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Lyapunov operator L with degenerate kernel and Gibbs measures
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In this paper, we studied the fixed points of the Lyapunov operator with degenerate kernel, in which each fixed point of the operator is

corresponds to a translation-invariant Gibbs measure with four competing interactions of models with uncountable set of spin values on the

Cayley tree of order two. Also, it was proved that Lyapunov operator with degenerate kernel has at most three positive fixed points.
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1. Introduction

The existence of Gibbs measures for a wide class of Hamiltonians was established in the groundbreaking
work of Dobrushin. A complete analysis of the set of limiting Gibbs measures for a specific Hamiltonian is a
difficult problem. Also, Spin systems on lattices are a large class of systems considered in statistical mechanics.
Some of them have a real physical meaning, others are studied as suitably simplified models of more complicated
systems [1, 2].

The Ising model is an important model in statistical mechanics. The various partial cases of Ising model
have been investigated in numerous works. For example, In [3] and [4], the exact solutions of an Ising model
with competing restricted interactions with zero external field was presented. Also, it was proved that there are
two translation-invariant and uncountable number of distinct non-translation-invariant extreme Gibbs measures and
considered Ising model with four competing interactions on the Cayley tree of order two (see [5–7]). In [8], other
important results are given on a Cayley tree. Mainly, these papers are devoted to models with a finite set of spin
values. In [9], the Potts model, with a countable set of spin values on a Cayley tree is considered and it was shown
that the set of translation-invariant splitting Gibbs measures of the model contains at most one point, independent
of the parameters for the Potts model with a countable set of spin values on the Cayley tree.

Gibbs measures have been considered for models with uncountable sets of spin values for the last five years.
Until now, models with nearest-neighbor interactions have been considered (i.e., J3 = J = α = 0, J1 6= 0) and
with the set [0, 1] of spin values on a Cayley tree, we obtained the following results: ”Splitting Gibbs measures”
of the model on a Cayley tree of order k is described by the solutions of a nonlinear integral equation. For k = 1
it has been shown that the integral equation has a unique solution (i.e., there is a unique Gibbs measure). For
periodic splitting Gibbs measures, a sufficient condition was found under which the measure is unique and proved
the existence of phase transitions on a Cayley tree of order k ≥ 2 (see [10–13]).

In [14] it was described splitting Gibbs measures on Γ2 were described by solutions to a nonlinear integral
equation for the case J2

3 + J2
1 + J2 + α2 6= 0 which is a generalization of the case J3 = J = α = 0, J1 6= 0.

Also, it was proved that periodic Gibbs measure for the Hamiltonian with four competing interactions is either
translation-invariant or G(2)

k - periodic, and given examples of non-uniqueness for Hamiltonian (2.1) in the case
J3 6= 0, J = J1 = α = 0. Gibbs measures for the Hamiltonian which corresponds to the degenerate kernel was
not considered in the paper.

In this paper, we provide a connection between Gibbs measures for the model which is defined in [14] and
positive solutions of the Lyupanov integral equations. Also we study the fixed points of the Lyapunov operator
with degenerate kernel. Using each fixed point for the operator, the translation-invariant Gibbs measure for the
Hamiltonian can be founded which corresponds to the degenerate kernel.
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2. Preliminaries

A Cayley tree Γk = (V,L) of order k ∈ N is an infinitely homogeneous tree, i.e., a graph without cycles, with
exactly k+ 1 edges incident to each vertex. Here, V is the set of vertices and L that of edges (arcs). Two vertices
x and y are called nearest neighbors if there exists an edge l ∈ L connecting them. We will use the notation
l = 〈x, y〉. The distance d(x, y), x, y ∈ V on the Cayley tree is defined by the formula

d(x, y) = min{d| x = x0, x1, ..., xd−1, xd = y ∈ V such that the pairs

〈x0, x1〉, ..., 〈xd−1, xd〉 are neighboring vertices}.
Let x0 ∈ V be a fixed and we set

Wn = {x ∈ V | d(x, x0) = n}, Vn = {x ∈ V | d(x, x0) ≤ n},
Ln = {l =< x, y >∈ L | x, y ∈ Vn},

The set of the direct successors of x is denoted by S(x), i.e.

S(x) = {y ∈Wn+1| d(x, y) = 1}, x ∈Wn.

