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1. Introduction

The spectrum of the many particle Schrödinger operator is closely connected to the spectrum of two-particle
Schrödinger operator. To obtain the two-particle Schrödinger operator (in the continuous case) from the total
Hamiltonian, we can separate the energy of motion of the center of mass such that the one-particle “bound states”
are eigenvectors of the energy operator with separated total momentum (in this case, such an operator is indeed
independent of the total momentum values) [1]. On the lattice case, the “separation of the center of mass” of a
system is associated with the realization of the Hamiltonian as a “laminated operator”, i.e., as the direct integral of
the family h(k), k ∈ Td (where T is a one dimensional torus), of the energy operators of two particles, where k is
the value of the total quasi-momentum [2].

Conditions for the finiteness of the negative spectrum and for the absence of positive eigenvalues of the two-
particle continuous Schrödinger operator H were presented in [3]. The finiteness of the number of bound states
for two-particle cluster operators at some values of the clustering parameter was established in [4]. The sufficient
condition of finiteness of discrete spectrum of two-particle lattice Schrödinger operators was given in [5]. An
example one-dimensional lattice Schrödinger operator having at the same time an infinite number of discrete and
embedded eigenvalues was given in the paper [6]. The existence conditions for eigenvalues of the family h(k)
depending on the energy of interaction and quasi-momentum k have been investigated in [7].

The models which can be obtained investigating differential operators on graphs have already been used by
physicists, a good review of such publications can be found, for example, in [8,9]. Two particle scattering theory on
graphs was studied in [9]. The obtained results are applied to the qualitative description of a simple three-electrode
nanoelectronic device. In [10] and [11], the problem of quantum particle storage in a nanolayered structure was
considered. The authors numerically solved an eigenvalue problem of the corresponding Hamiltonian.

K. Ando et al. [12] described the Schrödinger operators on square, triangular, hexagonal, Kagome, diamond,
subdivision lattices and the spectral properties of these Schrödinger operators were studied with compactly sup-
ported potentials. Conditions for the finiteness of the discrete spectrum and the non-existence of embedded
eigenvalues of these Schrödinger operators with compactly supported potentials were given. The inverse scattering
for discrete Schrödinger operators with compactly supported potentials on Zd and on the hexagonal lattice were
studied in [13,14] in part, in these papers, the discreteness of embedded eigenvalues of these operators was proved.

We consider a discrete Schrödinger operator H on the d−dimensional diamond lattice with any continuous
potential Q, i.e. a perturbation of discrete Laplacian with compact operator. The aim of the present paper is
to prove the finiteness of the discrete spectrum of H . To show this, we use the technique proposed in [15].
First, we, using the well-known Birman-Schwinger principle, we reduce the study number of discrete spectrum
N−(z)(N+(z)) of H , lying to the left (right) from z to the study of the number of eigenvalues n(1, T∓(z)) of the
compact operator T∓(z), lying to the right from 1, i.e. we prove the equalities N∓(z) = n(1, T∓(z)). Further, we
show that the operator-valued function T±(·) is well defined at the limits of the essential spectrum and apply the
Weyl inequality.
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2. Statement of the Main Results

We first give descriptions of the d−dimensional diamond lattice and a discrete Schrödinger operator on the
d−dimensional diamond lattice [12].

Discrete Laplacian on the graph. We denote by G = (V (G), E(G)) the graph that consists of a vertex set V (G),
whose cardinality is at most countable, and an edge set E(G), each element of which connects a pair of vertices.
We assume that the graph is simple, i.e. there are neither self-loop, which is an edge connecting a vertex to itself,
nor multiple edges, which are two or more edges connecting the same vertices. Let v, u ∈ V (G), and e ∈ E(G).
We denote by v ∼ u, when v is adjacent to u by e; by Nv the set of vertices which are adjacent to v, i. e.
Nv = {u ∈ V (G) : u ∼ v}. We denote by deg(v) = ]Nv the degree of v. We assume that the graph G is
connected, which implies that deg(v) > 0 for any v ∈ V (G).

