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1. Introduction

The first, most general definitions of loaded equations and various loaded equations were classified in detail
by A.M. Nakhushev [1].

Definition 1. An equation Au(xz) = f(x) is called a loaded equation in n dimensional Euclidean domain {2 if the
operator A depends of the restriction of the unknown function to a closed subset of §, of measure strictly less
than n.

To that end, some local and non-local problems were investigated for the loaded mixed type equation involving
fractional order integral-differential operators (see [2,3]). In the works [4-7] we can see significant development
in the field of fractional differential equations in recent years. Various phenomena in physics, like diffusion in
a disordered or fractal medium, or in image analysis, or in risk management have been modeled by means of
fractional partial differential equations. In general, there exists no method that yields an exact solution for these
equations. Indeed, we can find numerous applications in viscoelasticity, neurons, electrochemistry, control, porous
media, electromagnetism, etc., (for details, see [8-11] ). See Ref. [12] for deterministic fractional models in
bioengineering and nanotechnology. Fractional calculus is widely applied to the investigation of partial differential
equations of mixed type and hyperbolic type with degenerations (see [7,13,14] ). In a series of papers (see [15-17]),
the authors considered some classes of boundary value problems for mixed type non degenerating and degenerating
differential equations involving Caputo and Riemann-Liouville fractional derivatives of order 0 < o < 1.

2. Preliminaries
2.1. Riemann-Liouville and Caputo integral-differential operators

Definition 2. Let f(z) be an absolutely continuous function over (a,b). Then the left and right Riemann—Liouville
fractional integrals order o (o € R™) (respectively) are (see [4], p. 69)

(I f)e= ﬁ /f(t)(ac -0 dt, z>a (1)

b
(1)« = ﬁ/f(t)(t _ 2Nt @ <b. 2
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Definition 3. The Riemann-Liouville fractional derivatives D%, f and D2, f of order a(x € R™), are defined by
(see [4], p. 70):

o __1 (4 " B (N n =« x> q;
(Daagf) L= F(TL _ a) (dx) a/ (Z‘ _ t)a—n—i-l dt’ [ } + 1a > a; (3)
b
S S A /() o o
(Dzb )$ - F(n _ a) < d.’L‘) JC/ (t . x)a7n+1dtv [ ] =+ 17 < b, (4)

respectively, where [] is the integer part of . In particular, for « = N U {0} we have (D, f)z = f(z),
(D% f) x = f(x), (DL )z = ™ (2); (DI f)z = (—1)"f")(z), n € N, where f(")(x) is the usual derivative
of f(z) of order n.

Definition 4. Caputo fractional derivatives ¢ D5, f and ¢Dgyf of order a > 0 (o« ¢ N U {0}) are defined by
(see [4], p. 92):

NP B S 10 B |

(CDazf)w - F(?’l _ O() / (LC _t)a7n+1dt7 n= [a] + la T > a; (5)
@ 1" f(n) 4

(cDgpf)z = FEn)a) / (- LL')OE)HJFI dt, n=[a]+1, z<b; (6)

respectively. From (3)-(6), as a conclusion we will have: £k — 1 < a < k, k € N; consequently, while for
a € NU {0} we have

(cDoxf) = f(x), (cDoWf)z = f(a),
(D f)ae = f"(@), (cDff)z=(=1)"f"(z),neN.
2.2. Gauss hypergeometric function

Gauss hypergeometric function F'(a, b, ¢, z) is defined in the unit desk as the sum of the hypergeometric series
(see [4], p. 27):

ZOO (a),(b)g 2"
F(aabv C,Z) = FRR (7)

|

— (), k!

where |z| < 1,a,b€ C,ce C\Z; and (a)o =1, (a)p=ala+1)...(a+n—-1)= I(a) ( 1,2,...)
> I > 0 0o— 4 n — _F(a+n)’ y Sy
One such analytic continuation is given by Euler integral representation:
1
L'(c) b—1 —b-1 -

F(a,b,c;z) = 1—2x)° 1- ed 8
(@hei2) = mpagy [ <0 =2 = ), )

0

0 < Reb < Reg, |arg(l — z)] < . The Gauss hypergeometric function F'(a,b,c,z) allows the following
estimation:
c1, if c—a—-0>0, 0<2<1;
F(a,b,c;2) < { ea(1 — 2)7970, if c—a—-b<0, 0<z<1; 9)
cs(1+|In(1—2)]), if c—a—b=0.

