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Mathematical modeling of magnetic field guided colloidal particle deposition
with significant electric double layer interactions
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In this work, we propose a simple theoretical method for predicting the rate and localization of magnetic field guided particle deposition from

aqueous colloids. This method accounts for the colloidal electric double layer interactions between particles and vessel walls. The obtained

results suggest that the colloidal interactions can be used to increase the rate of particle deposition and improve its localization.
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1. Introduction

Colloidal solutions of magnetic particles find an increasing number of applications in biomedicine and mi-
crofluidics. This is due to the fact that the transport of these particles can be remotely controlled through application
of a local magnetic field.

The biocompatibility and non-toxicity of magnetic colloids has led to their extensive use in the following:
targeted drug delivery [1–6]; clinical diagnostics as contrast agents for magnetic resonance imaging [6–10]; tumor
therapy by controlled hyperthermia [9–12]; cytological studies [13–17]; and in catheter embolization of blood
vessels [18].

The precise control and numerous manipulation techniques for magnetic delivery enable its applications in
chemical analysis and processing [19–21], lab-on-a-chip construction [21–23], and in the fabrication of functional
materials [24–26].

When magnetic deposition is used for guided transport and assembly of colloidal matter, the electric double
layer forces can match or even exceed the driving magnetic force. However, this type of interaction is generally
omitted from theoretical studies of field guided magnetic particle transport [2, 27–30].

The aim of this work is to develop a theoretical description of magnetic particle deposition that accounts for
the colloidal electric double layer interactions between the particles and the vessel walls.

2. Methods

2.1. Model system

We consider an aqueous colloidal solution of spherical magnetic particles flowing through a capillary and
subjected to the field of a permanent rectangular magnet (see Fig. 1A). Two coordinate systems are used throughout
this work, with Cartesian coordinates (x, y, z) linked to the magnet and cylindrical coordinates (r, θ, z) linked to
the capillary.

The capillary is characterized by its internal radius R and the closest separation L between the tube interior
and the magnet. The permanent magnet has the dimensions dx, dy , dz along the respective axes.

The particles have a compound structure with superparamagnetic cores embedded in a functionalized shell (see
Fig. 1B). The cores transport the functional materials contained in the shell, guided by the applied magnetic field.

2.2. Magnetic force

The force FM acting on a particle containing superparamagnetic cores in a magnetic field B is given by [31]:

FM = MΣ∇ |B| , (1)

where MΣ is the total magnetic moment of the particle cores along the applied field. The magnetic moment of an
ensemble of identical superparamagnetic cores above the blocking temperature can be expressed as [32]:

MΣ = N M0 Λ

(
M0 |B|
kT

)
, (2)
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FIG. 1. A – Schematic depiction of model system. B – Model particle structure

where Λ(ξ) = coth(ξ)− 1/ξ – Langevin function; N – number of magnetic cores in the particle; M0 – maximum
magnetic moment of a single core; k – Boltzmann constant; T – temperature. The value of M0 can be found by
fitting an experimental magnetization curve with the expression (2).

We use the analytic expressions from [33] to find the components of the magnetic field due a rectangular
permanent magnet;

Bx (x, y, z) =

− K

2

[
Γ (dx − x, y, z − z0) +Γ (dx − x, dy − y, z − z0)−Γ (x, y, z − z0)− Γ (x, dy − y, z − z0)

]z0=dz

z0=0
, (3)

By (x, y, z) =

− K

2

[
Γ (dy − y, x, z − z0) +Γ (dy − y, dx − x, z − z0)−Γ (y, x, z − z0)− Γ (y, dx − x, z − z0)

]z0=dz

z0=0
, (4)

Bz (x, y, z) =

−K
[
Φ (y, dx − x, z − z0) +Φ (dy − y, dx − x, z − z0) + Φ (x, dy − y, z − z0) + Φ (dx − x, dy − y, z − z0) +

Φ (dy − y, x, z − z0) + Φ (y, x, z − z0) + Φ (dx − x, y, z − z0) + Φ (x, y, z − z0)
]z0=dz

z0=0
, (5)

where K is a parameter characterizing the magnetization of the permanent magnet:

Γ (ξ1, ξ2, ξ3) = ln

[√
ξ2
1 + ξ2

2 + ξ2
3 − ξ2√

ξ2
1 + ξ2

2 + ξ2
3 + ξ2

]
,

Φ (ξ1, ξ2, ξ3) =

arctan

[
ξ1
ξ2

ξ3√
ξ2
1 + ξ2

2 + ξ2
3

]
, y 6= 0;

0, y = 0.

