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1. Introduction

Research on equations of parabolic-hyperbolic and hyperbolic-elliptic types has been conducted heavily. Since,
there are both theoretical and practical uses for their applications, especially in the development of principal parts
of partial differential equations. Moreover, in recent years it has become increasingly important to investigate a
new class of equations, known as loaded equations, as a direct result of issues with the optimal control of the
agro-economical system, long-term forecasting and regulation of groundwater levels and soil moisture [1–4].

Basic questions on the theory of boundary value problems for partial differential equations still exist, and
are equivalent to that of the boundary value problems for loaded differential equations. However, the existence
of the loaded part operator A does not often make it possible to directly apply the known theory of boundary
value problems, for the classical partial differential equations. In view of this, searching for the solutions of
loaded differential equation using preassigned classes, it may be possible to reduce to them to new problems, for
non-loaded equations(see [4–6]).

At the same time, mixed type equations appear in some problems of nanophysics and are present in some
micro- and nanoflow models. Particularly, parabolic-hyperbolic equations are considered in some models of
spinodal decomposition (so-called hyperbolic diffusion, see, e.g. [7, 8]), and also described flow in thin viscous
layers subjected to ultrasonic acoustic field [9].

The present work is devoted to the formulation and investigation of the boundary value problems for a loaded
equation of the mixed parabolic hyperbolic type:

∂

∂x
(Lu) = µ

n∑
i=1

ai(x)Dαi
0x[uy(x, 0)− u(x, 0)], (1)

where

Lu ≡ uxx −
1− sgny

2
uyy −

1 + sgny
2

uy − λu ,

Dαi
0xf(x) =


1

Γ(−αi)

x∫
0

f(t)dt

(x− t)1+αi
, αi < 0,

d

dx
Dαi−1

0x f(x), 0 < αi < 1,

integro-differential operator [4]. D−αi
0x Dαi

0xf ≡ D0
0xf ≡ f(x). We assume, that αn < αn−1 < ... < α1 = α < 1

and coefficients ai = ai(x) ∈ C1[0, 1] ∩ C3 (0, 1) , λ, µ are given real parameters, and λ > 0.
Furthermore, we will discuss how the boundary value problem for the loaded differential equation is associated

with non-local boundary value problems, for classical partial differential equations. In our investigations, we have
formulated first-kind boundary value problems (such as the Tricomi problems) for the linearly loaded, integro-
differential equation of the third order, with mixed operators.
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2. First kind of boundary value problems for a loaded equation of the mixed type

Let Ω1 ⊂ R2 be a domain bounded by the segments AB, BB0, AA0, A0B0 of straight lines y = 0, x = 1,
x = 0, y = h, respectively when y > 0. Ω2 is a characteristic triangle bounded by the segment AB the axis OX
and two characteristics:

AC : x+ y = 0, BC : x− y = 1,

of equation (1) for y < 0.
Let us introduce the following notation:

I = {(x, y) : 0 < x < 1, y = 0}, Ω = Ω1 ∪ Ω2 ∪ I.
Problem 2.1. Find a regular solution u(x, y) equation (1) in Ω, which has continuous derivatives ux(uy), up to
AA0 ∪AB ∪AC (AB ∪AC), and satisfies the boundary value conditions:

u(0, y) = ϕ1(y), u(1, y) = ϕ2(y), ux(0, y) = ϕ3(y), 0 ≤ y ≤ h, (2)

u(x,−x) = ψ1(x),
∂u(x, y)

∂n

∣∣∣∣
y=−x

= ψ2(x), 0 ≤ x ≤ 1

2
, (3)

and the gluing conditions:

uy (x,+0) = uy (x,−0) , (x, 0) ∈ I,
where ϕ1(y), ϕ2(y), ϕ3(y), ψ1(x) and ψ2(x) are the given functions.

Problem 2.2. Find a regular solution u(x, y) equation (1) in Ω, which has continuous derivatives ux(uy), up to
AA0 ∪AB ∪BC (AB ∪BC), and satisfies the boundary value conditions (2),

u(x, x− 1) = ψ̃1(x),
∂u(x, y)

∂n

∣∣∣∣
y=x−1

= ψ̃2(x),
1

2
≤ x ≤ 1, (4)

and the gluing condition:
uy (x,+0) = uy (x,−0) , (x, 0) ∈ I,

where ψ̃1(x) and ψ̃2(x) are the given functions.
We note that physical characteristic problems may reduce to equations which include, some composed operator

in the loaded part. The unique solvability of the analogs of the Tricomi for the loaded differential equations was
investigated in [5, 10], for which the loaded part contains the imputation or imputation operators of the unknown
function.