The discrete Laplacian 4d on G is defined as (see [16])

(4df̂)(v) =
1

deg(v)

∑
u∈Nv

[f̂(u)− f̂(v)],

for the function f̂ on V (G). It is well known that −4d is bounded, self-adjoint on

`2(G) =
{
f̂ :

∑
v∈v∈V (G)

|f̂(v)|2 deg(v) <∞
}
.

Higher-dimensional diamond lattice. Let Zd, d ≥ 2, be a d-dimensional integer lattice, (Zd)2 = Zd × Zd be the
Cartesian power of Zd, and l2((Zd)2) be the Hilbert space of square-integrable functions defined on (Zd)2.

Let Ad be a subset of Zd+1 defined as follows

Ad =
{
x ∈ Zd+1 :

d+1∑
i=1

xi = 0
}

and e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed+1 = (0, . . . , 0, 1), vi = ed+1 − ei, i = 1, . . . , d. Then, Ad is
a lattice (see [12]) of rank d in Rd with basis vi, i = 1, · · · , d, i.e.

Ad =
{
v(n) : v(n) =

d∑
j=1

njvj , n = (n1, · · · , nd) ∈ Zd
}
.

The lattice Ad is called d−dimensional diamond lattice.
We put

V = Ad ∪ (p+Ad), p =
1

d+ 1
(v1 + · · ·+ vd).

The set V is vertex set of d−dimensional lattice Ad.
The set of adjacent points of v(n) ∈ Ad and p+ v(n′) ∈ P +Ad are defined by

Nv(n) =
{
p+ v(n′) : n− n′ = (0, . . . , 0), (1, 0, . . . , 0), . . . (0, . . . , 0, 0)

}
,

Np+v(n′) =
{
v(n) : n− n′ = (0, . . . , 0), (1, 0, . . . , 0), . . . (0, . . . , 0, 0)

}
.

Hence deg(v) = d+ 1 for v ∈ Nv(n) or v ∈ Np+v(n).

Discrete Laplacian on higher-dimensional diamond lattice. Using the definition of Discrete Laplacian on Graph
from the definition of adjacent sets on V Discrete Laplacian 4d on V is defined by

((d+ 1)(4d + 1)f̂)(v) = (ĝ1(n), ĝ2(n)),

where
ĝ1(n) = f̂2(n) + f̂2(n− e1) + · · ·+ f̂2(n− ed),

ĝ2(n) = f̂1(n) + f̂1(n+ e1) + · · ·+ f̂1(n+ ed).

Any function f̂ on V is written as f̂(n) = (f̂1(n), f̂1(n)), n ∈ Zd, where f̂1(n) := f̂1(v(n)), f2(n) := f̂2(p +
v(n)). Hence `2(V) is the Hilbert space equipped with the inner product

(f̂ , ĝ)`2(V) :=
∑
v∈Ad

f̂1(v)ĝ1(v)deg(v) +
∑

v∈(p+Ad)

f̂2(v)ĝ2(v)deg(v).
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The discrete Schrödinger operator. Let Td = Rd/(2π)d. We denote by L
(2)
2 (Td) the Hilbert space with inner

product

(f, g)
L

(2)
2

= (f1, g1) + (f2, g2), (fj , gj) =

∫
Td

fj(x)gj(x)dx.

We then define a unitary operator U : `2(V)→ L
(2)
2 (Td)

(U f̂)j = (2π)−d/2
√
d+ 1

∑
n∈Zd

f̂j(n)en·x.

Passing to the Fourier series, we rewrite −(4d + 1) into the following form:

(U(−(4d + 1))U−1f)(x) = (H0f)(x), f ∈ L(s)
2 (Td),

where H0 is a matrices operator for a 2× 2 matrix H0(x)

H0(x) =

(
0 E(x)

E(x) 0

)
,

E(x) =
1

d+ 1

(
1 + eix1 + . . . eixd

)
.

Note that

|E(x)|2 =
1

(d+ 1)2

d+ 1 + 2
∑
j=1

cosx1 + 2
∑
i<j

cos(xi − xj)

 , j = 1, · · · , d.

