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In this paper, the properties of solutions for the nonlinear system equations not in divergence form:

|x|n
∂u

∂t
= uγ1∇

(
|∇u|p−2∇u

)
+ |x|nuq1vq2 ,

|x|n
∂v

∂t
= vγ2∇

(
|∇v|p−2∇v

)
+ |x|nvq4uq3 ,

are studied. In this work, we used method of nonlinear splitting, known previously for nonlinear parabolic equations, and systems of equations

in divergence form, asymptotic theory and asymptotic methods based on different transformations. Asymptotic representation of self-similar

solutions for the nonlinear parabolic system of equations not in divergence form is constructed. The property of finite speed propagation of

distributions (FSPD) and the asymptotic behavior of the weak solutions were studied for the slow diffusive case.
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1. Introduction

Consider in Q = {(t, x) : t > 0, x ∈ RN} parabolic system of nonlinear equations not in divergence form:

|x|n ∂u
∂t

= uγ1∇
(
|∇u|p−2∇u

)
+ |x|nuq1vq2 ,

|x|n ∂v
∂t

= vγ2∇
(
|∇v|p−2∇v

)
+ |x|nvq4uq3 ,

(1)

u|t=0 = u0 (x) ≥ 0, v|t=0 = v0 (x) ≥ 0, ∀x ∈ RN (2)

where n, p, γi (i = 1, 2), qi (i = 1, 2, 3, 4) the numerical parameters, ∇ (·) = gradx (·), t and x ∈ RN –
respectively, the temporal and spatial coordinates, u = u (t, x) ≥ 0, v = v (t, x) ≥ 0 are the solutions.

Such systems arise in various applications, such as the spatial segregation of interacting species [1], chemotactic
cell migration in tissues [2], and ion transport through biological and synthetic channels (nanopores) [3].

In [4], the Cauchy problem (1)–(2) was studied for p = 2, n = 0 and the absence of absorption, proved the
existence of a single viscous solutions, and in [5] investigated the existence and uniqueness of a classical solution
of the Cauchy problem for p = 2, n = 0.

In previous research [6], a degenerate nonlinear parabolic system with localized source was considered ut =
uα (∆u+ up (x, t) vq (x0, t)), vt = vβ (∆v + vm (x, t)un (x0, t)). In that work [6], the authors investigated blow-
up properties for a degenerate parabolic system with nonlinear localized sources subject to homogeneous Dirichlet
boundary conditions. The main aim of [6] was to study the blow-up rate estimate and the uniform blow-up profile
for the blow-up solution. At the end, the blow-up set and blow up rate with respect to the radial variable was
considered when the domain Q is a ball.

In [7], the nonlinear degenerate parabolic system ut = vγ1 (uxx + au), vt = uγ2 (vxx + bv) with Dirichlet
boundary conditions was studied. The regularization method and upper-lower solutions technique were employed
to show the local existence of a solution for the nonlinear degenerate parabolic system. The global existence of
a solution was discussed. The finite time blow-up results, together with an estimate of the blow-up time, were
found. The blow-up set with positive measure was analyzed in some detail.

In [8] Chunhua and Jingxue were concerned with the self-similar solutions of the form:

u (t, x) = (t+ 1)
−α
f
(

(t+ 1)
β |x|2

)
,
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for the following degenerate and singular parabolic equation in non-divergence form:

∂u

∂t
= um div

(
|∇u|p−2∇u

)
, m ≥ 1, p > 1.

They first established the existence and uniqueness of solutions f with compact supports, which implies that the
self-similar solution shrinks. On that basis, the convergent rates of these solutions on the boundary of the supports
were also established. Conversely, the convergent speeds of solutions were also considered and compared with the
Dirac function as t tends to infinity.