An important aspect of the investigation of the boundary value problems, is shown by the following theorem.
The following theorem holds.
Theorem 2.1. Any regular solution of equation (1) (when y 6= 0) is represented in the form:

u(x, y) = z(x, y) + w(x), (5)

where z(x, y) is a solution to the equation:

∂

∂x

(
zxx −

1− sgny
2

zyy −
1 + sgny

2
zy − λz

)
= 0, (6)

w(x) is a solution of the following ordinary differential equation:

w
′ ′ ′

(x)− λw
′
(x)− µ

n∑
i=1

aiD
αi(x)
0x w(x) = µ

n∑
i=1

ai(x)Dαi
0x[zy(x, 0)− z(x, 0)]. (7)

Proof of Theorem 2.1.
Let u(x, y), represented by formula (5), be the solution of equation (1) for y < 0. Then, substituting:

∂

∂x
(uxx − uyy − λu)− µ

n∑
i=1

ai(x)Dαi
0x[uy(x, 0)− u(x, 0)] =

∂

∂x
(zxx − zyy − λz) +

+w′′′(x)− λw′(x)− µ
n∑
i=1

ai(x)Dαi
0xw(x)− µ

n∑
i=1

ai(x)Dαi
0x[zy(x, 0)− z(x, 0)] = 0,

satisfies equation (1) for y < 0.
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Then, vice versa, let u(x, y) be a regular solution to equation (1), and w(x) be a certain solution:

w′′′(x)− λw′(x)− µ
n∑
i=1

ai(x)Dαi
0xw(x) = µ

n∑
i=1

ai(x)Dαi
0x[uy(x, 0)− u(x, 0)]. (8)

Let us prove the validity of the relation (5). Manifestly, the function:

u(x, y) = z(x, y) +
µ

λ

x∫
0

(cosh
√
λ(x− t)− 1)

n∑
i=1

ai(x)Dαi
0t [uy(t, 0)− u(t, 0)]dt,

is a solution to equation (1), where z(x, y) is a solution to equation (6), and the function:

u(x, y) = −µ
λ

x∫
0

(1− cosh
√
λ(x− t))

n∑
i=1

ai(t)D
αi
0t [uy(t, 0)− u(t, 0)]dt,

is a partial solution to equation (1). Hence, (1) highlights the validity of the representation (5), i.e.
u(x, y) = z(x, y) + w(x).

It follows from the latter representation that u(x, 0) = z(x, 0) + w(x). Then, (8) provides:

w′′′(x)− λw′(x)− µ
n∑
i=1

ai(x)Dαi
0xw(x)− µ

n∑
i=1

ai(x)Dαi
0x[zy(x, 0)− z(x, 0)] = 0,

and the function z(x, y) = u(x, y)− w(x), satisfies equation (6) for y < 0.
Analogously proved in the case for y < 0. Theorem 2.1 is proved.

Now, invoking that the function ae
√
λx + be−

√
λx + c satisfies equation (6), we can assume without loss of

generality that:
w(0) = w′(0) = w′′(0) = 0, (9)

when studying Problem 2.1 and Problem 2.2.
Let us solve the Cauchy problem for equation (7) with the conditions (9), with respect to w(x). Assuming

that:

f̃(x) = µ

n∑
i=1

ai(x)Dαi
0xw(x) + µ

n∑
i=1

ai(x)Dαi
0x [zy(x, 0)− z(x, 0)],

we write equation (7) in the form:

ω(x) =
1

λ

x∫
0

(
cosh

√
λ(x− t)− 1

)
f̃(t)dt.

