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In recent years possible applications of nanoporous materials in biophysics and biomedicine have become a topic of intense scientific interest.

One of the main problems in this field is that of transport processes in inhomogeneous nanoporous media. Another one is the reproduction

of the specific evolution of the liquid front profile, observed in one medium, in another medium. In this paper, we present a model which

simulates two-dimensional liquid front propagation in inhomogeneous nanoporous media; we also propose a method to evaluate the parameters

of the nanoporous medium required for reproduction of the given liquid front propagation.
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1. Introduction

In last decade, nanoporous materials have become a point of considerable scientific interest. They are widely
studied and used in biophysics and biomedicine; nanoporous materials are applied in drug delivery [1, 2], tissue
engineering [3], as biosensors [4], have great potential for usage in pharmacology [5], etc.

One significant problem in this field is the analysis of transport processes, which are considered to be more
complex than in porous media, especially if nanoporous media in question are inhomogeneous [6]. Also, in
biophysics and biomedicine, it is often necessary to reproduce in synthesized non-organic nanoporous medium the
specific pattern of evolution of the liquid front profile observed in organic nanoporous medium.

The purpose of our work is to propose a model for simulation of the two-dimensional liquid front propagation
in inhomogeneous nanoporous media and a method to evaluate the parameters of the medium in which a liquid
will flow in a specific manner.

2. Mathematical model and its numerical realization

In this paper, we consider the flow in a thin nanoporous slab with thickness < 1 mm. We introduce the
Cartesian coordinates along the slab – horizontal coordinate x and vertical coordinate y. The width of slab is L,
the vertical coordinate of the boundary of the liquid front is H (x, t) – see Fig. 1.

FIG. 1. Thin nanoporous slab. Gray area is the part of the medium permeated by liquid
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While liquid flow permeates through a medium, the capillary forces in the liquid surface create the pressure

PH = −2σ

R
, where σ is the surface tension coefficient of the liquid and R is the pore radius. The process of

flowing also creates the pressure in the volume of the propagating liquid.
The proposed mathematical model for describing the two-dimensional propagation of the liquid in inhomoge-

neous nanoporous media is based on the approximation of Darcy’s law ~v = −γ∇P , where ~v is the velocity of the
flow and P is the pressure in the liquid, and on the continuity equation for the incompressible flow ∇~v = 0. In
the two-dimensional case, the combination of these equations gives us the linear differential equation:

∇(γ∇P ) = 0, (1)

with boundary conditions – definite pressure on the bottom of the thin slab (y = 0) and on the boundary of the
liquid front (y = H (x, t)) plus the impermeability of the sidewalls (x = 0, x = L):

P |y=0 = 0,

P |y=H = −2σ

R
,

∂P

∂x

∣∣∣∣
x=0

=
∂P

∂x
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x=L

= 0.

(2)

The coefficient γ in (1) describes the permeability of the medium [7]:

γ =
ΩR2

8µ
, (3)

where Ω is the porosity of medium (volume ratio of the pore space to the total volume of the material), R is the
average pore radius and µ is the dynamic viscosity coefficient of the fluid.

The coefficient γ describes the structural properties of the nanoporous medium. By changing γ values in every
grid point, we take into consideration the changes in porosity or/and pore size in the medium and their influence
on the shape and transition of the boundary of the front.

On the whole, the numerical calculation procedure consists of two parts. First, by solving linear differential
equation (1) we obtain the pressure distribution in the part of the medium which has been permeated by liquid.
While pressure and distance values for grid points which are remote from border can be obtained directly from
adjacent grid points, calculation of those values for grid points which are adjoined to the border requires an
interpolation procedure.

Once the pressure distribution is obtained, we shift the boundary of the front on the basis of the pressure
derivatives. Since we consider inhomogeneous nanoporous media, capillary pressure Pu changes with the motion
of the front and thus, must be recalculated after each iteration.

FIG. 2. (a) The numerical calculation procedure, step 1: solving linear differential equation (1)
by finite-difference method. Pressure values Pr, Pl and distance values Hu, Hd, Hr, Hl are
obtained by linear interpolation between central grid point and upper, lower, right and left grid
points accordingly with Pu being the capillary pressure and Pd being the pressure obtained
directly from lower grid point. (b) The numerical calculation procedure, step 2: translocation of
boundary of the front
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Figure 2 shows the result of numerical simulation of the water (σ = 0.07 N/m, µ = 0.8 mPa s) propagation
in nanoporous thin film (20×20 mm) with constant porosity Ω = 0.5 and pore radius changing randomly from 10
to 13 nm.

