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Comparative size and structure characterization of silver and selenium nanoparticles obtained and stabilized in different polymer solutions was

performed by transmission electron microscopy (TEM) and small-angle X-ray scattering (SAXS). Effects of instrumental properties, nature of

the samples, data collecting and data processing on accuracy of measurements are highlighted and summarized. Numerical differences in the

mode diameter values derived from the TEM and SAXS data were found to have different sources. The SAXS results can be misleading in

case of small particles (2–4 nm), for instance, Ag nanoparticles formed and stabilized in some aqueous polymer solutions due to instrumental

limits, while TEM can provide sufficient statistics on such nanoparticles. SAXS is efficient in characterization of size distributions for soft

Se-polymer composite particles of 20 to 100 nm in diameter. TEM is mandatory for investigating the chemical and phase composition of

particles in mixtures, and their formation mechanism.
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1. Introduction

The chemical, physical, bio- and medical properties of different kinds of particle suspensions are strongly
dependent on the particle sizes and the shape of their distributions. Transmission electron microscopy (TEM) and
small-angle X-ray scattering (SAXS) remain the main techniques for characterizing nanoparticle sizes and their
distributions. On this issue, we refer to reviews of Chu & Liu [1] and Pedersen [2] with extensive analysis of
principles and applications of different scattering techniques.

The main issue of experimental articles on the nanoparticle sizes and distributions is to show the best agreement
between data in the wide range from a few nm to microns obtained by various scattering techniques and TEM.
We argue that in general this approach is wrong since first, it does not consider the different ways that incident
beams interact with matter. In this connection, it is worthwhile to mention an example of remarkably different
size distributions and the mode diameter derived from the small-angle X-ray scattering and small-angle neutron
scattering (SANS) curves obtained from the same sample as shown by Pedersen [2]. The explanation was that
the neutrons “see” a high-density core while the X-rays “see” a low-density shell. Therefore, the size distribution
histograms from SANS and SAXS for particles composed by copolymers with hydrophobic and hydrophilic chains
or core-shell structures will describe different components of the same particles.

The fundamental difference of scattering methods like SAXS from TEM is the need of preliminary knowledge
or assumption of shape, structure of particles in order to derive the sizes from the scattering curves. TEM is a
direct method for imaging the particles and measuring their sizes over a wide range of diameters from 1 nm to a
few tens nm with a capability to extract information of the chemical/phase composition of the particles and their
crystalline character in polydisperse and multiphase systems. SAXS operates in terms of scattering intensities from
objects depending on the scattering angles and thus is an indirect method of measuring sizes. Therefore, analysis
of SAXS data contains a comparison with scattering model functions to fit experimental and simulated intensity
curves.

In this paper, we show the advantages for a combination of the methods to obtain comprehensive information
about particles in solutions, their distributions with high reliability and reveal the sources of inevitable errors in
statistical analyses of particles in both mono- and polydisperse systems. Therefore, the goals of the paper are to:
(1) highlight and summarize the main origin (instrumental, sampling, data collection and processing) of errors of
these two methods, (2) show the ways to minimize the errors of measurements, (3) present the results of the TEM
and SAXS investigation for two entirely different polydisperse systems of Ag and Se nanoparticles synthesized
and stabilized in polymer solutions. We compare the volume fractions of the smallest particles (below 5 nm in
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diameter) measured by TEM and SAXS as well as volume fractions of particles with diameters at the large-size
tails of distributions. For this purpose, we applied for the first time a new method of particle recognition and size
measurement described in [3]. This automatic method based on approximation of the calculated distribution of
grey level to the real distribution in (S)TEM images allowed us to increase the number of measured particles in
comparison with the manual analysis.

2. Theoretical background

2.1. SAXS

The scattering intensity from the mixture of different particles may be represented as a sum of partial intensities
from several non-interacting polydisperse components (polydisperse systems of particles having in the frame of the
component the same shape but different sizes) weighted by their volume fractions [4, 5]:

I(s) =

K∑
k=1

VkIk(s), (1)

where Vk(Vk > 0) and Ik(s) are the volume fraction and scattering intensity from the k-th component, respectively,
K is the number of components (usually, this number is chosen in the range of 2 to 4), each having its own analytical
distribution with parameters to be determined. The characteristics of partial distributions were parameterized and
restored along with their volume fractions using a non-linear least squares fitting procedure.