The last equality with respect to designation and after some transformation becomes:

ω(x)− µ
x∫

0

K(x, t)ω(t)dt = F (x), 0 ≤ x ≤ 1, (10)

where

K(x, t) =
1

Γ(−αi)

x∫
0

Ai(t)(t− s)−1−αi

(
cosh

√
λ(x− t)− 1

)
dt, αi < 0, (11)

K(x, t) =
1

λΓ(1− αi)

x∫
s

∂

∂t

[
Ai(t)(t− s)−αi

(
cosh

√
λ(x− t)− 1

)]
dt, 0 < αi < 1, (12)

F (x) =
µ

λ

x∫
0

(
cosh

√
λ(x− t)− 1

) n∑
i=1

ai(t)D
αi
0x[zy(t, 0)− z(t, 0)]dt. (13)

The recurring index i = 1, 2, ...n, implies summation. Therefore, solving the next equation with respect to [11],
we have a solution to the Cauchy problem for equation (7) with the conditions (9):

ω(x) =

x∫
0

P (x, t)

n∑
i=1

ai(t)D
αi
0x[zy(t, 0)− z(t, 0)]dt, (14)



416 U. I. Baltaeva

where

P (x, t) =
µ

λ

cosh
√
λ(x− t)− 1 + µ

x∫
t

(
cosh

√
λ(s− t)− 1

)
R(x, s;µ)ds

 . (15)

R(x, s;µ) is the resolvent of the kernel K(x, t), when studying Problem 2.1 and Problem 2.2. Thus, by virtue of
the representation (5), equation (1) Problem 2.1 and Problem 2.2, in view of (9), are all reduced to the following
Problem NP1 and Problem NP2 for equation (6).

We investigate the following problems:
Problem NP1. To find a regular solution to equation (6) in the domains Ω1 and Ω2, which has continuous
derivatives ux(uy), up to AA0 ∪AC (AC), and satisfies the boundary conditions:

z(0, y) = ϕ1(y), z(0, y) = ϕ2(y)− w(1), 0 ≤ y ≤ h, (16)

zx(0, y) = ϕ3(y), 0 ≤ y ≤ h, (17)

z(x,−x) = ψ1(x)−
x∫

0

P (x, t)

n∑
i=1

ai(t)D
αi
0x[zy(t, 0)− z(t, 0)]dt, 0 ≤ x ≤ 1

2
, (18)

∂z(x,−x)

∂n
= ψ2(x)− 1√

2

x∫
0

P ′x(x, t)
n∑
i=1

ai(t)D
αi
0x[zy(t, 0)− z(t, 0)]dt, 0 ≤ x ≤ 1

2
, (19)

and the gluing condition:
zy (x,+0) = zy (x,−0) , (x, 0) ∈ I,

where ϕ1(y), ϕ2(y), ϕ3(y), ψ1(x) and ψ2(x) are given functions, such that ϕ1(0) = ψ1(0).

Problem NP2. To find a regular solution of equation (6) in the domains Ω1 and Ω2, has continuous derivatives
ux(uy), up to AA0 ∪BC (BC), and satisfies the boundary conditions (16), (17),

z(x, x− 1) = ψ̃1(x)−
x∫

0

P (x, t)

n∑
i=1

ai(t)D
αi
0x[zy(t, 0)− z(t, 0)]dt,

1

2
≤ x ≤ 1, (20)

∂z(x, x− 1)

∂n
= ψ̃2(x)− 1√

2

x∫
0

P ′x(x, t)

n∑
i=1

ai(t)D
αi
0x[zy(t, 0)− z(t, 0)]dt,

1

2
≤ x ≤ 1, (21)

and the gluing condition:
zy (x,+0) = zy (x,−0) , (x, 0) ∈ I,

where ψ̃1(x) and ψ̃2(x) are given functions, such that ϕ2(0) = ψ̃1(1).
Since Problem 2.1 and Problem 2.2 were reduced to the equivalent non-local Problems NP1 and NP2 for

the third order mixed type equation (6), we may conclude that Problems 2.1 and 2.2 have a unique solutions,
as a direct result of the unique solvability of the non-local problem. The early 1970’s marked the beginning
of the systematic study of the third and higher order, mixed and mixed composite type PDEs; which contain
parabolic-hyperbolic, hyperbolic-elliptic and elliptic-parabolic operators in the main part. This subject has been
studied extensively and has been developed by numerous mathematicians [12–14], due to, the increasing popularity
of its connection with non-local problems, and the appearance of these PDEs in mathematical models for various
problems which possess physical traits. For instance, while studying problems of moisture transfer in soils,
heat transfer in heterogeneous media, diffusion of thermal neutrons in inhibitors, simulation of various biological
processes, phenomena etc [6, 15–18].

The following theorems hold.

