimensional periodic array (with
square or hexagonal (honeycomb) lattices in each layer) of quantum dots with two connected semi-infinite leads
orthogonal to the plane of the array. We study the influence of the magnetic field and tunneling electron energy
on the transmission coefficient and compare our results with the tunneling through the corresponding single-
layer periodic arrays studied earlier [18, 19]. The main ideas of the present paper was described in an extended
abstract [20].

We start from the Hamiltonian of a single particle in constant homogeneous magnetic field B. Let us assume
that particle has mass m and electric charge e. Since the space is R3, we choose a standard basis i, j,k such that
B is collinear to k: B = Bk, B 6= 0. Then, the particle can move freely along z axis, and the state space of the
model is L2(R2), where R2 is the plane based on vectors i, j.

The Hamiltonian H0 has the following form:

H0 =
1

2m

(
p̂− e

c
A(r)

)
, (1)

where c is the speed of light, p̂ = −ih̄∇ is the two-dimensional momentum operator, A(r) is a vector potential of
the field B (B = rotA). Vector potential is not unique, we will use the symmetric gauge (A(r) = 1

2B × r).



Model of tunnelling through double quantum layer in a magnetic field 195

The following standard notations are used: ω = |eB|/cm is the cyclotron frequency; Φ0 = 2πh̄c/|e| is the
quantum of the magnetic flux; ξ = ±B/Φ0 — number of the flux quanta through the unit area in R2. The sign
of ξ is chosen in such a way that the condition ξeB > 0 holds. We will also use the system of units in which
e = h̄ = m = c = 1, to simplify the calculations. Then, H0 can be rewritten in the following form:

H0 = −1

2

[(
∂

∂x
+ πiξy

)2

+

(
∂

∂y
− πiξx

)2
]
. (2)

We will also need the Green function of H0, which has the form ( [6]):

G0(r, r′, E) =
1

2π
Γ

(
1

2
− E

ω

)
exp

(
−πir ∧ r′ − 1

2
πξ‖r − r′‖2

)
× Φ

(
1

2
− E

ω
, 1, πξ‖r − r′‖2

)
. (3)

Here, Γ(x) is the Euler Gamma-function, Φ(a, c, x) is the confluent hypergeometric function of the second
kind [21].

2. Tunnelling through double layer

Note that different explicitly solvable models can be built here, depending on how electron tunneling between
layers is considered (see Fig. 1 and Fig. 2). Both model types will be built here for hexagonal and square lattices.

FIG. 1. Model with immediate tun-
nelling between layers

FIG. 2. Model with channel be-
tween layers represented by wire of
finite length

2.1. Model with immediate tunneling between layers

First, we build the model for the square lattice. We assume that the state space of the model is a direct sum
of two identical state spaces, one for each layer:

H = L2(R2)⊕ L2(R2). (4)

Then, the unperturbed Hamiltonian has the following form:

H0 = HL ⊕HL, (5)

where HL is the Hamiltonian for the single layer with lattice Ξ (see, e.g., [20]).
To use the Krein’s resolvent formula, we first restrict operator HL onto the set of smooth functions vanishing

at the points of the lattice, let the restricted operator be SL. Then, the restriction of H0 has the form:

S0 = SL ⊕ SL. (6)

The deficiency space for S0 is the direct sum:

G = GL ⊕ GL, (7)

where GL = l2(Ξ) is the deficiency space for operator SL.
In its turn, the Krein Q-function is the direct sum:

Q = QL ⊕QL, (8)

where QL is the Krein Q-function for the corresponding single layer.
Let f be a function from l2(Ξ), then the Krein Γ-function of pair (HL, SL) for a single layer has the following

form:
(ΓL(ζ)f)(r) =

∑
γ∈Ξ

G0(r,γ; ζ)f(γ), (9)
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and the Krein Γ-function for the whole system can be defined as the direct sum:

Γ = ΓL ⊕ ΓL. (10)

Finally, using the Krein resolvent formula for infinite deficiency indices, we obtain an expression for the Green
function of H:

G(r, r′; ζ) = G0(r, r′, ζ)−
∑

γ,γ′∈Ξ⊕Ξ

[Q(z) +A]−1
γ,γ′G0(r,γ; ζ)G0(γ′, r′; ζ). (11)

Now, we need a self-adjoint operator. It is related with the properties of A. We assume that the probability
of tunneling between non-adjacent points of the lattice is negligible. Due to the periodicity of the system, the
Hamiltonian of a single layer HL should be invariant with respect to the magnetic translation group transformations
(see, e.g., [25]), therefore, we have the following property for the terms of operator AL of the single layer:

ALλ−γ,µ−γ = exp
(
iπξ(γ ∧ (λ− µ))

)
ALλ,µ . (12)

As a consequence, it is sufficient to define elements ALλ,0 (see [22] for more detailed explanation):

ALλ,0 = α
(
δ(λ1, 0)

(
δ(1, λ2) + δ(−1, λ2)

)
+ δ(0, λ2)

(
δ(λ2, 1) + δ(λ2,−1)

))
. (13)