We observe that for any vertex x 6= x0, x has k direct successors and x0 has k + 1. The vertices x and y are
called second neighbor which is denoted by 〉x, y〈, if there exist a vertex z ∈ V such that x, z and y, z are nearest
neighbors. We will consider only second neighbors 〉x, y〈, for which there exist n such that x, y ∈ Wn. Three
vertices x, y and z are called a triple of neighbors and they are denoted by 〈x, y, z〉, if 〈x, y〉, 〈y, z〉 are nearest
neighbors and x, z ∈Wn, y ∈Wn−1, for some n ∈ N.

Now we consider models with four competing interactions where the spin takes values in the set [0, 1]. For
some set A ⊂ V an arbitrary function σA : A → [0, 1] is called a configuration and the set of all configurations
on A we denote by ΩA = [0, 1]A. Let σ(·) belong to ΩV = Ω and ξ1 : (t, u, v) ∈ [0, 1]3 → ξ1(t, u, v) ∈ R,
ξi : (u, v) ∈ [0, 1]2 → ξi(u, v) ∈ R, i ∈ {2, 3} are given bounded, measurable functions. Next, we consider the
model with four competing interactions on the Cayley tree which is defined by following Hamiltonian

H(σ) =

− J3

∑
<x,y,z>

ξ1 (σ(x), σ(y), σ(z))− J
∑
>x,y<

ξ2 (σ(x), σ(z))− J1

∑
<x,y>

ξ3 (σ(x), σ(y))− α
∑
x∈V

σ(x), (2.1)

where the sum in the first term ranges all triples of neighbors, the second sum ranges all second neighbors,
the third sum ranges all nearest neighbors and J, J1, J3, α ∈ R \ {0}. Let h : [0, 1] × V \ {x0} → R and
|h(t, x)| = |ht,x| < C where x0 is a root of Cayley tree and C is a constant which does not depend on t. For some
n ∈ N, σn : x ∈ Vn 7→ σ(x) and Zn is the corresponding partition function we consider the probability distribution
µ(n) on ΩVn defined by

µ(n)(σn) = Z−1
n exp

(
−βH(σn) +

∑
x∈Wn

hσ(x),x

)
, (2.2)

Zn =

∫
...

∫
Ω

(p)
Vn−1

exp

(
−βH(σ̃n) +

∑
x∈Wn

hσ̃(x),x

)
λ

(p)
Vn−1

(dσ̃n), (2.3)

where
ΩWn × ΩWn × ...× ΩWn︸ ︷︷ ︸

3·2p−1

= Ω
(p)
Wn
, λWn × λWn × ...× λWn︸ ︷︷ ︸

3·2p−1

= λ
(p)
Wn
, n, p ∈ N,

Let σn−1 ∈ ΩVn−1 and σn−1 ∨ ωn ∈ ΩVn is the concatenation of σn−1 and ωn. For n ∈ N we say that the
probability distributions µ(n) are compatible if µ(n) satisfies the following condition:∫ ∫

ΩWn×ΩWn

µ(n)(σn−1 ∨ ωn)(λWn
× λWn

)(dωn) = µ(n−1)(σn−1). (2.4)

By Kolmogorov’s extension theorem there exists a unique measure µ on ΩV such that, for any n and σn ∈ ΩVn
,

µ ({σ|Vn
= σn}) = µ(n)(σn). The measure µ is called splitting Gibbs measure corresponding to Hamiltonian (2.1)
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and function x 7→ hx, x 6= x0.
We denote

K(u, t, v) = exp {J3βξ1 (t, u, v) + Jβξ2 (u, v) + J1β (ξ3 (t, u) + ξ3 (t, v)) + αβ(u+ v)} , (2.5)

and
f(t, x) = exp(ht,x − h0,x), (t, u, v) ∈ [0, 1]3, x ∈ V \ {x0}.

The following statement describes conditions on hx guaranteeing the compatibility of the corresponding dis-
tributions µ(n)(σn).

Theorem 2.1. The measure µ(n)(σn), n = 1, 2, . . . satisfies the consistency condition (2.4) iff for any x ∈ V \{x0}
the following equation holds:

f(t, x) =
∏

〉y,z〈∈S(x)

∫ 1

0

∫ 1

0
K(t, u, v)f(u, y)f(v, z)dudv∫ 1

0

∫ 1

0
K(0, u, v)f(u, y)f(v, z)dudv

, (2.6)

where S(x) = {y, z}, 〈y, x, z〉 is a ternary neighbor and du = λ(du) is the Lebesgue measure.