2.3. Colloidal force

Solid-liquid interfaces tend to acquire charge due to surface group reactions, leading to the formation of electric
double layers (EDLs) [34]. Overlapping diffuse parts of EDLs give rise to colloidal interaction forces between
interfaces. For like-charged surfaces, these forces typically are repulsive [35].

The colloidal EDL interaction is completely defined by the interfacial charges and the spatial distribution of
dissolved ions compensating those charges. It has been shown that the characteristic time scales of ion and particle
motion allow one to approach the EDL structure problem as quasi-electrostatic [34]. For systems with low-to-
medium surface potentials and absence of multivalent electrolytes in the solution, the mean-field Poisson-Boltzmann
theory provides an adequate description of ion and potential distributions in the system [35].

In present work, we only consider the interactions between particles and capillary walls. The capillary radius R
is taken to be much larger than the particle radius a and the characteristic charge-screening distance in the solution
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(Debye length is less than 1 µm in aqueous solutions). Therefore, we can use the Poisson–Boltzmann equation
solution for a flat wall to describe the electric potential distribution φ(r) in capillary’s EDL [35]:

φ(r) = 2
kT

e
ln

(
1 + λ exp [−κ (R− r)]
1− λ exp [−κ (R− r)]

)
, λ = tanh

(
eζC
4kT

)
, (6)

where ζC – surface (zeta) potential of capillary walls; κ – inverse Debye screening length:

κ2 =
2I e2

εε0kT
,

I – ionic strength of the solution; ε – dielectric permittivity of the solution; ε0 – dielectric constant.
The dominant component of the colloidal EDL interaction is given by the electrostatic force exerted on the

particles by the charged capillary wall and the ions of its EDL. This force can be found from (6) as [35]:

FC = nwQeff 4
kT

e

κλ exp [−κ (R− r)]
1− (λ exp [−κ (R− r)])2 , (7)

where nw = −r/|r| – unit vector normal to the capillary wall, pointing inwards; Qeff – effective particle charge
that can be related to particle surface (zeta) potential ζP as [36]:

Qeff = 4πεε0 ζPa exp (κa) .

2.4. Magnetic particle deposition

We now study the motion of magnetic particles in the described system. The particles are considered to
be carried through the capillary by a laminar liquid flow exhibiting Poiseuille velocity profile. Only the most
significant forces acting on the particles are considered: the magnetic force, the viscous drag and the colloidal
EDL interaction with capillary walls. The resulting equations of motion for a magnetic colloidal particle are:

V̇ =
FM + FC

m
− γ

(
V −VP

)
,

V|t=0 = V0,
(8)

where V – particle velocity; FM – magnetic force (1); FC – colloidal force (7); m – total mass of the particle;
γ = 6πηa/m – viscous friction coefficient; η – dynamic viscosity of the liquid; VP – liquid flow velocity given
by:

VP = izV
max
P

(
1− r2

R2

)
, (9)

here iz – unit vector in the direction of z axis; V max
P – maximum flow velocity.

When the inertial term V̇ in (8) is negligible, the system evolves in a quasi-stationary regime (QSR). The
velocity a particle would have in QSR is denoted as U and can be found from (8) as:

U =
FM + FC

γm
+ VP. (10)

We will now derive a sufficient a priori condition for the quasi-stationary regime in the considered system.
The solution to the original system (8) has the following form:

V = V0e
−γt +

t∫
0

e−γ(t−t
′)
(
FM + FC

m
+ γVP

)
dt′. (11)

We note that by using the definition (10), the solution (11) can be rewritten as:

V = V0e
−γt + γ

t∫
0

e−γ(t−t
′)U(t′)dt′. (12)

Expression (12) describes a system with memory of its previous states, and the memory function is decaying
exponentially. The memory span of this system can be estimated as ∆t = 3/γ, corresponding to a tenfold decay
of the exponential function.