2.3. Wright type functions
The elementary definition of the Wright type function at a > 3, a > 0 and for all z € C, is [18]

N - 2"
€as(?) = kZ:o I'(an+ p)'(6 — pn)” (19)
If @« = p =1, then from (10) we have:
15 B > P

k=0
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3. Problem formulation and main functional relation

We consider equation:

—c DS, quZkaB’“ (z,0), at y > 0;
0= k=1 N (12)

(—y) " Ugy — T Uyy + Z arloyu (nﬁ , O), at y <0

k=1
with operators (see (1) and (5)):
1 1

DS y= —— — ) Yuy(x, t)dt, (17 = — — )" u(t, 0)dt 13
oDy HL%QJ@ e (1) @0) = g5 [ w00 (3

m+2 m+2

where 0 < o, B, e < 1, =22 —(—y) 2 , m, pg, qx = const, m > 0.
We set the Q2 domain, bounded with segments: A1 4> = {(z,y) : © =1,0 <y < h}, B1By, = {(z,y) :
=0,0 <y < h}, ByA; = {(z, y) cy =h,0 <z < 1} at the y > 0, and by the characteristics:
AC: ™+ (—y) 2 = 1 BiC: 2" — (—y)mT“ = 0 of equation (12) at y < 0, where Ay (1;0), A, (1;h),
B, (0;0), By (0;h), C (2 w2 m+2). Introduce designations: QT = QN (y > 0), 0~ =QN (y <0).

For equation (12), we consider the following problem: find a solution w(z,y) of equation (12) from the
following class of functions:

W ={u(z,y): u(z,y) € CQANC*Q7), wuz €C(QF), cDgueC(Qf)}

satisfies boundary conditions:

W@, y) a4, =9 ¥),0<y < h, (14)
w(@,y) |5, =)0 <y <h, (15)
u(:v,y)|BlC:h(x)7 0§x§27ﬁ. (16)
and gluing conditions:
lim y uy(gjvy) = /\Uy(xv 70)3 (:Ca 0) S AlBla (17)

y——+0
where ¢(y), ¥(y), h(x) are given functions and A\ = const (A € RY). In order to solve the above problem we
need the following Riemann function.
Its known [19] that the Riemann function for equation (12) at y < 0 on the characteristics coordinate

£E= 2" — (—y)%+2 and n = 2"+ (—y)mTJr2 defined with the Gauss hypergeometric function
2 _ ¢2)26 2 ¢2) (2 2
Nt =& §o” — &) (1" — o
R(fo,ﬂo;f,ﬂ) = ( N ) §F (53 571; ( 2 2) ( 2 2)> ) (18)
(n? — &2)° (no? — €2) (1% = &7) (m? — €2)
where § = 2(#"‘2) In fact, that a solution of the Cauchy problem for equation (12) in the domain 2~ with
m

initial dates
u(z,0) =7(z), 0<z<1;

uy(z,—0) =v (z), 0<z<l, (19

will be given by formula:
n
u(x,y) = k1 / G 52)_6 (n* — t2)_51/_ (t'72) dt—
3

n
b [ (7 - €)' =) 0 - ) e () e
3

n n 25
n 12— £2) (2 — 22
Z/qkl&’z (1120 dt/ sF <57 J5,1; ((7]2 — tQ)) EZQ — ;;)d’z’ (20)
3

