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Interaction of fast and slow varying electromagnetic waves propagating
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Once, a referee asked how one can write an oscillator model for a ferroelectric and the total Maxwell equation for a rapidly varying electric

field. From what is known about polarization, it is a slow function of time and coordinates, but the optical wave is a fast function. However,

there are examples for the interaction of high frequency and low frequency waves in nonlinear wave theory. This means that similar equations

can be written for ferroelectric polarization and electromagnetic waves.
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1. Introduction

The pulse propagation of electromagnetic radiation in different media having a long-range order is an attractive
problem of electrodynamics. There are dielectrics having a permanent polarization in the absence of an external
electric field, which are similar to magneto-ordered media. This simple class of media is ferroelectric. Another
class is the magnetoelectric, where both permanent polarization and permanent magnetization exist, even though the
electromagnetic field is absent. A common feature of these media is their highly nonlinear response to the incident
electromagnetic wave. Nonlinear optical phenomena in the ferroelectric have been considered. The self-focusing
of the few-cycle pulses in ferroelectric [1], the self-interaction processes [2–8], the soliton generation [9–12], the
second harmonic generation [13–15] have been investigated in the last ten-fifteen years.

It is important to note that the order parameter of the ferroelectric (i.e., the polarization) in many cases is
due to lattice dynamics. The result is a slow varying of the polarization in the optical frequency scale. Thus,
electromagnetic wave propagation gives rise to an interaction of the rapidly and slowly varying waves. The aim of
this paper to demonstrate that the Ginzburg–Landau–Devonshir model can be adapted for description of the rapidly
and slowly varying electromagnetic waves in a ferroelectric medium.

2. Base equations

General equations for the description of electromagnetic waves in a ferroelectric material can be written by
using the phenomenological equation:

τ20
∂2P

∂t2
+ γ−1 ∂P

∂t
= − δΦ

δP
,

where Φ = Φ[P,E] is Ginzburg–Landau–Devonshir free energy functional [16–20]:

Φ =

∫
dz

{
1

2
AP2 +

1

4
BP4 +

1

6
CP6 − gE ·P

}
. (1)

This equation must be added to the wave equation for the electric field strength E [21]:

∇×∇×E− µ

c2
∂2E

∂t2
= −4πµ

c2
∂2P

∂t2
. (2)

In the one dimensional case and at C = 0, these equations can be rewritten as:

c2Ezz − Ett = 4πPtt, (3)

τ20Ptt + γ−1Pt + AP +BP 3 = gE. (4)

Here, g = ω2
p/4π – coupling constant
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Let us assume that electromagnetic wave consists of a quasi- harmonic wave and an electromagnetic spike
(wave without carry wave). This means the spectra of these wave parts are not enveloped. Furthermore, let the
following relations be right:

E(z, t) = Es(z, t) + Ef (z, t),

P (z, t) = Ps(z, t) + Pf (z, t), (5)

for a high frequency (HF) Ef , Pf and for a low frequency (LF) Es, Ps components electric field and polarization,
where:

Ef (z, t) =
(
E+eik1z + E−e−ik1z

)
e−iω1t + c.c.,

Pf (z, t) =
(
P+eik1z + P−e−ik1z

)
e−iω1t + c.c.

For the nonlinear terms in (4) one can write:

P 3 = P 3
s + 3P 2

s Pf + 3PsP
2
f + P 3

f .

The third term in this sum can be represented as:

P 2
f = (P+eik1z + P−e−ik1z)2e−i2ω1t + (P+∗e−ik1z + P−∗eik1z)2ei2ω1t

+ 2(P+eik1z + P−e−ik1z)(P+∗e−ik1z + P−∗eik1z). (6)

Hence, this term describes the second harmonic generation (SHG) and the constant field generation. Some part of
this expression takes account in LF part of polarization. The phase mismatch is necessary to get effective SHG,
otherwise that can be neglected.

The next term can be represented as:

P 3
f = (P+eik1z + P−e−ik1z)3e−i3ω1t + (P+∗e−ik1z + P−∗eik1z)3ei3ω1t

+ 3(P+eik1z + P−e−ik1z)2(P+∗e−ik1z + P−∗eik1z)e−iω1t

+ 3(P+eik1z + P−e−ik1z)(P+∗e−ik1z + P−∗eik1z)2eiω1t. (7)

Some of these terms are corresponded with third harmonic generation and some of them describe the self-
interaction. The third harmonic generation will be neglected as well.