Therefore, the particle velocity when t > ∆t can be found as:

V = γ

t∫
t−∆t

e−γ(t−t
′)U(t′)dt′. (13)
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From the first mean value theorem for definite integrals, there is such t̃i, t−∆t < t̃i < t, that:

Vi(t) = Ui(t̃i)γ

t∫
t−∆t

e−γ(t−t
′)dt′ = Ui(t̃i), (14)

where i = x, y, z – coordinate index; Vi, Ui – i-th component of particle velocity vector and quasi-stationary
velocity vector respectively.

According to (14), when the QSR velocity Ui varies insignificantly over the time ∆t so that Ui(t̃i) ≈ Ui(t),
the quasi-stationary regime ensues. Hence, we can formulate the sufficient condition for the QSR:∣∣∣∣Ui(t)− Ui(t−∆t)

Ui(t)

∣∣∣∣� 1. (15)

This condition, however, requires the prior knowledge of particle trajectories and cannot be checked a priori.
We now assume that the quasi-stationary velocity Ui varies linearly with time over the course of ∆t:

Ui(t)− Ui(t−∆t) = U̇i

∣∣∣
t

∆t.

Then, the condition (15) reduces to:

∆t

∣∣∣∣∣∣
U̇i

∣∣∣
t

Ui(t)

∣∣∣∣∣∣� 1. (16)

We note that when the forces acting on the particle and the liquid flow velocity profile do not change in time, the
following is true:

U̇i = (V · ∇Ui) . (17)

From the definition of t̃i, it follows that:

t− t̃i = αi ∆t, 0 < αi < 1, (18)

and, using (14):

Vi(t) = Ui(t̃i) = Ui(t)− U̇i

∣∣∣
t
αi∆t. (19)

If the condition (16) is satisfied for all coordinates:

|Ui| � ∆t
∣∣∣U̇i∣∣∣ , ∀i, i = x, y, z,

then, according to (18):

|Ui| � αi∆t
∣∣∣U̇i∣∣∣ , ∀i, i = x, y, z. (20)

Thus, combining (17), (19) and (20), we can finally rewrite the sufficient condition for quasi-stationary regime
(16) as:

∆t

∣∣∣∣ (U · ∇Ui)Ui

∣∣∣∣� 1, ∀i, i = x, y, z. (21)

The resulting expression (21) can be directly evaluated at each point of the considered system and does not
require the prior knowledge of particle trajectories. Therefore, (21) is the sufficient a priori condition for the
quasi-stationary regime.

In areas where condition (21) is met, the magnetic particle velocity field can be obtained directly from (10).
To evaluate the rate and the localization of the particle deposition in an external magnetic field, we use the

obtained velocity field to calculate the particle flux onto the capillary walls. From the continuity equation for a
steady flow ∇ · (CU) = 0, we get the following expression for the particle flux jP:

jP = (nw ·U)C0 exp

− t∫
0

(∇ ·U) dt′

 , (22)

where C – local particle concentration; C0 – particle concentration far from the magnet.
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3. Results and discussion

We presented a simple theoretical method for predicting the particle flux during the magnetic deposition from
colloids that accounts for the EDL interactions between particles and capillary walls. The method is realized in
three steps:

(1) Evaluation of the quasi-stationary regime condition (21) for the considered system to check for the method
applicability.

(2) Analytical calculation of the particle velocity field from (10).
(3) Numerical computation of the particle flux onto the capillary walls using (22).

Note that for the rough estimate of particle flux, the local particle concentration can be equated to the bulk
concentration C0, resulting in analytical expression for the flux: jP = (nw ·U)C0.

Condition (21) poses limits on the spatial rate of change for forces acting on the particle and on the maximum
velocity of the flow. For colloidal interactions, this generally means that the method is applicable for systems
with either very high ionic strength (so that the EDL forces are rendered insignificant), or low ionic strength (less
than 10−5 M).

FIG. 2. Streamlines of particle velocity field in the capillary central cross section perpendicular
to the surface of the magnet and the direction of liquid flow. Inner capillary radius R = 0.5 mm;
distance from the magnet L = 0.5 mm (depicted not to scale); particles with radius of a = 600 nm
are submerged in water at room temperature flowing with maximum velocity of Vmax

P = 0.2 m/s;
Reynolds number Re = 102

We now demonstrate how the suggested method can be used to study the effects of system parameters on
magnetic particle deposition.