In [9], Raimbekov studied some properties of solutions for the Cauchy problem for nonlinear parabolic

equations in non-divergence form with variable density |x|n ∂u
∂t

= um div
(
|∇u|p−2∇u

)
, p > 1, 0 ≤ m <

(p− 2) (N + n) + p+ n

p−N
where they obtained a self-similar solution of the Barenblatt–Zeldovich–Kompaneets

type and compared solution methods that proved the asymptotic behavior of solutions in the fast and slow diffusion
cases. In this article, some comparative numerical results were also given for the case m = 0, m = 1 and m = 1.5.
Using this result, the author discussed the properties for the finite speed of heating propagation for divergent
equations and localization for non-divergent case.

In [10] and [11], the authors studied the asymptotic behavior of self-similar solutions of a parabolic system:

|x|n ∂u
∂t

= vα1∇
(
|x|kum1−1∇u

)
+ |x|nuβ1 ,

|x|n ∂v
∂t

= uα2∇
(
|x|kvm1−1∇v

)
+ |x|nvβ2 .

The Zeldovich–Barenblatt type solution of the Cauchy problem was obtained for a cross-diffusion parabolic system
not in divergence form with a source and a variable density. Based on the comparison method, the properties of
finite speed perturbation of distribution is considered.

This paper is devoted to constructing a Zeldovich–Barenblatt type solution for the system equation (1). Based
on comparing solution methods the properties of FSPD of the Cauchy problem for a parabolic system not in
divergence form is established. The asymptotic behavior of a self-similar solution for a nonlinear parabolic system
of equations in non-divergence form for slow diffusion case (depending on value of the numerical parameters) is
discussed.

2. The self-similar system of equations

Below, a method of nonlinear splitting [13] is provided to construct a self-similar system of equations. For
construction of the self-similar solutions of the system (1) in the form:

u (x, t) = (t+ T )
−α1f (ξ) ,

v (x, t) = (t+ T )
−α2ϕ (ξ) ,

ξ = (t+ T )
−γ |x| ,

(3)

where α1 = − 1 + q2 − q4
(1− q1)(1− q4)− q2q3

, α2 = − 1 + q3 − q1
(1− q1)(1− q4)− q2q3

, γ =
1− α1(p+ γ1 − 2)

p+ n
, T > 0,

α1 (p+ γ1 − 2) = α2 (p+ γ2 − 2), it can be a self-similar system of equations:

fγ1ξ1−N
d

dξ

(
ξN−1

∣∣∣∣dfdξ
∣∣∣∣p−2 dfdξ

)
+ α1ξ

nf + γξn+1 df

dξ
+ ξnfq1ϕq2 = 0 ,

ϕγ2ξ1−N
d

dξ

(
ξN−1

∣∣∣∣dϕdξ
∣∣∣∣p−2 dϕdξ

)
+ α2ξ

nϕ+ γξn+1 dϕ

dξ
+ ξnfq3ϕq4 = 0.

(4)

In [12], the qualitative properties of solutions for system (4) in divergence form were studied based on the
self-similar and approximately self-similar approaches.
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3. Slow diffusion (case p+ γi − 2 > 0, i = 1, 2). A global solvability of solutions

The properties of a global solvability for weak solutions of the system (1) were proved using a comparison
principle [14]. For this goal, a new system of equations was constructed using the standard equation method as
in [13]:

u+ (t, x) = (t+ T )
−α1f (ξ) ,

v+ (t, x) = (t+ T )
−α2ϕ (ξ) ,

(5)

where α1 = − 1 + q2 − q4
(1− q1)(1− q4)− q2q3

, α2 = − 1 + q3 − q1
(1− q1)(1− q4)− q2q3

, γ =
1− α1(p+ γ1 − 2)

p+ n
, T > 0,

ξ = (t+ T )
−γ |x|.