Hence

min
p
|E(p)| = 0, max

p
|E(p)| = 1,

and the point 0 = (0, . . . , 0) ∈ Td is a unit degenerated maximum point of function |E(·)|2.
Let Q̂ be the potential on `2(V) defined as multiplication operator by real valued, diagonal 2× 2 matrices

(Q̂f̂)(n) =

(
Q̂1(n) 0

0 Q̂2(n)

)(
f̂1(n)

f̂2(n)

)
,

where

Q̂1(n) := Q̂1(v(n)), Q̂2(n) := Q̂2(p+ v(n)), n ∈ Zd.

Throughout the paper, we shall assume that∑
n∈Zd

|Q̂j(n)| <∞, j = 1, 2. (2.1)

The discrete Schrödinger operator is denoted by

Ĥ = −(d+ 1)(∆d + 1) + Q̂.

Passing to the Fourier series, we rewrite Ĥ into the following form

H = H0 + Q,

where

(Qf)(x) =

(
(Q1f1)(x)

(Q2f2)(x)

)
, f ∈ L(2)

2 (Td),

(Qjfj)(x) =

∫
Td

Qj(x− t)fj(t)dt, j = 1, 2,

Qj(x) = (UQ̂j)(x), j = 1, 2.
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The Main Results. Note that from (2.1), it follows that the function Qj(·) is continuous on Td. Hence the operator
Q is a compact operator. By the Weyl theorem, the essential spectrum σess(H) of the operator H coincides with
the spectrum of the unperturbed operator H0.
Lemma 2.1. The spectrum σ(H0) of H0 coincides with the set

{λ : |E(x)|2 = λ2 for some x ∈ Td},

i.e.,
σ(H0) = [−1, 1].

Theorem 2.1. Let Q̂ satisfy (2.1). Then, the number of eigenvalues of H lying in (−∞,−1) ∪ (1,∞) is finite,
i.e. the discrete spectrum of H is a finite set.

The proof of Theorem 2.1 implies the following theorem.

Theorem 2.2. Let vij , i, j = 1, 2 be continuous functions on (Td)2 and V =
(
Vij

)2
i,j=1

, where Vij is an integral

operator with kernel vij(x, y), x, y ∈ Td, d ≥ 2. Then the discrete spectrum of H = H0 + V is finite set.

3. Proof of the Main results

Resolvent of H0. Proof of the Lemma 2.1. The operator H0 − λI has a matrix form(
−λI E

E −λI

)
,

where I is an identity operator and E is operator multiplication by function E(x).
Therefore, the inverse of this matrix has the form(

−λI E

E −λI

)−1
=

(
L−1(λ) 0

0 L−1(λ)

)(
−λI −E
−E −λI

)
,

where L(λ) is operator multiplication by function L(λ, x), L(λ, x) = λ2 − |E(x)|2.
Let us denote by Lλ and Aλ 2× 2 matrix operators

Lλ =

(
L(λ) 0

0 L(λ)

)
, Aλ =

(
−λI −E
−E −λI

)
.

Then the resolvent R0(λ) = (H0 − λI)−1 of H0 has the form

R0(λ) = L−1λ Aλ.

It follows from this that the operator R0(λ) exists if and only if L(λ, x) 6= 0 for all x ∈ Td, i.e iff
λ /∈ {y = |E(x)| : x ∈ Td} = [−1, 1]. Hence, we have σ(H0) = [−1, 1].

The lemma is thus proven.
Remember that L(λ, x) > 0 as |λ| > 1 for all x ∈ Td. Therefore L(λ) is a positive operator for all real λ with

|λ| > 1. Hence Lλ is a positive operator for all real λ with |λ| > 1. A positive root L−1/2λ of L−1λ has the form

L
−1/2
λ =

(
L−1/2(λ) 0

0 L−1/2(λ)

)
,

where L−1/2(λ) is an operator multiplication by function 1/
√
L(λ, ·), |λ| > 1.

Let

Aλ(x) =

(
−λ −E(x)

−E(x) −λ

)
.

For any fixing x ∈ Td the eigenvalues of the matrices Aλ(x) are ξ−(λ, x) = −λ − |E(x)| and ξ+(λ, x) =
−λ+ |E(x)|. The numbers −λ± |E(x)| are positive as λ < −1 and negative as λ > 1. Then, Aλ ≥ 0 as λ < −1
and −Aλ ≥ 0 as λ > 1. Since the operator L−1λ is commutative with Aλ, the operator L−1λ Aλ is self-adjoint and
L−1λ Aλ ≥ 0 as λ < −1, −L−1λ Aλ ≥ 0 as λ > 1.