For the given particle shape and known normalized scattering intensity of a particle i(sR) (s = 0, i(0) = 1),
the scattering intensity Ik(s) from the k-th component is determined as:

Ik(s) = Tk(s) ·
∞∫

0

Nk(R) · [vk(R) · ∆ρk(R)]2 · ik(s,R) · Tk(s) · dR, (2)

where the scattering vector s = (4π/λ) sin θ, (λ is the wavelength, and 2θ is the scattering angle), Nk(R) is a
function of size distributions, ∆ρk(R), vk(R) and ik(s,R) are the contrast (the difference between the average
electron density of the particle and average density of the environment), volume and normalized scattering intensity
(the square of the form-factor) of the particle of the radius R(i0k(0, R) = 1), Tk(s) is a structure factor describing
the interference between particles for the k-th component in the Percus–Yevick approximation [6]. We assume
or learn from TEM that the components, i.e. the particles, are mainly spherical and have different sizes. The
equation (1) can be written in the normalized form as:

Ik(s) = Vk

∞∫
0

Dk(R)vk(R)[∆ρk(R)]2i0k(s,R)dR

∞∫
0

Dk(R)dR

(3)

if we take the total volume of the components as:

Vk =

∞∫
0

vk(R)Nk(R)dR (4)

The total volume distribution function Dk(R) = Nk(R)vk(R) can be normalized to expression

∞∫
0

Dk(R)dR = 1.

The analytical expression of the Dk(R) is a distribution with the average particle radius R0k and the half-
width ∆Rk:

Dk(R) = G(R,R0k,∆Rk)=

(
z + 1

R0k

)z+1
Rz

Γ(z + 1)
exp

[
− (z + 1)R

R0k

]
, z =

(
R0k

∆Rk

)2

− 1. (5)

The form factor in this work is the scattering amplitude from spherical particles of radius R because electron
microscopy has shown that the particles are spherical.



514 D. O. Shvedchenko, V. V. Volkov, E. I. Suvorova

To determine the volume fractions and other parameters characterizing the mixture, the experimental scattering
intensity Iexp(s) should be decomposed into the partial functions (3). This can be done by a non-linear minimization
based on the squared residual target function:

χ2 =

N∑
j=1

{[ c I(sj)− Iexp(sj)]/σ(sj)}2 (6)

where N is the number of experimental points and σ(s) denotes the statistical error. The use of the scale factor:

c =

N∑
j=1

I(sj)Iexp(sj)/σ
2(sj)

N∑
j=1

(I(sj)/σ(sj))
2

(7)

allows one to fit the experimental data in a relative scale.
In order to fit experimental Iexp and simulated Imod intensities, minimization of the non-linear quadratic

functional with the Vk, R0k, ∆Rk, and Tk(s) parameters should be performed:

min
Vk,R0,k,∆Rk,∆ρk


N∑
i=1

[(Iexp(si)− c · I mod (si)) ·W (si)]
2

N∑
i=1

[
I2
exp(si) ·W 2(si)

]
 , k = 1, ...,K,

W (si) =
[
Ĩexp(si)

]p/
Ĩexp(si), p = 1,−1

2
,−2

3
,−3

4
,

(8)

where N is a number of experimental points, W (s) is a weighting function calculated from smoothed experimental
data and used to provide the optimum intensity range for all experimental s values. In this work, p = 1/2 was
used as an optimal value obtained from the simulation, c is a fitting factor for Iexp(s) and Imod(s) (7) calculated
before the minimization of non-linear quadratic functional. The minimization was performed using the multivariant
optimization program package OPTIS as it was applied in the program MIXTURE [4].