FIG. 3. Evolution of the water front profile in nanoporous thin film (20×20 mm) with constant
porosity Ω = 0.5 and pore radius changing randomly from 10 to 13 nm. Darker areas on the
background indicate the smaller pore radius and lighter ones, accordingly, larger

Figures 3, 4 show the simulations for the same scenario, only with porosity not being constant, but changing
stepwise relative to x. Ω = 0.2 while x < 6.8 mm, Ω = 0.8 while 6.8 ≥ x < 13.6 mm and Ω = 0.2 while
x ≥ 13.6 mm. As expected, the increase of porosity leads to additional rise of the front boundary, although while
the porosity changes strictly stepwise, the deformation of the boundary of the front is gradually linear.

FIG. 4. Evolution of the water front profile in nanoporous thin film (20×20 mm) with porosity
changing stepwise from 0.2 to 0.8 and back to 0.2 and pore radius changing randomly from 10
to 13 nm. Darker areas on the background indicate the smaller pore radius and lighter ones,
accordingly, larger

3. Evaluation of the parameters of the inhomogeneous nanoporous medium required for reproduction of
the specific liquid front propagation

On the basis of the model described above we propose a method of evaluating the parameters of the inhomo-
geneous nanoporous medium in which the liquid will flow as it is required.
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The porosity distribution or/and pore radius distribution in inhomogeneous nanoporous medium can be viewed
as polynomial of some degree:

Rx,y(Ωx,y) = A1,1x
n +A1,2y

n +A2,1x
n−1 +A2,2y

n−1 + ...+An−1,1x+An−1,2y +An, (4)

where Aj,k are the coefficients of the polynomial and x, y are the coordinates of the medium.
Any set of the polynomials’ coefficients correspond to a certain evolution of the liquid front profile. The task

of finding suitable parameters reduces to the problem of function minimization; the coefficients of the polynomial
are being adjusted until the difference between resulting evolution of the liquid front and sought-for one becomes
minimal. As a measure of difference, we considered the standard deviation between the points of the reproduced
boundary of the front and original one.

An example of such reproduction is shown in Fig. 5. The original evolution of the water front profile
was modelled in nanoporous thin film (40×40 mm) with constant porosity Ω = 0.5 and pore radius increasing
quadratically from 7 nm to 23 nm relatively to x (mm): R(nm)= 9.38 ·10−3x2 +2.5 ·10−2x+7. The reproduction
process has been simulated for the 4th degree polynomial – the resulting reproduced pore size distribution is
4th-degree increase from 7 nm to 28 nm.

FIG. 5. The original evolution of the water front profile in nanoporous thin film with constant
porosity Ω = 0.5 and pore radius increasing quadratically from 7 nm to 23 nm (point markers,
solid line) and reproduced evolution front profile in thin film with the same porosity and pore
radius distribution being 4th-degree increase from 7 nm to 28 nm (asterisk markers, dotted line).
Darker areas on the background indicate the smaller pore radius and lighter ones, accordingly,
larger

As can be seen, the results are in good correspondence with each other.
This method can also be used if the required porosity and pore radius distributions are known, but synthesis

of such medium is impossible or if for analysis/modelling purposes, the calculation time is too large because of
distribution complexity. If simpler distributions are required, this method can be used for finding an alternative
solution, suited for the task at hand.

Figure 6 shows the original evolution of the water front profile in a thin nanoporous film (40×40 nm)
with constant porosity Ω = 0.5 and pore radius increasing cubically from 8 nm to 20 nm relative to x (mm):
R(nm)= 13.67 · 10−5x3 + 15.63 · 10−4x2 + 2.5 · 10−2x + 8, which was considered original, and “reproduced”
evolution of the water front profile in nanoporous thin film with porosity Ω = 0.7 and pore radius increasing
linearly from 6 nm to 13 nm relative to x.

4. Conclusion

The mathematical model which describes the two-dimensional propagation of liquid in inhomogeneous
nanoporous media has been presented along with its numerical realization. On the basis of this model a method
of evaluating the parameters of the inhomogeneous nanoporous medium resulting in sought-for specific pattern
of the liquid front propagation has been proposed. Several scenarios of reproduction of the specific evolutions
of the liquid front profile have been presented — it has been shown that proposed method is effective for both
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FIG. 6. The original evolution of the water front profile in nanoporous thin film with constant
porosity Ω = 0.5 and pore radius increasing cubically from 8 nm to 20 nm (point markers, solid
line) and reproduced evolution front profile in thin film with porosity Ω = 0.7 and pore radius
increasing linearly from 6 nm to 13 nm (asterisk markers, dotted line). Darker background areas
indicate smaller pore radius and lighter ones, accordingly, larger

evaluating the needed parameters as accurately as possible (which can be used for further mathematical analysis
and modelling) and finding distributions which can be synthesized with greater ease at lower costs.
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