The positive roots [R0(λ)]1/2, λ < −1 and [−R0(λ)]1/2, λ > 1 of the operators R0(λ), λ > 1 and −R0(λ),
λ < 1 have the following forms, respectively:

R0(λ)1/2 = L
−1/2
λ A

−1/2
λ as λ > 1 (3.1)
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and

[−R0(λ)]1/2 = L
−1/2
λ [−Aλ]−1/2 as λ < −1. (3.2)

Lemma 3.1.The positive roots [Aλ(x)]−1/2 and [−Aλ(x)]−1/2 of the matrix Aλ(x), λ < −1 and −Aλ(x), λ > 1
are given, respectively, by

A
−1/2
λ =

1

2

 √
ξ−(λ, x) +

√
ξ+(λ, x)

[√
ξ−(λ, x)−

√
ξ+(λ, x)

]
E(x)
|E(x)|(√

ξ−(λ, x)−
√
ξ+(λ, x)

)
E(x)
|E(x)|

√
ξ−(λ, x) +

√
ξ+(λ, x)


and

[−Aλ]1/2(x) =
1

2

 √
−ξ−(λ, x) +

√
−ξ+(λ, x)

[√
−ξ−(λ, x)−

√
−ξ+(λ, x)

]
E(x)
|E(x)|(√

−ξ−(λ, x)−
√
−ξ+(λ, x)

)
E(x)
|E(x)|

√
−ξ−(λ, x) +

√
−ξ+(λ, x)

 .

Proof. The eigenvectors of the matrix Aλ(x) corresponding to the eigenvalues ξ−(λ, x) and ξ+(λ, x) are

ϕ− = 1/
√

2 (1, E(x)/|E(x)|) and ϕ+ = 1/
√

2
(
E(x)/|E(x)|, −1

)
, respectively, with ||ϕ±|| = 1. There-

fore the matrix Aλ(x) in a sense operator can be represented as

Aλ(x) = ξ−(λ, x)(·, ϕ−)C2ϕ− + ξ+(λ, x)(·, ϕ+)C2ϕ+,

where (·, ·)C2 is a usual scalar product of C2. Therefore the positive roots [Aλ(x)]1/2, λ < −1 and [−Aλ]1/2(x),
λ > 1 of the matrices Aλ(x), λ < −1 and −Aλ(x), λ > 1 have the forms

[Aλ(x)]
1/2

=
√
ξ−(λ, x)(·, ϕ−)C2ϕ− +

√
ξ+(λ, x)(·, ϕ+)C2ϕ+, λ < 1,

[−Aλ(x)]
1/2

=
√
−ξ−(λ, x)(·, ϕ−)C2ϕ− +

√
−ξ+(λ, x)(·, ϕ+)C2ϕ+, λ > 1.

These equalities prove the desired results of the lemma.

Note that the Lemma 3.1 shows that the matrix valued function [Aλ(·)]1/2, λ ≤ −1
(

[−Aλ(·)]1/2, λ ≥ 1
)

is

bounded for all x ∈ Td and λ ≤ −1
(
λ ≥ 1

)
.

The Birman-Schwinger principle. We define the self-adjoint compact operators T∓(z), acting in the Hilbert space

L
(2)
2 (Td) determined by

T−(z) = R
1/2
0 (z)QR

1/2
0 (z) for z < −1

and

T+(z) = − [−R0(z)]
1/2

Q [−R0(z)]
1/2 for 1 < z.

By N−(z) and N+(z), we denote the number of eigenvalues of the operator H lying to the left from z < −1
and lying to the right from z > 1, respectively.

Let A be a self-adjoint operator acting in a Hilbert space H, and let HA(λ), λ > supσess(A), be the subspace
consisting of the vectors f ∈ H satisfying the condition (Af, f) > λ(f, f). We set

n(λ,A) = sup
HA(λ)

dimHA(λ).