3. Lyapunov’s operator L with degenerate kernel

Now we consider the case J3 6= 0, J = J1 = α = 0 for the model (2.1) in the class of translational-invariant
functions f(t, x) i.e f(t, x) = f(t), for any x ∈ V . For such functions, equation (2.1) can be written as

f(t) =

∫ 1

0

∫ 1

0
K(t, u, v)f(u)f(v)dudv∫ 1

0

∫ 1

0
K(0, u, v)f(u)f(v)dudv

, (3.1)

where K(t, u, v) = exp {J3βξ1 (t, u, v) + Jβξ2 (u, v) + J1β (ξ3 (t, u) + ξ3 (t, v)) + αβ(u+ v)}, f(t) > 0,
t, u ∈ [0, 1].

We shall find positive continuous solutions to (3.1) i.e. such that f ∈ C+[0, 1] = {f ∈ C[0, 1] : f(x) ≥ 0}.
We define a nonlinear operator H on the cone of positive continuous functions on [0, 1] :

(Hf)(t) =

∫ 1

0

∫ 1

0
K(t, s, u)f(s)f(u)dsdu∫ 1

0

∫ 1

0
K(0, s, u)f(s)f(u)dsdu

.

We’ll study the existence of positive fixed points for the nonlinear operator H (i.e., solutions of the equa-
tion (3.1)). Put C+

0 [0, 1] = C+[0, 1] \ {θ ≡ 0}. Then the set C+[0, 1] is the cone of positive continuous functions
on [0, 1].

We define the Lyapunov integral operator L on C[0, 1] by the equality (see [15])

Lf(t) =

1∫
0

K(t, s, u)f(s)f(u)dsdu.

We put
M0 =

{
f ∈ C+[0, 1] : f(0) = 1

}
.

We denote by Nfix.p(H) and Nfix.p(L) are the set of positive numbers of nontrivial positive fixed points of the
operators Nfix.p(H) and Nfix.p(L), respectively.

Theorem 3.1. [14]
i) The equation

Hf = f, f ∈ C+
0 [0, 1] (3.2)

has a positive solution iff the Lyapunov equation

Lg = λg, g ∈ C+[0, 1] (3.3)

has a positive solution in M0 for some λ > 0.
ii) The equation Hf = f has a nontrivial positive solution iff the Lyapunov equation Lg = g has a nontrivial
positive solution.
iii) The equation

Lf = λf, λ > 0 (3.4)

has at least one solution in C+
0 [0, 1].

iv) The equation (3.2) has at least one solution in C+
0 [0, 1].
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v) The equality Nfix.p(H) = Nfix.p(L) holds.

Let ϕ1(t), ϕ2(t) and ψ1(t), ψ2(t) are positive functions from C+
0 [0, 1]. We consider Lyapunov’s operator L

(Lf)(t) =

1∫
0

(ψ1(t)ϕ1(u) + ψ2(t)ϕ2(v))f(u)f(v)dudv, (3.5)

and quadratic operator P on R2 by the rule

P (x, y) = (α11x
2 + α12xy + α22y

2, β11x
2 + β12xy + β22y

2).

α11 =

1∫
0

1∫
0

ψ1(u)ψ1(v)ϕ2(v)dudv, α12 =

1∫
0

1∫
0

(ψ1(v)ψ2(u) + ψ1(u)ψ2(v))ϕ2(v)dudv,

α22 =

1∫
0

1∫
0

ψ2(u)ψ2(v)ϕ2(v)dudv, β11 =

1∫
0

1∫
0

ψ1(u)ψ1(v)ϕ1(u)dudv,

β12 =

1∫
0

1∫
0

(ψ1(u)ψ2(v) + ψ1(v)ψ2(u))ϕ1(u)dudv, β22 =

1∫
0

1∫
0

ψ2(u)ψ2(v)ϕ1(u)dudv.

Lemma 3.2. Lyapunov’s operator L has a nontrivial positive fixed point iff the quadratic operator P has a
nontrivial positive fixed point, moreover N+

fix(Hk) = N+
fix(P ).