2.2. TEM

Imaging in TEM is provided through the mass-thickness contrast produced by incoherent (Rutherford) elastic
scattering of electrons for both crystalline and non-crystalline materials. The cross-section for elastic scattering is
a function of the atomic number (Z), therefore the samples containing elements with higher Z will scatter more
electrons than the low-Z samples, besides the electron scattering increases from thicker areas. Therefore, the
mass-thickness contrast is a universal mechanism of imaging for crystalline and non-crystalline objects.

The definition of the contrast K is the difference in intensity ∆I between two adjacent areas [7]:

K =
I1 − I2
I2

=
∆I

I2
= 1− e−Q∆t ∼= Q∆t = N0σρ∆t, (9)

where Q is the total cross section for scattering from the sample, N0 is Avogadro’s number, ρ is the density, ∆t is
a change in thickness, and σ is the single-atom scattering cross section dependent on energy of incident electrons
E0(keV ), a scattering angle θ, and proportional to atomic number square Z2 (if the effects of electron cloud are
ignored).

The number of transmitted electrons, n, through the sample with mass-thickness ρt can be approximated by
the expression:

n = n0e
−Nσρt. (10)

The latter formula means the decrease in the number of transmitted electrons with sample thickness, that is,
the increase in the number of scattered electrons by thick samples.

High angle annular dark-field (HAADF) scanning TEM (STEM) provides a way of imaging mainly Z-contrast
by collecting incoherently scattered electrons and thus possesses a strong compositional sensitivity. Diffraction
contrast is a feature of crystalline materials to investigate defects, and phase contrast applied in high resolution
TEM is well suited to the study of atomic structure of materials. All these types of contrast in (S)TEM are used
for particle analysis and provide comprehensive information of their morphology and structure.
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2.3. Origin of measurement differences and errors in SAXS and TEM

The fundamental difference between TEM and SAXS is in the nature of beams and their interaction with matter.
The electrostatic Coulomb potential is the scattering matter for electron beams while the electric charge density is
the scattering matter for X-rays. This difference leads to the different ways of forming intensity distributions when
electron beams and X-rays penetrate through the same sample. There is a direct mathematical link between the
X-ray and electron scattering through scattering amplitudes.

Using Thomson scattering equations of electromagnetic waves on the electric charge we can obtain the
dependence of the amplitude of X-ray scattering fX(~s) from the electron density ρe(~r) and scattering vector ~r:

fX(~s) = r0

∫∫∫
ρe(~r)

e
ei(~s~r)d3~r, (11)

where r0 =
1

4πε0
· e2

m0c2
is electron radius.

Amplitude scattering of electrons in Born approximation can be written as:

fe(~s) =

(
2πme

h2

)∫∫∫
ϕat(~r)e

i(~s~r)d3~r. (12)

Using Poisson equation ∆ϕat =
ρat
ε0

, the link between fp and fe can be derived. If the atomic charge density

ρat = ρn − ρe, then the nuclear charge density is:

ρn(~r) = Zeδ(~r) =
1

(2π)3

∫∫∫
eZe−i(~s~r)d3~s. (13)

Fourier transform is used to derive the electron density and atom potential through X-ray scattering and electron
amplitudes:

ρe(~r) =
1

(2π)3

∫∫∫
e

r0
fX(~s)e−i(~s~r)d3~s, (14)

ϕat(~r) =
1

(2π)3

∫∫∫
h2

2πme
fe(~s)e

−i(~s~r)d3~s. (15)

Using the Poisson equation, we obtain:

−s2 h2

2πme
fe(~s) = − 1

ε0

(
eZ − e

r0
fX(~s)

)
. (16)

Finally, taking into account that s = 4π
sin θ

λ
, the link between the electron and X-ray scattering amplitudes is

written as:

fe =
1

4πε0
· me

2

2h2
· Z − f/r0

( sin θ
λ )2

. (17)

This formula shows the linear dependence between the electron and X-ray scattering amplitudes and their ratio
is fe : fX = 103 : 1. Direct proportionality between fe and Z leads to Ag nanoparticles with high Z on/in the
carbon (low Z) substrate having a significant contrast in TEM images. While SAXS is able to provide reliable
information about small particles of 1 to 1.5 nm in diameter if their concentrations are high enough and this
scattering intensity exceeds that by some density fluctuations of solvents and organic material agglomerations.