Properties of the magnetic cores are chosen to reflect those of the 10 nm magnetite nanoparticles reported
in [37], with maximum magnetic moment of a single core M0 = 178 ·10−21 N·m/T. The bulk particle concentration
is fixed at C0 = 1015 1/m3.

With the functional material located in the particle shell, we take the shell volume to be the same for all
considered particle sizes and equal to 0.065 µm3. Because of that, the shell material mass flux is always directly
proportional to the particle flux demonstrated in the following sections.

For simplicity, in this work we consider the surface potentials of the capillary and the particles to be equal:
ζC = ζP = ζ.

The parameters of the magnet are based on the rectangular neodymium magnet from [37], with dimensions of
dx = 30 mm, dy = 20 mm, dz = 10 mm and magnetization constant K = 0.269 N/A·m2.

A typical particle velocity field for such systems is depicted in Fig. 2.

3.1. Particle flux in a system imitating a blood vessel

First, we consider a model system with parameters matching those of a human artery. The liquid is at body
temperature and has the viscosity and the ionic strength of blood (η = 2.8 mPa·s and I = 154 mM). At high ionic
strength values for this system, the EDL interactions are usually insignificant [35]. Maximum flow velocity is
V max
P = 0.9 m/s, inner vessel radius is R = 2 mm, Reynolds number is Re = 6 · 102.

The deposition of 3 µm magnetic particles under the applied magnetic field is studied for three different
separations between the vessel interior and the magnet (see Fig. 3). These correspond to different blood vessel
depths. As demonstrated in Fig. 3, the suggested method allows prediction of both the rate and localization of
particle deposition for the considered systems. As the magnetic force decays further away from the magnet, the
particles flux decreases and becomes less localized.
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FIG. 3. Particle flux distribution over the capillary wall in a system imitating human artery with
the vessel interior separated from the magnet by: A – 1 mm, B – 5 mm, C – 10 mm. Lines
indicate the location of magnetic poles beneath the capillary

For a given vessel depth, the particle flux can be adjusted by changing the volume of magnetic cores embedded
in the particle. This is illustrated in Fig. 4.

3.2. Particle flux in a microfluidic system at low ionic strength

Second, we consider a system with magnetic particles carried by an aqueous solution with low ionic strength.
In this case, the EDL interaction between the particles and the capillary walls can be significant, depending on
their surface potentials.

The liquid is at room temperature and has an ionic strength of I = 10−3 mM. Maximum flow velocity is
V max
P = 0.5 m/s, capillary interior is separated from the magnet by L = 1 mm and has the radius of R = 0.5 mm;

Reynolds number is Re = 3 · 102.
The magnetic deposition of 700 nm particles is compared for different values of surface potentials in the

system (see Fig. 5). When a non-negligible interfacial charge is present, a repulsion counteracting the magnetic
force arises. As a result, with increasing surface potential the area of particle deposition localization decreases (see
Fig. 5B,C) until the particle flux onto the capillary wall is terminated.

At the same time, colloidal EDL forces slow down the approaching particles and focus them around the magnet
poles, thus increasing the local particle concentration. This may result in a higher particle flux when compared to
a system with no colloidal repulsion, as seen in Fig. 5A,B. Further rise in surface potential, however, will lead to
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FIG. 4. Maximum particle flux as a function of particle size (with shell volume being fixed) at
different separations between vessel interior and the magnet

FIG. 5. Particle flux distribution over the capillary wall in systems exhibiting different surface
potential: A – 0, B – 25 mV, C – 30 mV. Lines indicate the location of magnetic poles beneath
the capillary
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particle flux decrease (compare Fig. 5B,C). This is due to particle velocity drop overpowering the gain in local
concentration. The balancing between particle concentration and velocity near capillary wall also explains the
bifurcation of the flux maxima observed in Fig. 5.

4. Conclusions

The work proposes a simple theoretical method for predicting the rate and localization of magnetic particle
deposition from aqueous colloids. This method accounts for electric double layer interactions between particles
and capillary walls in low ionic strength solutions. When applicable, the method allows one to estimate the system
parameters required for achieving a specified deposition regime.

The results obtained for the magnetic deposition with significant electric double layer forces suggest that the
presence of colloidal interactions can increase the rate of particle deposition and improve its localization.
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