Proof. a) Put
R+

2 = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, R>2 = {(x, y) ∈ R2 : x > 0, y > 0}.
Let f(t) ∈ C+

0 [0, 1] be a nontrivial positive fixed point of L. Let

c1 =

1∫
0

ϕ1(u)f(u)f(v)dudv, c2 =

1∫
0

ϕ2(u)f(u)f(v)dudv

Clearly, c1 > 0, c2 > 0 and f(t) = c1ψ1(t) + c2ψ2(t). If we put f(t) = c1ψ1(t) + c2ψ2(t) to the equation (3.5)
we’ll get

c1 = α11c
2
1 + α12c1c2 + α22c

2
2, c2 = β11c

2
1 + β12c1c2 + β22c

2
2.

Therefore, the point (c1, c2) is fixed point of the quadratic operator P .
b) Assume, that the point (x0, y0) is a nontrivial positive fixed point of the quadratic operator P, i.e. (x0, y0) ∈

R+
2 \ {θ} and numbers x0, y0 satisfies following equalities

α11x
2
0 + α12x0y0 + α22y

2
0 = x0, β11x

2
0 + β12x0y0 + β22y

2
0 = y0.

Similarly, we can prove that the function f0(t) = x0ψ1(t) + y0ψ2(t) is a fixed point of the operator L and
f0(t) ∈ C+

0 [0, 1]. This completes the proof. �

We define positive quadratic operator Q:

Q(x, y) = (a11x
2 + a12xy + a22y

2, b11x
2 + b12xy + b22y

2).

Proposition 3.3.

i) If ω = (x0, y0) ∈ R+
2 is a positive fixed point of Q, then λ0 =

x0

y0
is a root of the following equation

a11λ
3 + (a12 − b11)λ2 + (a22 − b12)λ− b22 = 0. (3.6)

ii) If the positive number λ0 is a positive root of the equation (3.6), then the point ω0 = (λ0y0, y0) is a positive
fixed point of Q, where y−1

0 = a11 + a12λ0 + a22λ
2
0.

Proof. i) Let the point ω = (y0, x0) ∈ R+
2 be a fixed point of Q. Then

a11x
2
0 + a12x0y0 + a22y

2
0 = x0, b11x

2
0 + b12x0y0 + b22y

2
0 = y0

Using the equality
x0

y0
= λ0, we obtain

a11λ
2
0y

2
0 + a12λ0y

2
0 + a22y

2
0 = λ0y0, b11λ

2
0y

2
0 + b12λ

2
0y

2
0 + b22y

2
0 = y0.
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Thus we get
a11λ

2
0 + a12λ0 + a22

b11λ2
0 + b12λ0 + b22

= λ0.

Consequently,
a22 + (a12 − b22)λ0 + (a11 − b12)λ2

0 − b11λ
3
0 = 0.

ii) Let λ0 > 0 be a root of the cubic equation (3.6). We set x0 = λ0y0, where

x0 =
λ0

a11λ2
0 + 2a12λ0 + a22

.

Since

a11x
2
0 + 2a12x0y0 + a22y

2
0 =

1

a11λ2
0 + 2a12λ0 + a22

,

we get
a11x

2
0 + 2a12x0y0 + a22y

2
0 = y0.

Alternatively, we get:
a22 + (a12 − b22)λ0 + (a11 − b12)λ2

0 − b11λ
3
0 = 0.

Then, we get
b11λ

2
0 + b12λ0 + b22 = λ0(a11λ

2
0 + a12λ0 + a22).

From the last equality we get

λ0

a11λ2
0 + a12λ0 + a22

=
b11λ

2
0 + b12λ0 + b22

(a11λ2
0 + a12λ0 + a22)2

= b11x
2
0 + 2b12x0y0 + b22y

2
0 = y0.

This completes the proof. �

We denote
P (λ) = α11λ

3 + (α12 − β11)λ2 + (α22 − β12)λ− β22 = 0,

µ0 = α11, µ1 = α12 − β11, µ2 = α22 − β12, µ3 = β22,

P3(ξ) = µ0ξ
3 + µ1ξ

2 + µ2ξ − µ3, (3.7)

D = µ2
1 − 3µ0µ2, α = −µ1 +

√
D

3µ0
, β = −µ1 −

√
D

3µ0
.

Theorem 3.4. Let Q satisfy one of the following conditions
i) D ≤ 0;
ii) D > 0, β ≤ 0;
iii) D > 0, α ≤ 0, β > 0;
iv) D > 0, α > 0, P3(α) < 0;
v) D > 0, α > 0, P3(α) > 0, P3(β) > 0, then Q has a unique nontrivial positive fixed point.