In case, α1 (p+ γ1 − 2) = α2 (p+ γ2 − 2) ,

f (ξ) = A1

(
a− ξ

p+n
p−1

)
+

p−1
p+γ1−2

, ϕ (ξ) = A2

(
a− ξ

p+n
p−1

)
+

p−1
p+γ2−2

, (6)

where a > 0, Ai =

(
γ(p+ γi − 2)

(1− γi) (p+ n)

) 1
p+γi−2

| p+ n

p+ γi − 2
|

2−p
p+γi−2 , (i = 1, 2), b+ = max (0, b).

The following notations can be introduced:

ki =
(p− 1) q2i−1
p+ γ1 − 2

+
(p− 1) q2i
p+ γ2 − 2

− p− 1

p+ γi − 2
, hi =

n(p− 1) +N(p+ γi − 2)

(n+ p)(γi − 1)
− p

n+ p
, i = 1, 2,

m1 = Aq1−11 Aq22 , m2 = Aq31 A
q4−1
2 .

Theorem 1. (A global solvability). Let the conditions of p+ γi − 2 > 0, ki ≥ 0,

− N + n

(n+ p) (1− γi)
− hiαi +mia

ki ≤ 0, i = 1, 2,

u+ (0, x) ≥ u0 (x) , v+ (0, x) ≥ v0 (x) , x ∈ RN .

Then, for sufficiently small u0 (x) , v0 (x), the followings holds:

u (t, x) ≤ u+ (t, x) , v (t, x) ≤ v+ (t, x) in Q, (7)

where the functions u+ (t, x), v+ (t, x) defined as above.
Proof. Theorem 1 is proved by the comparing solution method [14]. Hence, comparing solution methods it is
taken the functions u+ (t, x), v+ (t, x). Substituting (5) in (1) the following inequality can be obtained:

f
γ1
ξ1−N

d

dξ

(
ξN−1

∣∣∣∣dfdξ
∣∣∣∣p−2 dfdξ

)
+ α1ξ

nf + γξn+1 df

dξ
+ ξnf

q1
ϕq2 ≤ 0 ,

ϕγ2ξ1−N
d

dξ

(
ξN−1

∣∣∣∣dϕdξ
∣∣∣∣p−2 dϕdξ

)
+ α2ξ

nϕ+ γξn+1 dϕ

dξ
+ ξnf

q3
ϕq4 ≤ 0.

(8)

If the specific form (6) is given for the functions f (ξ), ϕ (ξ), inequality (8) can be rewritten as follows:

− N + n

(n+ p) (1− γ1)
− h1α1 +m1

(
a− ξ

p+n
p−1

)k1
≤ 0,

− N + n

(n+ p) (1− γ2)
− h2α2 +m2

(
a− ξ

p+n
p−1

)k2
≤ 0.

It is easy to check that m1

(
a− ξ

p+n
p−1

)k1
≤ m1a

k1 , m2

(
a− ξ

p+n
p−1

)k2
≤ m2a

k2 .

Then, according to the hypotheses of Theorem 1 and comparison principle, it will be: u (t, x) ≤ u+ (t, x),
v (t, x) ≤ v+ (t, x) in Q, if u+ (0, x) ≥ u0 (x), v+ (0, x) ≥ v0 (x), x ∈ RN .

The proof of the theorem is completed.
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4. Asymptotic of the self-similar solutions

Next, the asymptotic behavior of the self-similar solutions of the system (4) is studied. Self-similar solution
of system equations (4) will be searched for in the form:

f(ξ) = f(ξ)y(η), ϕ(ξ) = ϕ(ξ)z(η), η = −ln
(
a− ξ

p+n
p−1

)
, (9)

where f (ξ) =
(
a− ξ

p+n
p−1

) p−1
p+γ1−2

, ϕ (ξ) =
(
a− ξ

p+n
p−1

) p−1
p+γ2−2

, a > 0.