Here α is some constant which characterizes the intensity of the interaction.
Now, we need to take into account tunneling between layers, hence, operator A takes the following form:

A =

[
AL αI

αI AL

]
. (14)

In the case of hexagonal lattice the main change is different magnetic translations group which lead to changes
of the form of operator AL [26]:

ALλi,λj = α
[
δ(λi − a1,λj − b) + δ(λi − a2,λj − b) + δ(λi − a1 − a2,λj − b)

+ exp

(
2

3
iπξ(δ(λi + a1 − b,λj)− δ(λi + a2 − b,λj))

)
×
(
δ(λi + a1 − b,λj) + δ(λi + a2 − b,λj) + δ(λi + a1 + a2 − b,λj)

)]
. (15)

2.2. Model with channel between layers

First, we need to define the state space of this model. As in the previous case, the state space of a single
layer is HL. We assume that the distance between layers is d. Let Hv be the state space of a single vertical wire,
Hv = L2([0; d]). Obviously, the state space of the whole set of wires is defined as a direct sum:

HV =
⊕
γ∈Ξ

Hv. (16)

Then, the whole model has the following state space:

H = HL ⊕HV ⊕HL. (17)

Therefore, the Hamiltonian of the system (if the interaction is switched off) has the form:

H = HL ⊕HV ⊕HL, (18)

where HV =
⊕
γ
Hvγ , Hv = − ∂

∂x2
— operator under Neumann conditions at points 0 and d.

Restrict Hv onto D = {ϕ | ϕ(0) = ϕ(d) = 0}, if Sv is the restricted (symmetric) operator and SV =
⊕
γ
Svγ ,

then, the Hamiltonian S = SL ⊕ SV ⊕ SL is the restriction of H .
The deficiency space for operator Sv is Gv = C2, for GV : GV =

⊕
γ
Gvγ . Then, for S, one has:

G = GL ⊕ GV ⊕ GL. (19)

The Green function for Hv is well-known:

Gv(x, x
′; ζ) = − 1

2k sin(kd)

(
cos(k(d− |x′ − x|)) + cos(k(d− (x′ + x)))

)
. (20)
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The Krein Γ-function for a single wire has the following form:(
Γv(ζ)

(
ξ1
ξ2

))
(x) =

(
Gv(x, 0; ζ)ξ1
Gv(x, d; ζ)ξ2

)
. (21)

Then, ΓV =
⊕
γ

Γv and Γ = ΓL ⊕ ΓV ⊕ ΓL. The Krein Q-function for a single wire has the form of 2× 2-matrix:

Qv(ζ) =

[
Gv(0, 0; ζ) Gv(0, d; ζ)

Gv(d, 0; ζ) Gv(d, d; ζ)

]
. (22)

Hence, the Krein Q-function for the set of wires is QV (ζ) =
⊕
γ∈Ξ

Qv(ζ), and for the whole system, we have:

Q(ζ) = QL(ζ)⊕QV (ζ)⊕QL(ζ). (23)

To obtain the matrix of interactions A, let us first define matrices A1V and A2V , which characterize the tunneling
from the first or the second layer, correspondingly, to the layer of vertical wires. For the single wire, we have

A1v =
[
α 0

]
. Then, one has A1V =

⊕
γ∈Ξ

A1vγ . Similarly, Av2 =

[
α

0

]
and AV 2 =

⊕
γ∈Ξ

Av2γ . Consider also

AV 1 = AT1V , A2V = ATV 2. Finally, we get the following matrix A:

A =

 AL A1V 0
AV 1 0 AV 2

0 A2V AL

 . (24)

3. Model of tunnelling

Now, we would like to construct the general model of tunneling through the quantum layer (single or double,
it doesn’t matter). To do that, we use the idea from [27, 28]: let D be any device that is connected to a pair of
semi-infinite leads at points C− and C+ (Fig. 3) We assume that the Green function GD for D is already known.
Let HD be the state space for the device, H± be the state spaces for leads, then, the state space for the whole
system is given as follows:

H0 = H− ⊕HD ⊕H+. (25)

The Hamiltonian of the system without interaction between the device and the channels is just the orthogonal sum
of the corresponding operators:

H0 = H− ⊕HD ⊕H+, (26)

where HD is the Hamiltonian of a charged particle in D, H± is the Hamiltonian of the charged particle in space

L2(R±) under Neumann conditions at the edge (it has the form − ∂

∂x2
). It is easy to find the Green functions

for H±:

G±(x, x′; ζ) =
i

2k

[
exp(ik|x− x′|) + exp(±ik(x+ x′))

]
, (27)

where k2 = ζ.

FIG. 3. Model of the device with connected leads

Using the theory of self-adjoint extensions again, we can obtain the model Hamiltonian H. To do that, we,
first, restrict H0 onto the set of smooth functions vanishing at the points C±, then, build its extension H .