Proof. The proof of Theorem 3.4 is basis on monotonous property of the function P3(ξ). Clearly,

(P3(ξ)) ′ = 3µ0ξ
2 + 2µ1ξ + µ2. (3.8)

and P ′3(α) = P ′3(β) = 0. Moreover,
i) In the case D ≤ 0, by the equality (3.8) the function P3(ξ) is an increasing function on R and P3(0) =

−b11 < 0. Therefore, the polynomial P3(ξ) has a unique positive root.
ii) Let D > 0 and β ≤ 0. For the case D > 0 the function P3(ξ) is an increasing function on (−∞, α)∪(β,∞)

and it is a decreasing function on (α, β). Hence, from the inequality P3(0) < 0 the polynomial P3(ξ) has a unique
positive root.

iii) Let D > 0, α ≤ 0 and β > 0. Since the function P3(ξ) is decreasing on (α, β) and increasing on (β,∞),
the polynomial P3(ξ) has a unique positive root as P3(0) < 0.

iv) Let D > 0, α > 0 and P3(α) < 0. Then max
ξ∈(−∞,β)

P3(ξ) = P3(α) < 0. Consequently, by the function

P3(ξ) is increasing on (β,∞) the polynomial P3(ξ) has a unique positive root ξ0 ∈ (β,∞).
v) Let D > 0, α > 0, P3(α) > 0 and P3(β) > 0. Then min

ξ∈(α,∞)
P3(ξ) = P3(β) > 0. From the function P3(ξ)

on (−∞, α), P3(ξ) P3(ξ) has a unique positive root ξ0 ∈ (0, α), as P3(0) < 0 and P3(α) > 0.
From the upper analysis and by Lemmas 3.3, it follows that the Theorem 3.4. �



558 Yu. Kh. Eshkabilov, F. H. Haydarov

Theorem 3.5. Let be D > 0. If Q satisfies one of the following conditions
i) α > 0, P3(α) = 0, P3(β) < 0;
ii) α > 0, P3(α) > 0, P3(β) = 0, then QO Q has two nontrivial positive fixed points and N+

fix(Q) = N>
fix(Q) =

2.

Proof. i) Let α > 0, P3(α) = 0 and P3(β) < 0. Then max
ξ∈(−∞,β)

P3(ξ) = P3(α) = 0 and ξ1 = α is the root of

the polynomial P3(ξ). By the increase property on (β,∞) of the function P3(ξ) the polynomial P3(ξ) has a root
ξ2 ∈ (β,∞), as β > 0 and P3(β) < 0. There are no other positive roots of the polynomial P3(ξ).
ii) Let α > 0, P3(α) > 0 and P3(β) = 0. Then by the increase property on (−∞, α) of the function P3(ξ) the
polynomial P3(ξ) has a root ξ1 ∈ (0, α). Alternatively, min

ξ∈(α,∞)
P3(ξ) = P3(β) = 0 and the number ξ2 = α is

the second positive root of the polynomial P3(ξ). The polynomial P3(ξ) has no other roots. From above, and by
Lemmas 3.3, we get Theorem 3.6. �

Theorem 3.6. Let be D > 0. If Q satisfies one of the following conditions
i) α > 0, P3(α) = 0, P3(β) < 0;
ii) α > 0, P3(α) > 0, P3(β) = 0,
then Q has two nontrivial positive fixed points and N+

fix(Q) = N>
fix(Q) = 2.

Proof. i) Let α > 0, P3(α) = 0 and P3(β) < 0. Then max
ξ∈(−∞,β)

P3(ξ) = P3(α) = 0 and ξ1 = α is the root of

the polynomial P3(ξ). By the increase property on (β,∞) of the function P3(ξ) the polynomial P3(ξ) has a root
ξ2 ∈ (β,∞), as β > 0 and P3(β) < 0. There are no other positive roots of the polynomial P3(ξ).
ii) Let α > 0, P3(α) > 0 and P3(β) = 0. Then by the increase property on (−∞, α) of the function P3(ξ) the
polynomial P3(ξ) has a root ξ1 ∈ (0, α). Alternatively, min

ξ∈(α,∞)
P3(ξ) = P3(β) = 0 and the number ξ2 = α is

the second positive root of the polynomial P3(ξ). The polynomial P3(ξ) has no other roots. From above, and by
Lemmas 3.3, we get Theorem 3.6. �
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