Then, substituting (9) into (4) for the function y (η) > 0, z (η) > 0, the following system of nonlinear equations
is obtained:

yγ1
d

dη
(L1y) + a11 (η) yγ1 (L1y) + a12 (η)

(
dy

dη
+ a10 (η) y

)
+ a13 (η) yq1zq2 + a14 (η) y = 0 ,

zγ2
d

dη
(L2z) + a21 (η) zγ2 (L2z) + a22 (η)

(
dz

dη
+ a20 (η) z

)
+ a23 (η) yq3zq4 + a24 (η) z = 0.

(10)

Here, ai0(η) = − p− 1

p+ γi − 2
, ai1(η) =

(N + n) (p− 1)

p+ n

e−η

a− e−η
− (p− 1) (1− γi)

p+ γi − 2
, ai2(η) = γ

(
p− 1

p+ n

)p−1
,

ai4(η) = αi

(
p− 1

p+ n

)p
, ai3(η) =

(
p− 1

p+ n

)p
e−siη

a− e−η
, si = 1+

(p− 1) q2i−1
p+ γ1 − 2

+
(p− 1) q2i
p+ γ2 − 2

− p− 1

p+ γi − 2
(i = 1, 2),

L1y =

∣∣∣∣dydη + a10 (η) y

∣∣∣∣p−2(dydη + a10 (η) y

)
, L2z =

∣∣∣∣dzdη + a20 (η) z

∣∣∣∣p−2(dzdη + a20 (η) z

)
.

There, it is assumed that ξ ∈ [ξ0, ξ1), 0 < ξ0 < ξ1, ξ1 = a
p−1
p+n .

Therefore, the function η(ξ) has the properties: η′(ξ) > 0 at ξ ∈ [ξ0, ξ1), η0 = η(ξ0) > 0, lim
ξ0→ξ1

η(ξ) = +∞.

Further, the self-similar system of equations (10) is investigated in the following limitations: lim
η→+∞

aij(η) = a0ij ,

0 <
∣∣a0ij∣∣ < +∞, (i = 1, 2; j = 0, 1, 2, 3, 4).
Through the introduction of transformations (3), (9) and properties η → +∞, study of the solutions of (1) is

reduced to the study of the solutions of (10), each of which is in the vicinity +∞ and satisfies the inequalities:

y(η) > 0, y′ + a10(η)y 6= 0,

z(η) > 0, z′ + a20(η)z 6= 0.

Now, the asymptotic behavior of the positive solutions of (10), having a nonzero a finite limit as η → +∞ is
studied.

5. The main results

Here, we introduce the notations:

ci1 =
1− γi

(p+ γi − 2)
p , ci2 =

1

(p+ n)
p−1

(
αi

p+ n
− γ

p+ γi − 2

)
, ci3 =

1

(p+ n)
p
a

(i = 1, 2) .

Let y(η) = y0+o (1), z(η) = z0+o (1) at η → +∞ and the equality (1 + q1) (γ1 + p− 2) = (1 + q2) (γ2 + p− 2)
is performed.

Then, this is validated by the following theorems:
Theorem 2. Let s1 = 0, s2 = 0. Then, the self-similar solution of system (1) has the asymptotic at |x| →
a
p−1
p+n (t+ T )

γ

uA (t, x) = (T + t)
−α1

(
a−

(
|x|

(t+ T )
γ

) p+n
p−1

)
+

p−1
p+γ1−2 (

y0 + o (1)
)
,

vA (t, x) = (T + t)
−α2

(
a−

(
|x|

(t+ T )
γ

) p+n
p−1

)
+

p−1
p+γ2−2 (

z0 + o (1)
)
,

(11)

where 0 < y0 < +∞, 0 < z0 < +∞ and y0, z0 are the solutions w1, w2 for the system of nonlinear algebraic
equations:

ci1w
p+γi−1
i + ci2wi + ci3w

q2i−1

1 wq2i2 = 0 (i = 1, 2). (12)
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Theorem 3. Let s1 = 0, s2 > 0. Then, the self-similar solution of system (1) has the asymptotic at

|x| → a
p−1
p+n (t+ T )

γ form (11), where 0 < y0 < +∞, 0 < z0 < +∞ and y0, z0 are the solutions w1, w2 for the
system of nonlinear algebraic equations:

c11w
p+γ1−1
1 + c12w1 + c13w

q1
1 w

q2
2 = 0, c21w

p+γ2−1
2 + c22w2 = 0.