Theorem 2.2. If λ > 0 and ϕ1(0) = ψ1(0),

ϕj(y) ∈ C1[0, h], (j = 1, 2), ϕ3(y) ∈ C[0, h] ∩ C1(0, h),

ψ1(x) ∈ C1 [0, 1/2] ∩ C3 (0, 1/2) , ψ2(x) ∈ C [0, 1/2] ∩ C2 (0, 1/2) ,

then there exists a unique solution to the Problem 2.1 in the domain Ω.
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Theorem 2.3. If λ > 0 and ϕ2(0) = ψ̃1(1),

ϕj(y) ∈ C1[0, h], (j = 1, 2), ϕ3(y) ∈ C[0, h] ∩ C1(0, h),

ψ̃1(x) ∈ C1[1/2, 1] ∩ C3 (1/2, 1) , ψ̃2(x) ∈ C[1/2, 1] ∩ C2 (1/2, 1) ,

then there exists a unique solution to the Problem 2.2 in the domain Ω.

3. Existence of solution to Problem 2.1

Let us introduce the notation:

u(x,±0) = τ(x), uy(x,±0) = ν(x),

now with regards (5) and gluing conditions, we get:

z(x,±0) = τ(x)− ω(x), 0 ≤ x ≤ 1, (22)

∂z(x, y)

∂y

∣∣∣∣
y=±0

= ν(x), 0 < x < 1. (23)

A solution of the Darboux problem for the equation (6) with the boundary value conditions (18), (19) and (22) in
the domain Ω2 can be represented as:

z(x, y) = τ∗(x+ y) + ψ∗1

(
x− y

2

)
− ψ∗1

(
x+ y

2

)
− (24)

−λy
x+y∫
0

τ∗(t)Ī1

[√
λ(x− y − t)(x+ y − t)

]
dt+

√
λ

y∫
0

sin
√
λ (y − t)ψ∗1(−t)dt+

+
√

2

y∫
0

cos
√
λ(y − t)ψ∗2(−t)dt+ λ

x−y
2∫

0

g1 (x− y, x+ y, t)ψ∗1(t)dt−

−λ

x+y
2∫

0

g1 (x+ y, x− y, t)ψ∗1(t)dt+
√

2

x−y
2∫

0

g2 (x− y, x+ y, t)ψ∗2(t)dt−

−
√

2

x−y
2∫

0

g2 (x+ y, x− y, t)ψ∗2(t)dt−
√

2

λ
ψ∗2(0)

{
sin
√
λ

(
x− y

2

)
−

− sin
√
λ

(
x+ y

2

)
+ sin

√
λy + λ(x+ y)

x−y
2∫

0

Ī1

[√
λ(x+ y)(x− y − 2t)

]
sin
√
λtdt−

−λ(x− y)

x+y
2∫

0

Ī1

[√
λ(x− y)(x+ y − 2t)

]
sin
√
λ tdt

}
,

where

g1(x, y, t) =
1√
λ

sin
√
λ
(
t− x

2

)
+ yĪ1

[√
λy(x− 2t)

]
+
√
λy

x/2∫
t

sin
√
λ(t− s)Ī1

[√
λy(x− 2s)

]
ds, (25)

g2(x, y, t) = cos
√
λ
(
t− x

2

)
+ λy

x/2∫
t

cos
√
λ(t− s)Ī1

[√
λy(x− 2s)

]
ds, (26)

ψ∗1(x) = ψ1(x)− w̃(x), ψ∗2(x) = ψ2(x)− 1√
2
w̃′(x),

τ∗(x) = τ(x)− w̃(x),

w̃(x) =
µ

λ

x∫
0

(
1− cosh

√
λ(x− t)

) n∑
i=1

ai(t)D
αi
0t [ν(t)− τ(t)]dt,



418 U. I. Baltaeva

Ī1(x) = I1(x)/x, I1(x) is the modified Bessel function (Bessel function of the first kind with imaginary argu-
ment [19]).

Differentiating (24) with respect to y and passing through the limit y → +0 with the preceding notations and
(23), we obtain first functional relation between the function τ(x) and ν(x), transferred from the Ω1 to AB:

ν(x) + µ

x∫
0

L1(x, t)

n∑
i=1

aiD
αi
0t [ν(t)− τ(t)]dt− (27)

−µ
x/2∫
0

L2(x, t)

n∑
i=1

aiD
αi
0t [ν(t)− τ(t)]dt =τ ′(x)− λ

x∫
0

τ(t)Ī1

[√
λ(x− t)

]
dt+ f(x),

where

L1(x, t) =
1√
λ

sinh
√
λ(x− t) +

x∫
t

(
1− cosh

√
λ(s− t)