3. Reduction of wave equations

The wave equation (3) can be transformed to Fourier form:(
−k2 +

ω2

c2

)
E(k, ω) = −4πω2

c2
P (k, ω).

Due to spectra Es(k, ω), Ef (k, ω) and Ps(k, ω), Pf (k, ω) not being enveloped, the wave equation can be separated
into two parts: (

−k2 +
ω2

c2

)
Es(k, ω) = −4πω2

c2
Ps(k, ω),(

−k2 +
ω2

c2

)
Ef (k, ω) = −4πω2

c2
Pf (k, ω).

In the first equation, the frequencies and wave numbers lie near zero, as all functions Es(k, ω) and Ps(k, ω)
are localized near zero variables. In the second equation, the functions Ef (k, ω) and Pf (k, ω) are localized near
(ω1, k1), (−ω1, k1), (ω1,−k1) and (−ω1,−k1). Considering the slowly varying envelopes of electric fields and
polarizations near the pair of points (ω1, k1) and (ω1,−k1), one can write the following equation:(

−(k ± k1) +
(ω1 + ω)2

c2

)
E±(k, ω) = −4π(ω1 + ω)2

c2
P±(k, ω),

where ω � ω1, k � k1. This is due to narrow wave pocket of quasiharmonic waves. Taking k1 = ω1/c in to
account, this equation can be approximated as:(

∓2kk1 +
2ω1ω

c2

)
E±(k, ω) ≈ −4πω2

1

c2
P±(k, ω),

or (
∓k +

ω

c

)
E±(k, ω) ≈ −4πk1P

±(k, ω).
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This relation (the dispersion relation) corresponds to following equation:

±∂E
±

∂z
+

1

c

∂E±

∂t
= 2iπk1P

±. (8)

This is the base equation for the slowly varying envelopes of the HF electric fields E±(z, t). For LF field Es(z, t)
the wave equation is used:

∂2Es

∂z2
− 1

c2
∂2Es

∂t2
=

4π

c2
∂2Ps

∂t2
. (9)

These equations are coupled through polarizations.

4. Reduction of polarization equations

In both wave equations (8) and (9) the different polarizations presente. The equation for Ps can be written in
following form:

τ20
∂2Ps

∂t2
+ γ−1 ∂Ps

∂t
+APs +B[P 3]s = gEs, (10)

where [P 3]s is mark of slowly varying part of P 3. This part must be extracted from (6) and (7), but there are no
low frequency terms among (7). Then, taking into account (6), we can write:

[P 2
f ]s = 2

(
P+P+∗ + P−P−∗) = 2

(
|P+|2 + |P−|2

)
.

Thus,
[P 3]s = P 3

s + 2
(
|P+|2 + |P−|2

)
.

Now, we can present the evolution equation for the LF-part of polarization:

τ20
∂2Ps

∂t2
+ γ−1 ∂Ps

∂t
+APs +BP 3

s = gEs − 6BPs

(
|P+|2 + |P−|2

)
. (11)

It is worth noting that the slowly varying polarization evolves under both external electric field Es, and the rapidly
varying part of the polarization P±.

To find equation for slowly varying envelopes of fast part of the polarization, it is necessary for one to take
Fourier transformation of the base equation for polarization (4). This leads to:

(−τ20ω2 − iγ−1ω +A)P (ω) +BF [P 3](ω) = gE(ω).

The symbol F [P 3](ω) denotes Fourier image of polarization in cube. The relative variables in this equation
are localized near the points (ω1, k1) and (ω1,−k1) due to narrow wave pockets E(ω) and P (ω). This leads to:(

−τ20 (ω + ω)2 − iγ−1(ω1 + ω) +A
)
P±(ω) +BF [P 3]±(ω) = gE±(ω).

In the general case (the Fourier transformation is linear one), we get:

F [P 3] = F [P 3
s ] + 3F [P 2

s Pf ] + 3F [PsP
2
f ] + F [P 3

f ].

The first term is not zero only near ω = 0, hence this term is not the HF-term. The second term can be written
approximately as:

3F [P 2
s Pf ] ≈ 3P 2

sF [Pf ].