Theorem 4. Let s1 > 0, s2 = 0. Then, the self-similar solution of equation (1) has an asymptotic at

|x| → a
p−1
p+n (t+ T )

γ form (11), where 0 < y0 < +∞, 0 < z0 < +∞ and y0, z0 are the solutions w1, w2 the
system of nonlinear algebraic equations

c11w
p+γ1−2
1 + c12w1 = 0, c21w

p+γ2−2
2 + c22w2 + c23w

q3
1 w

q4
2 = 0.

Theorem 5. Let s1 > 0, s2 > 0. Then, the self-similar solution of equation (1) has the asymptotic at

|x| → a
p−1
p+n (t+ T )

γ form (11), where 0 < y0 < +∞, 0 < z0 < +∞ and y0, z0 are the solutions w1, w2 for the
system of nonlinear algebraic equations:

c11w
p+γ1−2
1 + c12w1 = 0, c21w

p+γ2−2
2 + c22w2 = 0.

The proof. Assuming that the system (10) as:

ϑ1(η) = L1y, ϑ2(η) = L2z, (13)

the following identity is obtained:

ϑ
′

1(η) ≡ −a11(η)ϑ1(η)− a12(η)y−γ1ϑ
1
p−1

1 (η)− a13(η)yq1−γ1zq2 − a14(η)y1−γ1 ,

ϑ
′

2(η) ≡ −a21(η)ϑ2(η)− a22(η)z−γ2ϑ
1
p−1

2 (η)− a23(η)zq4−γ2yq3 − a24(η)z1−γ2 .
(14)

Now, we consider the function as:

g1(λ1, η) ≡ −a11(η)λ1 − a12(η)y−γ1λ1
1
p−1 − a13(η)yq1−γ1zq2 − a14(η)y1−γ1 ,

g2(λ2, η) ≡ −a21(η)λ2 − a22(η)z−γ2λ2
1
p−1 − a23(η)zq4−γ2yq3 − a24(η)z1−γ2 ,

(15)

where λi ∈ R (i = 1, 2).
Suppose first that si = 0 (i = 1, 2). Then, the functions gi(λi, η) (i = 1, 2) preserves sign on some interval

[η1, +∞) ⊂ [η0, +∞) for every fixed value λi (i = 1, 2), different from the values satisfying system:

−a011λ1 − a012
(
y0
)−γ1

λ1
1
p−1 − a013

(
y0
)q1−γ1(

z0
)q2 − a014

(
y0
)1−γ1

= 0,

−a021λ2 − a022
(
z0
)−γ2

λ2
1
p−1 − a023

(
z0
)q4−γ2(

y0
)q3 − a024

(
z0
)1−γ2

= 0.

Now, we let si > 0 (i = 1, 2). It is easy to see that the functions gi(λi, η) (i = 1, 2), for every fixed value λi
(i = 1, 2), are different from the values satisfying the system:

−a011λ1 − a012
(
y0
)−γ1

λ1
1
p−1 − a014

(
y0
)1−γ1

= 0,

−a021λ2 − a022
(
z0
)−γ2

λ2
1
p−1 − a024

(
z0
)1−γ2

= 0,

which preserves the sign on some interval [η2, +∞) ⊂ [η0, +∞).
And in the case si < 0 (i = 1, 2), the functions gi(λi, η) (i = 1, 2) can be rewritten in the following form:

g1(λ1, η) ≡ −a11(η)λ1 − a12(η)y−γ1λ1
1
p−1 − a13(η)y1−γ1

(
yq1−1zq2 − a14(η)a−113 (η)

)
,

g2(λ2, η) ≡ −a21(η)λ2 − a22(η)z−γ2λ2
1
p−1 − a23(η)z1−γ2

(
yq3zq4−1 − a24(η)a−123 (η)

)
.