—52)
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where

Lo _Tes)  Ta-20) (m+2 -2
YTr2G) P 2 wr2(1—g)\ 2 '
Let us find the relation between 7~ (z) and v~ () transferred from the hyperbolic part 2~ to the line y = 0.
By using condition (16) and taking (13) into account, from (20) we obtain:

t2

o _ k F(l—&) Cos_ [ 1-25 2F(1 q e—1 _

1-26) _ M2 1-26 B 25 1-6 k 2 _ g 1/2—6

70 = g P () - D, /Z / 5)" (120 dsx
0

n 26

(n?) (i - 2?) (1 =8) o5 s [/ 72
| e (o ) o ()7
t

Moreover , replacing 7> ~ 11, t* ~ t, 22 ~ z we have:

n t
~— kQF(l - 6) 1/2 1—2§ ~ F(l — (5) 5 175/ n qktl/z / 1
= —_— D D Tk
v (77) kll—w((s) 0ny (7]) 2%, m 0n Z F(’}/k) dt (t S) ( )dSX
0 k=1 0
n 2% )
i t(m — z)> M(1—0) 515 { m m”]
M p(ss1; dzt Di-op (M 21
/ (m — 1) 2+1/2 ( 2 (m —1) ko om (%) 2

were
() =v () = v (),

) =7 (') =1 (m20).

Considering designations (19) and liIEO y' " uy(z,y) = v (z), 0 < x < 1 from gluing condition (17), we have
Yy—r
vt(z) = v (). (22)

For further consideration, from Eq. (12) at y — 40 considering (13), (22) and

. a—1 _ . 11—«

lim DG, f(y) = I(e) lim y =1 (y)

we obtain:

(z) — ) + Z Pl T(x) = 0. (23)

4. Uniqueness of the solution
Theorem 1. If satisfy conditions A > 0 and
O0<a, B, ie <1, pp<0, q<0, k=1,2,...,n (24)

are satisfied, then, the solution is unique.

Proof. Now, we consider the corresponding homogeneous problem [¢(y) = ¥(y) = 0]. Let us estimate the integral
1

J= / @t (2)da.

\?Ve multiply to 7(x) equation (23) and integrate from 0 to 1:
1 1 1 "
') /T(x)y+(m)d:c = /T”(x)T(x)dx + /T(m) Zpk]& Fr(z)dz. (25)
0 0 0 k=1
Integrating by parts and using the relations 7(0) = 7(1) = 0, we obtain

J= /17(x)1/+(x)d9c = —/(T’(x))2d$+ Fpk jT(x)d!E/(l’—t)ﬁle(t)dt.
0 0 0
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By using the formula (see [8], p. 188):

/zWﬁlcos[z(xft)] dz, 0<~vy<1,
0

_ 1
|:L'7t| 7= T
" () cos 5*

after some simplifications, we will obtain (see [3]):

if‘(lﬁk)o/lq— d:v/ T(t)dt > 0,

k=1

consequently by virtue (24), we will conclude that

1
/T(.’E)I/Jr(l')dx <0. (26)
0

Let us show that v~ (x)dxz > 0 for the hyperbolic domain ™. For this aim we investigate the integral

O\H
\]
—
&

(see (21)):
n o, t n
t1/2 ~ d 26 t _
A(n) znépgf/ L dt/ Fle)ds ></ i F<5, 51,1 =2) Z))dz.
[ &t oo ) e 20
t —
Entering replacement m = ¢ and after some simplifications we have:

t

t1/2dt/( — )" 7 (s)ds x

0

Ot~z

n d n .
400 =3 gy |
0

5+1/2 _ §-3/2
/M ol —t) +1 F(6,9,1;0)do =

(=)'

1 P )
%5 o / 0 12df / P / Fs)ds
~\1—6 ~ ~0—1 ~ r—1
= T(v)I(6) " dn J (1-p) ) (1) ) (tn — s)’

where
p=p/n, t=t/n.
Further, taking 7(0) = ¢(0) into account and integrating by parts on third integral we will obtain:

1 i 1
2 5 ~5+1/2 t1+w g - —
Z 93, ( 1 1+ Vi) 2+ / / / ~D)+1" 7 F (6,0,150) do+
'Yk 0 0 0
N 2 ) 1 5+1/2d i s in 1
- e ~ .
Z I( ++ 6/ ILL / ~ =0-1 dt/ (tn — S)’Yk%/(s)dsx/ [U(ﬁ —t)+ ﬂé 3/2F (0,6,1;0) do+
— T J (L—1) 0
1 i t p
n 5+1/2d — T -
Zr 2+5/ £ /iﬂzf& / tn—s)™ (S)dsx/[”(ﬂ—t)+ﬂ6 YPF (6.6.1:0) do.
k=1 0 0 0