The third term F [PsP
2
f ] is approximately PsF [P 2

f ]. This term is localized near ω = ±ω1 and ω = 0. Hence,
this term is irrelevant. The SHG is not under consideration. The term F [P 3

f ] contents the parts localized near ±3ω

and ±ω. Among the all terms in P 3
f relevant ones are following

P 3
f = 3

[
|P+|2P+ + 2|P−|2P+

]
e−iω1t+ik1z + 3

[
|P−|2P− + 2|P+|2P−] e−iω1t−ik1z + c.c.+ . . . ,

where dots indicate terms, containing eiω1±i3k1z .
Thus, the equation is:[

−τ20 (ω + ω)2 − iγ−1(ω1 + ω) +A
]
P±(ω) + 3BP 2

s P
±(ω) + 3B

(
|P±(ω)|2 + 2|P∓(ω)|2

)
P±(ω) = gE±(ω).

Taking into account ω � ω1 this equation can be reduced to:

(γ−1−i2τ20ω1)(−iω)P±(ω)+(A−τ20ω2
1−iγω1)P±(ω)+3BP 2

s P
±(ω)+3B

(
|P±(ω)|2 + 2|P∓(ω)|2

)
P±(ω) = gE±(ω).

Inverse Fourier transformation for this expression results in the equation:

(γ−1 − i2τ20ω1)
∂P±

∂t
+ (A− τ20ω2

1 − iγω1)P± + 3BP 2
s P

± + 3B
(
|P±|2 + 2|P∓|2

)
P± = gE±.
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If introduce new parameters: the renormalized relaxation time τ1 = 2τ20ω1−iγ−1 and the renormalized Landau
parameter A1 = A− τ20ω2

1 − iω1γ
−1, then the equation for slowly varying part of polarization takes the form:

−iτ1
∂P±

∂t
+A1P

± + 3BP 2
s P

± + 3B
(
|P±|2 + 2|P∓|2

)
P± = gE±. (12)

The equations (8) and (12) describe the forward (E+, P+) and backward (E−, P−) waves propagation,
which are coupled by nonlinear interaction.

5. Unidirectional approximation

Above, the total Maxwell equation was used for description of two waves propagating in both directions along
the z-axis. Frequently, propagation in one direction may be considered. In this case, let us denote E+ = Ẽ,
P+ = P̃ . The system of equations is:

∂Es

∂z
+

1

c

∂Es

∂t
=

2π

c

∂Ps

∂t
, (13)

τ20
∂2Ps

∂t2
+ γ−1 ∂Ps

∂t
+APs +BP 3

s = gEs − 6BPs|P̃ |2, (14)

∂Ẽ

∂z
+

1

c

∂Ẽ

∂t
= 2iπk1P̃ , (15)

−iτ1
∂P̃

∂t
+ (A1 + 3BP 2

s )P̃ + 3B|P̃ |2P̃ = gẼ. (16)

The equations (13) and (14) are the generation of the Maxwell–Duffing system. The extra term in right hand
side of (14) represents the coupling between HF and LF waves.

It should be noted that if one put P̃ = 0, Ẽ = 0 and γ−1 = 0, the system of equations (13) and (14) will be
reduced to model equations, which are used in [2, 3, 8].

6. Conclusion

In this paper, the simplest model of the electromagnetic wave propagation in a one-dimensional ferroelectric
medium is considered. The nonlinear properties of the medium leads to coupling between the high frequency
and low frequency components for electric field and polarization. In the general case, a high frequency incident
optical wave generates both HF and LF responses in the medium. Thus, the interaction of the rapidly and slowly
varying electromagnetic waves will take place. The extremely short electromagnetic pulse or the few-cycle pulses
generate both high and low frequency components of the polarization in a ferroelectric medium. This results in
HF radiation. If this radiation is not taken into consideration, the Maxwell–Duffing model [1, 2, 9] can be used for
describing the extremely short electromagnetic pulse propagation in a one-dimensional ferroelectric medium.

In the 2D epitaxial ferroelectric islands and in the thin films, the size effects on domain configuration and
polarization play a large role in the electromagnetic response [25, 26]. These effects can be accounted for in the
model under consideration.

Here, the parametric processes, for example second harmonic generation, are not considered. However, this
can be done with no problem.

The one-dimensional model is considered. Usually, ferroelectric materials are anisotropic crystals. Taking
into account of this anisotropy will result in the cumbersome system of equations. It is of interest to investigate
nonlinear wave propagation in the framework of these models. The formation of the spatial structures, e.g. the
spatial solitons, the light bullets and needles, is expected.

It has been known that in certain substances the ferroelectricity can be of a purely electronic nature [22–24].
The study of nonlinear wave propagation in such media is very attractive because speed of the electron response
can be comparable to electromagnetic field variation.
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