From here:

lim
η→+∞

ai1(η) = − (p− 1) (1− γi)
p+ γi − 2

, lim
η→+∞

ai2(η) = γ

(
p− 1

p+ n

)p−1
,

lim
η→+∞

ai3(η) =∞, lim
η→+∞

ai4(η) = αi

(
p− 1

p+ n

)p
(i = 1, 2)

implies that the functions gi(λi, η) (i = 1, 2) preserve sign on the interval [η2, +∞) ⊂ [η0, +∞), where
λi 6= 0 (i = 1, 2). Thus, the functions gi(λi, η) (i = 1, 2) for all η ∈ [ηi, +∞) (i = 1, 2) satisfy one of the
inequalities:

gi(λi, η) > 0 or gi(λi, η) < 0 (i = 1, 2). (16)

Suppose now that for the functions ϑi(η) (i = 1, 2) limit as η → +∞ does not exist. Consider that case
when one of the inequalities (16) is satisfied. As ϑi(η) (i = 1, 2) are oscillating functions around straight line
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ϑi = λi (i = 1, 2) its graph intersects this straight line infinitely many times in [ηi, +∞) (i = 1, 2). However,
this is impossible, since on the interval [ηi, +∞) (i = 1, 2) just one of the inequalities (16) is valid, and therefore,
from (15), it follows that the graph of the functions ϑi(η) (i = 1, 2) intersects the straight lines ϑi = λi (i = 1, 2)
only once in the interval [ηi, +∞) (i = 1, 2). Accordingly, the functions ϑi(η) (i = 1, 2) has a limit at η → +∞.

By assumption, y(η) = y0 + o (1), z(η) = z0 + o (1) at η → +∞, and the functions ϑi(η) (i = 1, 2) defined
in (13), has a limit at η → +∞. Then y′(η) and z′(η) have a limit at η → +∞, and this limit is zero. Then,

ϑ1(η) =

∣∣∣∣dydη + a10 (η) y

∣∣∣∣p−2(dydη + a10 (η) y

)
=
∣∣a010y0∣∣p−2a010y0 + o (1) ,

ϑ2(η) =

∣∣∣∣dzdη + a20 (η) z

∣∣∣∣p−2(dzdη + a20 (η) z

)
=
∣∣a020z0∣∣p−2a020z0 + o (1)

at η → +∞ and by (14), the derivative of functions ϑi(η) (i = 1, 2) has a limit at η → +∞, which are obviously
equal to zero.

Consequently, the following is necessary:

lim
η→+∞

(
a11(η)ϑ1(η) + a12(η)y−γ1ϑ

1
p−1

1 (η) + a13(η)yq1−γ1zq2 + a14(η)y1−γ1
)

= 0,

lim
η→+∞

(
a21(η)ϑ2(η) + a22(η)z−γ2ϑ

1
p−1

2 (η) + a23(η)zq4−γ2yq3 + a24(η)z1−γ2
)

= 0.

From this expression, it is easy to see that the system (13) has a solution (y(η), z(η)) with a finite non-zero limit,
at η → +∞, necessary, for compliance with one of the conditions of Theorems 2, 3, 4, 5.

Consequently, by the transformations introduced by (3) and (9), self-similar solution of the system equation (1)

has an asymptotic at |x| → a
p−1
p+n (t+ T )

γ of the following form:

uA (t, x) = (T + t)
−α1

(
a−

(
|x|

(t+ T )
γ

) p+n
p−1

)
+

p−1
p+γ1−2 (

y0 + o (1)
)
,

vA (t, x) = (T + t)
−α2

(
a−

(
|x|

(t+ T )
γ

) p+n
p−1

)
+

p−1
p+γ2−2 (

z0 + o (1)
)
.

The theorems are thus proved.
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