Difficulties in recognition of the smallest particles from SAXS data in the range of the sizes from 1 to 5 nm
in the heterogeneous polymer solutions is strongly dependent upon the distribution profile on the shape of the
scattering curve at angles greater than s = 0.5 – 1 nm−1, which is largely dependent on the scattering from other
small inhomogeneities in the solution. This may lead to false peak appearance in the size distribution or to its shift
to larger or smaller sizes.

In Table 1, we highlight and summarize the causes of errors due to instrumental properties, features of the
samples, data collecting and data processing. The main conclusion from Table 1 is that TEM is most efficient
for local analysis since it performs imaging and composition/phase identification, while SAXS produces integral
information which depends on the initial hypotheses as to the shape, sizes and state of matter.

There is no methodological limitation to reveal polydisperse distributions of the nm-sized particles using
modern TEM equipment, and the reliable statistics can be reached by counting the sufficient number of particles
using the relevant software, which significantly reduces the time-consuming efforts.

SAXS can be very useful (fast and reliable) for monitoring the monodispersed particles distributions or a
narrow polydispersity in industrial laboratories with the possibility of measuring the total surface of samples.
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TABLE 1. Summary of origin of errors in sizing particles due to instrumental properties, sample
features, and data collecting and processing

TEM SAXS

Instrumental Images as particle projections.
Small volume of material under investiga-
tion (sample thickness ≤500 nm)
Loss of contrast when the fine beam is used.

Divergence of the X-ray beam and the
spread of scattering angles.
Halo of parasitic radiation around the direct
beam.
Loss of intensity when the fine beam is
used.
Parasitic scattering (the need of monochro-
mators)

Sample Deterioration of particle contrast due to
burying in the polymer film.
Deterioration of particle contrast due to car-
bon contamination because of electron irra-
diation of organic material.
Possible deformation of the particle shape
due to drying

Widely different particle shapes provide
only slightly different scattering curves.
Particles with different composition give
similar scattering curves.
Scattering by large particles (above 300 nm)
Double Bragg reflection form crystallites.

Data collecting and
processing

Sampling is not random and is often deter-
mined by the nice appearance of particles.
Great operating skill is required to get prop-
erly focused images of nanoparticles espe-
cially in STEM images.
Time consuming manual measurements or
inappropriate software leading to insuffi-
cient statistics.

Assumptions about the form of the
distribution functions are required.
All generalized definitions are derived as-
suming that all particles in the sample are
identical.
Similar scattering curves for different diam-
eter distribution functions.

3. Experimental: Materials and Methods

Silver nanoparticles were synthesized by the chemical reduction of 0.3 M silver nitrate in aqueous solu-
tions of 2 wt. % 2-deoxy-2-methacrylamido-D-glucose (MAG)/2-(dimethylamino) ethyl methacrylate (DMAEMA)
copolymers or pure DMAEMA and MAG homopolymers at room temperature and pressure. All synthetic details
are given elsewhere [8, 9]. Selenium particles were obtained by reduction of selenious acid using ascorbic acid
and stabilized by poly(2-acrylamido-2-methylpropane sulfonic acid) (PAMPS) or by polyvynilpyrrolidon (PVP) in
aqueous solutions. Details of the process are described elsewhere [10, 11].

TEM-HRTEM-STEM and X-ray energy dispersive spectrometry (chemical miscoanalysis) investigation of Ag
nanoparticle samples – polymer water and Se nanoparticle – polymer water suspensions (1.0 – 2.0-µl droplets) lying
on carbon films/Cu grids after drying were investigated by transmission (TEM), scanning transmission electron
microscopy (STEM) and X-ray energy dispersive spectroscopy in a FEI Tecnai Osiris microscope (200 kV X-FEG
field emission gun). The particle diameters were measured using the new method [3] based on approximation of
the calculated distribution of grey level to the real distribution in (S)TEM images providing the best accuracy in
measurements of the particle diameters in contrast to algorithms based on image thresholding approach.