@27
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By changing the order of integration in the last two terms in (27), we obtain:

1

i 1

(240 5+1/2d =94t - ~:

Z 0 (2 40 + k) +’Yk 1+26+7k/ / & ></ [0 D) +ﬂ6 3/2F(57 5,1:0) do+
L0+ DT L

0

i ~ - 1
N q(2+9) ~‘5+1/2du 80 (tn — )™ di D) )03
>t )nlm/T / Un=9) 4t [ ota—1)+ 07 F (5,6,150) do+
=1 /n H 0

T(y +1)T (i — )
/n s
n 1 P
n ~5+1/2d~ B
> 2+25/ (s)ds/ i /52’5(—75)1 (i — s)"* " dix
1 ) (1-R)
0 s/m s/n

1
/ lo(i—1) + ﬂé_S/QF (6,6,1;0) do.
0

Consequently, using inverse replacements ;. = fin and ¢ = ¢, we obtain:

n M 1

9 541/2 k=6
A(n) = ¢(0) - 2+ 0% %) +5+% 0’ 1/ s du(;/ dt ></ 1°7*2F (8,6,1;0) do+
— Ly + 10 (1w —
k= 0 0 0
n n 1
n 24§ 6+1/2d tl 6 ’kat
F(Qk(Jr‘:)F)(é)na—l/%/(S)ds/ H 153/ x/ ‘S 32 p (6,6,1;0) do+
k=1 Tk 0 S (77*:“) S ( 0
n 1 1 s+1/2 o5 ve—1 !
4 5-1 / = H du [t27°(t —s) 5-3/2 )
— 7 7 (s)ds/ - / ———dtx [ [o(u—1t) +1] F(8,6,1;0)do. (28)
;F(W)F@ / S =)' (=) )

There, the following preliminary assertion holds.

Lemma 1. If a function 7(z) has a positive maximum (respectively a negative minimum) at the point z = xg €
(0,1), then v~ (xg) > 0 (respectively v~ (x¢) < 0) at g <0, (k =1,n).

Proof. Let function 7(z) have a positive maximum at the point x = xo € (0,1) and ¢(y) = 0, then, from (28), we
have:

n 2 +6) e o0 M6+1/2dﬂ r tl—é(t _ s)’Yk
Z xo‘s_l/%'(s)ds/ 1_5/ s dtx
1Fw+1 (9) ) S @o—w' ") (u—t)

[o(u—1t)+ 1 *2F (6,6,1;0) do+

o _

n xo xo 12 _
% o1 | = R T B e )”’“ t
T 6 o 7'(s)ds 3 —
SLIORY R el )

1

/ [o(p—1t)+ t]573/2F (6,0,1;0) do
0
From here, due to I'(yx) > 0, T'(6) > 0, ¢, <0, (k=1,n), F(4,6,1;0) > 0 and

Zo Zo

/%’(s)ds:/ tim =T g

ro—S o — S
0 0

we deduce that A(xo) < 0.
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In fact, if 7(x) has a positive maximum at the point x = x then Dé;g‘sf (xo) > 0 (see [19]). Thus, owing

to k1, ke > 0 from (21) at h(z) = 0 on the point of positive maximum, we will also deduce:

5 (a0) = 2 s DY (n0) =~ A(e) >0

Similarly, we can prove that on the point of negative minimum o~ (zg) < 0. The lemma is proved.

Hence, based on the Lemma, we will deduce that
1

/ @) (@)dz > 0.

0

(29)

Thus, due to conditions of the Theorem 1 from (29) and (26) we infer that 7(z) = 0. Consequently, from (21), we

will obtain v~ (z) = 0.

As a conclusion, based on the solution of the first boundary problem for the Eq.(12), [15], [20] owing to

account (14) and (15) we will get u(z,y) =0 in §+, similarly, based on the solution (20) we obtain u(x,y) = 0

in closed domain .

5. The existence of solution

Theorem 2. If all conditions of Theorem 1 are satisfied and
o(y), Y(y) € C (L) NC' (Iy); h(z) € C* (I) NC*(I)

then the solution of the investigating problem is exist.