By definition, we have N−(z) = n(−z,−H), −z > 1 and N+(z) = n(z,H), z > 1.
The following lemma is a modification of the well-known Birman–Schwinger principle for the operator H

(see [17, 18]).
Lemma 3.2. For the numbers N−(z) and N+(z) of eigenvalues (counted with multiplicities) of the operator H
we have the equalities, respectively,

N−(z) = n(1,T−(z)), z < −1, (3.3)

and

N+(z) = n(1,T+(z)), z > 1. (3.4)
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Proof. We suppose that u ∈ HH(−z), i.e.,
(Hu, u) < z(u, u)

or
((H0 − zI)u, u) < −(Qu, u).

Then we have
(y, y) < −

(
R

1/2
0 (z)QR

1/2
0 (z)y, y

)
, y = (R0 − zI)1/2u.

Therefore, N−(z) ≤ n
(

1,R
1/2
0 (z)QR

1/2
0 (z)

)
.

By analogous arguments, we obtain the converse statement:

N−(z) ≥ n
(

1,R
1/2
0 (z)QR

1/2
0 (z)

)
.

Hence inequality (3.3) follows. The equality (3.4) can be proven similarly.

Proof of Theorem 2.1. To prove the theorem, we use the technique proposed in [15], i.e., we show that the
operator-valued function T±(·) is well defined at the limits of the essential spectrum and we also use Lemma 3.2
and apply the Weyl inequality [19]

n(a+ b, A+B) ≤ n(a,A) + n(b, B),

which holds for compact operators A and B.
Let us first show that the operator-valued functions T−(·) and T+(·) are continuous in the norm, (−∞, 0] and

[1,∞) respectively.
Note that since 0 is a unite maximum point of |E(·)|2, we have

C1x
2 ≤ |E(x)|2 ≤ C2x

2 for all x ∈ Td.

From this, we get the estimation

1√
L(z, x)

=
1√

z2 − |E(x)|2
≤ C

|x|
, ∀|z| ≥ 1. (3.5)

Using (3.1) and (3.2) we rewrite T−(z) and T+(z) as

T−(z) = L−1/2z A−1/2z QA−1/2z L−1/2z , z < −1

and
T+(z) = L−1/2z [−Az]

−1/2Q[−Az]
−1/2L−1/2z , z > 1.

We denote by q±ij(z) the entries of the matrix operator

[±Aλ]−1/2Q[±Aλ]−1/2.

Then q±ij(z) are integral operators. Since Q(·, ·) and ξ±(z, ·) are continuous functions, respectively on (Td)2 and
Td as |z| ≥ 1, the kernel q±ij(z; ·, ·) of the integral operator q±ij(z) are bounded functions on (Td)2.

It follows from (3.5) that the kernel t±ij(z;x, y) = 1√
L(z,x)

q±ij(z;x, y) 1√
L(z,y)

of T±(z) estimated by

|t±ij(z;x, y)| ≤ C

|x||y|
as x, y ∈ Td,

where the constant C does not depend of z, |z| ≥ 1. This implies that the functions t−ij(z; ·, ·), z < −1 and
t+ij(z; ·, ·), z > 1 are square-integrable on (Td)2 and t∓ij(z; ·, ·) converges almost everywhere to t∓ij(∓1; ·, ·) as
z → ∓1∓0. By the Lebesgue theorem, the operator T∓(z) then converges in the norm to T∓(∓1) as z → ∓1∓0.
Further, using the Weyl inequality, from (3.3) and (3.4) we obtain

N−(z) ≤ n
(

1

2
,T−(z)−T−(−1)

)
+ n

(
1

2
,T−(−1)

)
, z < −1,

N+(z) ≤ n
(

1

2
,T+(z)−T+(1)

)
+ n

(
1

2
,T+(1)

)
, z > 1.

Since the operator T(±1) is compact,

n

(
1

2
,T(±1)

)
<∞.
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For small |z + 1| and |z − 1| we have the equalities, respectively,

n

(
1

2
,T−(z)−T−(−1)

)
= 0

and

n

(
1

2
,T+(z)−T+(1)

)
= 0.

Hence, by Lemma 3.2, the number of eigenvalues of H in (−∞,−1) ∪ (1,∞) must be finite.
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