Small-angle X-ray scattering (SAXS) measurements were carried out on a laboratory diffractometer “AMUR-
K” in the Institute of Crystallography, Moscow [12] at the Cu-Kα wavelength λ = 0.154 nm using the Kratky-type
collimation system. The linear position-sensitive proportional detector used provided the range of the scattering
vector modulus 0.11 < s < 15 nm−1 (s = 4π sin θ/λ, where 2θ is the scattering angle). Solution samples were
placed in a 1 mm quartz capillary with 0.01 mm walls. The obtained scattering profiles were preprocessed by the
program package PRIMUS [13] to correct the water scattering and instrumental effects [14]. The volume particle
distributions were obtained with the MIXTURE program [4,13] approximating the particles as spheres. The model
volume distributions were presented as three superimposed Schulz distributions with different parameters chosen
by progressive iterations during fitting the experimental and calculated scattering intensities.
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4. Results and Discussion

4.1. Ag particles

(S)TEM images of silver particles obtained in MAG-DMAEMA copolymer solutions with DMAEMA mole
fractions 12, 44, and 100 % are shown in Fig. 1(a,b,c) with the experimental scattering curves and data processing.

FIG. 1. TEM images (a, b, c) of Ag particles, experimental and approximated (solid lines)
SAXS curves (d) obtained from the samples of Ag particles in polymer solutions: MAG–12 %
DMAEMA (a), MAG–44 % DMAEMA (b) and pure DMAEMA (c)

The SAXS volume distribution functions and the volume and particle distributions obtained by TEM for Ag
particles in three samples with different copolymers are superimposed in Fig. 2.

The mode diameter values of Ag particles measured by SAXS and TEM/STEM with standard deviations are
given in Table 2. The absolute difference in these values is 4 nm and the relative can reach 60 %. We can see the
shift of the peaks in TEM volume histograms relative to SAXS maximums in volume distribution functions to the
side of smaller sizes for the samples with the single mode distributions and to the side of larger diameters for the
double mode distributions. The largest difference close to 60 % is observed for the particles in pure DMAEMA
homopolymer. We reported earlier [9] that the particles in this sample had the smallest diameters with the mode
diameter between 2 and 4 nm, which is the principal limit for SAXS measurements. The difference in mode
diameter for two copolymers does not exceed 29 %. The origin of higher value of mode diameter revealed by
SAXS for particles in pure DMAEMA and MAG–44 % DMAEMA copolymer can be associated with the formation
of a protective polymer shell around particles, which also contributes to small-angle scattering. It is quite probable
that a protective shell was formed for particles in MAG–12 % DMAEMA solution, however, the effect of size
averaging in polydisperse system with bimodal distribution resulted in some shift of the SAXS volume distribution
function peak towards smaller diameters.
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FIG. 2. Volume distribution functions (solid lines) superimposed with histograms of volume
and particles distributions vs. particle diameters in two copolymer solutions MAG–12 %
DMAEMA (a), MAG–44 % DMAEMA (b), and pure DMAEMA (c)

TABLE 2. Mode diameters of Ag particles in volume distributions obtained by SAXS and TEM/STEM

Sample
Mode diameter, nm

TEM SAXS

Ag in MAG+12 % DMAEMA 17±2 12±2

Ag in MAG+44.5 % DMAEMA 13±2 17±2

Ag in pure DMAEMA 3±2 7±2

4.2. Se particles

TEM images of selenium particles obtained in aqueous PAMS and PVP polymer solutions are shown in
Fig. 3(a,b) with their experimental and approximated (solid lines) SAXS intensity curves (Fig. 3(c)). The SAXS
volume distribution functions and the volume and particle distributions obtained by TEM for Se particles in PAMS
and PVP polymers are superimposed in Fig. 4. The accuracy of distribution parameters for the 3-component models
was 2–8 % (in diameter) and 20–40 % for the distribution half-width. The mode diameters of particles measured
with TEM and SAXS with standard deviations are listed in Table 3.