Proof. Taking (22) into account from Eq.(23) we will obtain
m(z) = f(2)

where

= a)v (x) — nxﬁkp - Dk r— Bkl
fla) = ML)y (@) = o(0) 3 5 kZ_lNﬁko/ B (b dt.

Solution of equation (31) together with conditions T(O) ¥(0), 7(1) = (0) has the form:
x 1
T(x):/(x—t dt—x/l—t t)dt + p(0)(1 — x) + x(0),
0 0
consequently, we can find:
P 1
r@) = [ 10d = [ (1= 05@d+ 00 - 0,
0 0
Taking (13) and (28) into account from (21) we will obtain:

x

v (z) = k- a¥/? / (2 — )27 (t) dt—

0

x T I
= /T/(s)ds/(x“’ R e O zi»du/t%(uw — ) 0%
0

S S

1
(tv — s“’)%dt/ [0 (1 — ) + t]° %2 F (5,6,1;0) do—
0

x T

1 1 \0—1 _es41
Zq rT= 25/ )ds/(xm _Mm) (=25 dpx

0 s

(30)

(€2))

(32)

(33)
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I 1
/ E (e — )10 (10— ) e / o (1 = 1) + £ 7?F (5,6, 1;0) do—

0
n z K
-1 65+1 147, +6 _
Zqzx{;—ﬁ/(xw_Mw)571M2(1j26)du/t 1—-25 (MW_tw)é 1dt><
k=1 0 0
/ koD'(1 — 6)
_w w)0— 3/2F 1: o1 — % 4
[l =)+ R 8 o do + T 0(0), (34)
0
where
__ 1 p_wkl0-9 ., _ (2+9TQ1 =g
1.2 "T mreres) * T 2Ty + DLO)
5 T(1—0)qgw? 5 T =8)2+6+w)qw
% =g = ©(0).
2k T (75)L(6) 2k L(6)T (v + 1)
Further, considering (32) from (33), after some simplifications we will obtain:
T 1 t
7' (x) :Ar(a)/u*(t)dt—AF(a)/(l—t t)dt — er’“ /dt/ (t — )77/ (s)ds+
0 0 0

= Pk / . / B / s— o n xﬁk-‘rl
2%)/“ at [ 1=+ )d OF GororE

0 0

Z (B +1) ﬁk+2> AR )

=1
Substituting (34) into (35), we have:

t

T 1
7 (x) :léAr(a)-/tﬁ%%dt/(tw — )27 () ds— kAT (a / 1 — )tz dt/ )27 (s) ds—
0 0 0 0
n x t n 1
()L)Zqé/tl%g‘;dt/T/(S)A(S t)ds+>\F(oz)Zq,i/ (1 —t)t1- 25dt/ (s,t)ds—
k=1 k=1
n n 1
Zq/ /’7’ B(s,t)ds + A\I'(« Zq/l—ttl 2 dt B(s,t)ds—
k=1 k=19 0
n T t n 1 t
Pk B / Pk B 1
;F(ﬂk O/dto/ (t—s) ds—&—gr(ﬂk 0/ 1—t)dt0/(t—s) (s)ds + F(x), (36)
where
- Pk xﬂ”lpk = 3 [ =L
Fay =202, (Gervarorm ~ G te) ~ @ k_lqk/ tE Ot

0
1

1
" ko AT (o) (1 5 /
(1— )= C(t)dt — (1 — t)t2025 dt +
Zqo/ Ot = = T @)r s

2(1 — 28)ko AT()T(1 — 6)
k1T (0)T(20)

t Iz
146 _
/ W 2(1 2o)du/zl 25(:“’ — 2z )1 6><
S

0

@(0)z% — 1(0) — »(0), 37)
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1

(2 — s“’)’y"dz/ [o(pn” —2¥) + z”]5_3/2F (6,8,1;0) do, (38)
0

t M
1 6o+
B(s,t) = /(t‘*’ — Mw)‘s lluz(l—zlcs) dp
S
1

/z%(u” - z”)1_6(z” — )" Tz x

S

[0 (1% — %) + 212 F (5,5,1;0) do, (39)
0

p "
C(t) = /(tw — u"“’)éilﬂﬂiéjzls)du/thik;gé (Nw . Zw)d—ldzx
0

0

1

/ [0 (1 = 2) + 21" F (6,6,1;0) do. (40)
0

Changing the order of integration in (36), in total, we have integral equation:

7'(z) = /K(w,s)T/(s)derF(:c). 41)
0

Here
K Ki(z,s); <s < ”
(@,8) = Ks(x, s); r<s<l, (42)

n

Ki(z,s) = \I'(«) / (1- t)tlé—;215 [Z QG A(s, t) + Zqu(s,t)

k=1 k=1

dt+

1
=15 (1% — s) 2 gt — / (1 —t)tz=m (t — )P lat| —

T

t7=5 [Z GhA(s,t) + Y g7 B(s,1)
k=1

k=1

dt+

S
=
£

m\a

1

En: Pk /(1 — 1)t —s)"dt + @=9™" (43)
= (k) J Br+1 |
1

Ka(z,s) = AT(a) / (1 )i [Z ahA(s, D) + 3 G2B(s, )

p k=1 k=1

dt—

1 1

A/;r(a)/u e (g —s‘”)%_ldt—kkz::l ngk) /(1 C 1)t — s)Prdt. (44)

In fact, the estimates of functions A(s,t), B(s,t) and C(t) play an important roles for estimating K (z, s). Now,
we estimate |A(s, t)|. Due to properties of the hypergeometric function (9) from (38), we obtain:
t

“w
p _ gP)\Vk
A(s,1)] < /(tp_upy—lm%%wu/zf,—z%@is)&
(ne — 2¢)
S S
Introducing the change of variables z” = s” 4+ (u” — s”) z; and due to (8), we get

S1/2 _Ml/z‘dz _

t
. p_ gp)170H+k 1 —
‘A(S,t)| < ‘tl/Q _SI/Q‘Sm /%M%F (_a1+7k;2+7k _6; 5> d/J .
(tP — uP) 2 S
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In the sequel, due to

we have (see (9))
1 _
F (—2, 14,2+ v — 0 M) < const
s

consequently, changing of variables pu” = s” 4 (t” — s”) up and by virtue formula (8), after some evaluation finally,
we get
|A(s,t)| < (t1/2 - 81/2) s%(t — 8)1% < const. (45)
Similarly, by estimating B(s,t) and C(t) (see (39) and (40)), we can get
|B(s,1)| < (t1/2 - 51/2> sg%g(t —8)" < const, C(t) < const. (46)

Hence, due to class of given functions (see (30)) and (45) , (46) considering (43) and (44) from (37) and (42)
respectively we deduce | K (z, s)| < const, forall 0 <z, s <1, |F(z)| < const, 0 < z < 1. Since kernel K (z, s)
is continuous and function in right-side F'(x) is continuously differentiable, for the solution of integral equation

(41) we can write via resolvent-kernel:
1
7'(z) = F(x) — /3‘%(:}:7 s)F(s)ds, 47)
0

where R(x, s) is the resolvent-kernel of K (x,s). Unknown functions v~ (x) we will find from (34). Solution of
the Problem I in the domain QT we write as follows [15,20]:

1

ueg) = [ Gelow0mpwnin— [ Gelwytapotnin+ [ Gol - & yr(e)ac—
0 0

0

Yy

1
| [ ct@n0m Zpkfﬁk )dedn.
0 0

Here

Yy
1
Go(z — & y) = M/UO‘G(%%&T}WU,
0

(y—ﬁ)a/%l - La/2 |z — & + 2n)| La/2 |z + & + 2n)|
G(%yafﬂl) =5 el/a 2| T a2 | el7a 2\ 7 T La/2
2 n;oo o/ (y —m)*/? o/ (y —m)*/?

is the Green’s function of the first boundary problem Eq. (12) in the domain Q7 with the Riemann-Liouville
fractional differential operator instead of the Caputo ones [20],

oo n

1,8 - z
() = 2 TG gy

is the Wright type function [18] . Solution of the Problem I in the domain Q™ will be found by the formula (20).
Hence, the Theorem 2 is proved.
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