)
Ī1

[√
λ(x− s)

]
ds,

L2(x, t), f(x) are continuously differentiable functions.
Further, from (6) considering the property of Problem 2.1, (22) and (23), passing through the limit we obtain:

τ ′′(x)− λτ(x) = k + ν(x) + w′′(x)− λw(x), (28)

where k is an unknown constant to be defined.
The equality (28) is a second functional relation between τ(x) and ν(x), transferred from the domain Ω1

to AB.
Solving equation (28) with respect to τ(x) with the conditions:

τ(0) = ϕ1(0), τ ′(0) = ϕ3(0), (29)

we have

τ(x) =

x∫
0

sinh
√
λ(x− t)√
λ

ν(t) dt− µ

λ

x∫
0

(
1− cosh

√
λ(x− t)

) n∑
i=1

aiD
αi
ot [ν(t)− τ(t)] dt−

k

λ

(
1− cosh

√
λx
)

+ ϕ1(0) cosh
√
λx+

1√
λ
ϕ3(0) sinh

√
λx. (30)

Thus, we get (27) and (30) system of the equations for the functions τ(x) and ν(x). If we write relation (30), in
the form

τ(x)− µ

λ

x∫
0

(
1− cosh

√
λ(x− t)

) n∑
i=1

aiD
αi
ot τ(t) dt =

x∫
0

sinh
√
λ(x− t)√
λ

ν(t) dt−

µ

λ

x∫
0

(
1− cosh

√
λ(x− t)

) n∑
i=1

aiD
αi
ot ν(t) dt− (31)

k

λ

(
1− cosh

√
λx
)

+ ϕ1(0) cosh
√
λx+

1√
λ
ϕ3(0) sinh

√
λx,

and assuming that:

Φ(x) =

x∫
0

sinh
√
λ(x− t)√
λ

ν(t) dt− µ

λ

x∫
0

(
1− cosh

√
λ(x− t)

) n∑
i=1

aiD
αi
ot ν(t) dt− (32)

k

λ

(
1− cosh

√
λx
)

+ ϕ1(0) cosh
√
λx+

1√
λ
ϕ3(0) sinh

√
λx,

for αi < 0 and 0 < αi < 1 applying the Dirichlet permutation integration formula and corresponding to change of
variables s = t+ (x− t)v, we obtain the second kind Volterra type integral equation:

τ(x)− µ
x∫

0

K̃(x, t)τ(t) dt = Φ(x), (33)
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where

K̃(x, t) = − (x− t)−αi

λΓ (−αi)

1∫
0

Ai
(
1− cosh

[√
λ2 (x− t)(1 + v)

])
v1+αi

dv, at αi < 0,

and at 0 < αi < 1,

K̃(x, t) =
(x− t)1−αi

λΓ (1− αi)

1∫
0

v−αi
∂

∂v

[
Ai

(
1− cosh[

√
λ2 (x− t)(1 + v)]

)]
dv.

From the representations of the functions K̃(x, t) and Φ(x), based on the general theory of integral equations [11],
one can be certain that (33) has a unique solution, which is represented as:

τ(x) = Φ(x) +

x∫
0

R̃(x, t)Φ(t)dt, 0 ≤ x ≤ 1, (34)

where R̃(x, t) is the resolvent of the kernel K̃(x, t). Substituting (34) in (27), consider (32) and the sewing
condition, we may obtain the integral equation with a a shift, with respect to ν(x), by which a kernel exists with
weak singularity. Therefore, by using successive approximations [11], with regards to the conditions of the theorem
and (32), we can uniquely define the function ν(x) at λ 6= 0, ai = ai(x) ∈ C[0, 1] ∩ C3(0, 1). Upon determining
τ(x) and ν(x), we find the functions w(x) from (14). Hence, by virtue of the condition τ(1) = ϕ2(0) − w(1), k
are determined uniquely.

After finding τ(x) and ν(x), the solution of the Problem NP1 defined in Ω2 by formula Cauchy–Goursat (24)
or Cauchy in [19] and in the domain Ω1 we arrive to the problem for a non loaded equation of the third order [12].

Thus, we now know all particulars, such that the solution of Problem 2.1, in the domains Ω1 and Ω2 can be
constructed from (5).

Problem 2.1 is uniquely solvable. Thus, Theorem 2.2 is proved. Analogously, one can also prove the
uniqueness of the solution to Problem 2.2.
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