TABLE 3. Mode diameters of particles in PVP and PAMS solutions obtained from SAXS scattering

Sample
Mode diameter, nm

TEM SAXS

Se+PVP 53±2 20±3

Se+PAMS 65±2 29±4
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FIG. 3. TEM images of Se particles formed in PAMS (a) and PVP (b) solutions, the experimental
and approximated (solid lines) SAXS intensity curves (c)

FIG. 4. Volume distribution functions (solid curves) superimposed with histograms of volume
and particles distributions vs. particle diameters in Se + PAMS (a), and Se + PVP (b) samples
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In contrast to Ag particles, the mode diameters for Se particles differ by more than two-fold in SAXS and
TEM measurements. The explanation of this result is in nature of particles. TEM and STEM images (Fig. 5(a,b))
show groups of 2 or 3 deformed particles. The deformation occurred due to surface tension when the TEM sample
of water suspension was drying on a carbon film. Obviously, the deformation of particles occurred in the lateral
direction when the particles met each other and in the vertical direction under surface tension and gravity, and Se
particles became oblate spheroids that are spheroids flattened at the poles. Thus, in the case of soft Se particles,
TEM provides only projections of spheroids with larger diameters than those of spherical particles, while SAXS
determines the true mode diameters of Se particles.

FIG. 5. TEM image of Se particles from the PAMS solution with strong and weak contrast of
particles (a), three crystalline Se particles with strong contrast (b), and the corresponding SAED
pattern taken from one of the particles (indicated by arrow) along the [−1 8 12] direction in
monoclinic Se

Cryogenic TEM can be used to investigate soft Se particles, which can be frozen in a thin water layer, or to
image particles located in thin edges of vacuum-dried polymer films. In both cases, the statistics are quite low due
to small number of available particles and radiation damage which has a significant effect.

But first, not all grouped Se particles are deformed and second, Se particles in the same sample have different
contrast (Fig. 5(a)). Only TEM answers the question as to why Se particles have different structure. They can be
crystalline with monoclinic structure, which was discovered by electron diffraction (Fig. 5(b,c)) and these particles
are dark in TEM images. They keep the spherical shape and do not deform under surface tension. While other
particles do not have crystalline structure, and are not always pure Se particles but Se/polymer composite particles
with a different content of polymer inside particles (Fig. 6). X-ray energy dispersive spectrometry (chemical
microanalysis) showed different amount of polymer material inside of particle with Se.

Earlier [15], we proposed the mechanism of formation for Se/polymer composite particles and that their rigidity
and density differ from the crystalline Se and amorphous Se particles. Also, it was concluded that such differences
can influence the biological and medical properties of the particles.

5. Conclusion

In summary, silver and selenium particles obtained and stabilized in different polymer solutions were studied
by SAXS and TEM to characterize the size distributions and structure. It was found that numerical difference
in the mode diameter values derived from the TEM and SAXS measurements can be caused by various reasons.
The SAXS results can be misleading in the case of small particles with the mode diameter of about 2–4 nm (Ag
particles in the pure DMAEMA polymer solution) due to instrumental limits and TEM can give unambiguous
information on the size distribution with sufficient statistics.

Averaging the sizes in colloid systems with bimodal size distribution by SAXS shifts the maximum into some
intermediate position as for Ag particles in MAG–12 % DMAEMA suspension.

Different mode diameter values for nanoparticles coated by the polymer shells measured by X-rays scattering
and TEM images can be explained by low contrast of thin polymer shell in TEM images.

SAXS is efficient in characterization of soft particles like Se/polymer composite particles in the range of
diameters from 20 to 100 nm. TEM characterization of such soft particle leads to artificial increase of diameters
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FIG. 6. STEM image and Se/C chemical map with the ratio profile across the Se/PAMS com-
posite particles

due to particle deformation and shape transformation from spherical to oblate spheroids. At the same time TEM
study is mandatory to reveal the chemical and structural features of such particles.
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