After solving the scattering problem for H , we obtain the following formula for the transmission coeffi-
cient T (E):

T (E) =
|(α−α+Q

D
21)2|

E|det[Q(E) +A]|2
. (28)
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Here A is the matrix of the self-adjoint operator that characterizes the extension,

A =


0 α− 0 0

α− 0 0 0

0 0 0 α+

0 0 α+ 0

 , (29)

Q(E) is the Krein Q-function:

Q(E) =


Q−(E) 0 0 0

0 Q11
D (E) Q12

D (E) 0

0 Q21
D (E) Q22

D (E) 0

0 0 0 Q+(E)

 , (30)

Q±(E) = G±(0, 0;E) and QD is 2 × 2 Krein Q-function for the extension, where Q12
D (E) = Q21

D (E) =
GD(r1, r2;E) and Q11

D (E), Q22
D (E) are the regular parts of GD(r1, r1;E), GD(r2, r2;E), correspondingly. Values

α± describe the quality of contacts C±. This technique was used in [18] to construct a model of tunneling through
single quantum electron layer.

4. Results and comparison with single-layer arrays

For numerical experiments in this section, constants α, α−, α+ were all selected to be equal to 1. Only a finite
fragment of an infinite lattice is used for calculations since points which are far enough from contacts don’t have
much influence on transmission coefficient value. For the square lattice, the basic vectors a1 = (1, 0), a2 = (0, 1)
were used; the hexagonal (honeycomb) lattice is presented as a sum of two square lattices.

The transmission coefficient T is calculated as a function of electron energy E for different values of the
magnetic field B. The resulting function of two values is represented as a contour plot. We assume that both
contacts are in the same lattice cell, calculations show that putting them in different cells of the lattice leads to
decreasing of T but doesn’t add or remove any other significant effects.

During the investigation of tunneling through single-layer lattices, wide zones in the resulting contour plot
with very low value of T were discovered [18, 19]. The widths of these zones are greater than the product of
the Boltzmann constant and the temperature value and, thus, this phenomenon is physically measurable. Our
calculations show that these zones are preserved both in the square and the hexagonal lattice cases (see Figs. 4,
5, 6 and 7). Plots were built for the model with direct tunneling between the layers. The model with channels
between the layers gives one qualitatively analogous result – such zones exist too.

FIG. 4. Dependence of transmission
coefficient value T on electron en-
ergy E and magnetic field B: case
of single-layer square lattice. B and
E are in dimensionless units

FIG. 5. Dependence of transmission
coefficient value T on electron en-
ergy E and magnetic field B: case
of double-layer square lattice. B and
E are in dimensionless units
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FIG. 6. Dependence of transmission
coefficient value T on electron en-
ergy E and magnetic field B: case
of single-layer hexagonal lattice. B
and E are in dimensionless units

FIG. 7. Dependence of transmission
coefficient value T on electron en-
ergy E and magnetic field B: case
of double-layer hexagonal lattice. B
and E are in dimensionless units

It can be observed that the middle of each dark stripe in Fig. 4 and Fig. 5 coincides with some singularity of

Γ

(
1

2
− E

ω

)
(which is one of multipliers in (3)). The dependence of T on B and E shown in the figures is very

complicated. For the hexagonal (honeycomb) lattice, it is also complicated but local oscillations of T have less
amplitude, that is why in Figs. 6, 7 looks more monotone. Such effect is related to the complex structure of the
spectrum of the Hamiltonian for periodic array of quantum dots. Particularly, it is known that if the number of the
magnetic flux quanta through the basic cell of the lattice is rational irreducible fraction N/M , then each Landau
level (energy level for single center in a magnetic field) splits into M sublevels. For the case of irrational flux, the
spectrum has fractal structure. Correspondingly, one has so-called Hofstadter-type “energy-flux” diagram. It was
proved theoretically for different cases (see, e.g., [29,30,32]) and was observed experimentally (see, e.g., [34,35]).
As for the comparison of tunneling for single-layer and double-layer cases, one observes that in the model with
double layer, dark stripes are wider and inside zones between these stripes, T value is, generally, greater. In the
case of the hexagonal lattice, when considering double-layer model, dark stripes pairs are closer to each other and
value of T in zones between them is less than in the single-layer case. The behavior of T in a neighborhoods of
“zero transmission stripes” is shown in details in Figs. 8, 9 for a particular value of the magnetic field.

FIG. 8. Comparison of T (E) for
B = 2.0 (square lattice). Black line
is for double layer model, grey one
is for single layer model. B and E
are in dimensionless units

FIG. 9. Comparison of T (E) for
B = 2.0 (hexagonal lattice). Black
line is for double layer model, grey
one is for single layer model. B and
E are in dimensionless units
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It is also interesting to look for the dependence of transmission coefficient value T on the distance d between
the layers in the models with channels between the quantum layers. The function T (d) is oscillating. It can be
explained by some resonance effects in the quantum structure due to the additional operator for the connecting
segments (see Figs. 10 and 11).

FIG. 10. Dependence of transmis-
sion coefficient T on distance be-
tween layers d (square lattice). d is
in dimensionless units

FIG. 11. Dependence of transmis-
sion coefficient T on distance be-
tween layers d (hexagonal lattice). d
is in dimensionless units
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