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Thermal stability of magnetic states in submicron magnetic islands
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The lifetime of magnetic states in single domain micromagnetic islands is calculated within the harmonic approximation to transition state

theory. Stable magnetic states, minimum energy paths between them and first order saddle points determining the activation energy are

analyzed and visualized on two-dimensional energy surfaces. An analytical expression is derived for the pre-exponential factor in the Arrhenius

rate expression for the reversal of the magnetic moment when the external field is directed either along the anisotropy axis or perpendicular to

it.
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1. Introduction

The stability of magnetic states with respect to thermal fluctuations and external perturbations is an important
topic in fundamental science as well as for technological applications [1, 2]. Thermal stability is a particularly
important issue in the context of nanoscale information storage devices. The thermal stability of the magnetic
states decreases as the size of such devices is reduced. Estimates of the rate of magnetic transitions are, therefore,
important when designing such systems.

In this context, thermally-activated magnetic transitions are rare events on the time scale of oscillations of the
magnetic moments, making direct simulations of spin dynamics an impractical way to estimate the lifetime. This
separation of time scales, however, makes it possible to apply statistical approaches such as transition state theory
(TST) [3] or Kramers theory [4]. The transitions are slow enough that a Boltzmann distribution is established
and maintained in the initial state of the system. Within the harmonic approximation to TST (HTST) [5] and
within Kramers theory, the activation energy of a transition is given by the energy difference between the local
minimum on the energy surface corresponding to the initial state and the highest energy on the minimum energy
path (MEP) connecting the initial and final state minima. The MEPs between minima are the transition paths
of largest statistical weight and characterize the mechanism of the corresponding transitions. A maximum along
an MEP corresponds to a first order saddle point on the energy surface and gives an estimate of the activation
energy within HTST. In adaptions of these rate theories to magnetic systems [6–12], the magnitude of the magnetic
vectors is either assumed to be constant as orientation changes, or it is treated as a fast variable obtained from
self-consistency calculations for fixed values of the slow variables specifying orientation [13]. The energy surface
of a system of N magnetic moments is then a function of 2N degrees of freedom defining the orientation of the
magnetic moments.

If all degrees of freedom in the system can be included within the harmonic approximation (no zero modes, i.e.
degrees of freedom for which the energy is constant) HTST and Kramers estimate give an Arrhenius expression
for the rate constant, k(T ) = f0 exp [−∆E/kBT ] where ∆E is the energy difference between the relevant first
order saddle point and the initial state minimum. The pre-exponential factor, f0, often referred to as the attempt
frequency, can be determined by calculating the eigenvalues of the Hessian matrix, the matrix of second derivatives
of the energy with respect to the angles specifying the orientaiton of the magnetic moments, at the first order saddle
point and at the initial state minimum [11].

While the activation energy for magnetic transitions has frequently been calculated, fewer estimates of the
pre-exponential factor have been reported. Brown [6, 7] estimated the pre-exponential factor for remagnetization
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transitions in a single domain, uniaxial magnetic particle to be on the order of 109 – 1012 sec−1. The size and shape
of the particle as well as the materials properties will affect the value. Experimental measurements by Wernsdorfer
et al. [14] on 30 nm diameter Co nanoparticles gave an estimate of 4×109 sec−1.

Recently, the HTST approach has been used to estimate the pre-exponential factor as well as the activation
energy for various magnetic transitions. For remagnetization transitions in small Fe nanoislands on W(110),
significantly larger values of the pre-exponential factor were obtained, ranging from 1013 to 1018 sec−1, depending
on the size and shape of the islands [15]. The higher range of values was found where the remagnetization occurs
via formation of a temporary domain wall (’soliton’ mechanism [2]). Experimental estimates for islands falling
within a more limited range in shape and size are in close agreement with the calculated values [16]. An HTST
estimate for larger permalloy islands used in kagome spin ice systems [17] gave a smaller value, 9.9×108 sec−1 [18]
while analysis of the experimental data had assumed a value of 1012 sec−1 [17].

On the other hand, HTST calculations of magnetization reversal in a small Fe cluster at a tip interacting with
an antiferromagnetic surface gave values in the range of 1012 to 1018 sec−1 [19], while previous analysis of such
measurements had assumed a pre-exponential factor of 109 sec−1 [20]. Since the values of the pre-exponential
factor quoted here range over several orders of magnitude, it is clearly important to carry out calculations based on
the energy landscape characterizing the magnetic system of interest, rather than just assuming some value a priori.

Calculations of the value of the pre-exponential factor using HTST are in principle straightforward, even when
the energy of the system is obtained from iterative self-consistent calculations [12, 13]. Other examples of HTST
calculations of transition rates include magnetic skyrmion annihilation in CoPt(111) films [21], skyrmion lifetime
in narrow magnetic tracks [22] and the effect of impurities on skyrmion lifetime [23]. The dimensionality of the
energy surface used for those calculations ranged from several hundreds up to tens of thousands. Good agreement
has been found between HTST calculations and experimental measurements of lifetimes of both single and double
kagome rings when the parameters in the calculations were determined from basic properties of a single island and
no adjustment made to fit the data [18].

While robust methods are available for finding MEPs in complex magnetic systems [24, 25], the visualization
of the transition mechanism is in general a difficult task. To simplify the problem, one can consider a projection of
the multidimensional surface on a two-dimensional surface, where the energy is given by a two-parameter function
specifying the orientation of the magnetic moments in the system. This has, for example, been done in studies
of magnetization reversals in an exchange spring magnet, where the mechanism was described as propagation of
a temporary domain wall along the soft magnet toward the interface with the hard magnet and beyond [26]. The
position and the width of the wall are the two parameters used to parametrize the projection of the energy surface.

A particularly simple and yet important example of a magnetic system is a single domain magnetic particle
with shape anisotropy, possibly in the presence of a magnetic field. This system has been studied over a long
period of time and is often referred to as a Stoner-Wohlfarth particle [27]. It is, for example, relevant for modeling
of transitions in artificial spin ice systems which consist of arrays of magnetic islands on a solid surface. The
energy of the magnetic particle can be described by two angles in a spherical coordinate system so the energy
surface can be visualized easily. Previously, thermal effects on the lifetime of the magnetic states of such a particle
have been studied using kinetic equations [7] and by calculations of the smallest non-vanishing eigenvalue of
the Fokker-Plank equation [28]. Theoretical and experimental studies of the effect of temperature on dynamic
hysteresis [29] have been carried out as well as studies of the effect of thermal fluctuations on magnetic anisotropy
determinations [30]. However, the dependence of the pre-exponential factor in the rate constant on the size and
shape of the magnetic particle as well as the materials properties is not well known and, as mentioned above,
analysis of experimental data often relies on assumed values rather than accurate estimates.

In the present article, we report HTST calculations of the lifetime of magnetic states of a single domain
magnetic particle with shape anisotropy with and without an applied magnetic field. The activation energy and
pre-exponential factor for magnetic transitions are reported for various values of the anisotropy parameters. For the
cases where the applied magnetic field is directed either along the anisotropy axis or perpendicular to it, explicit
analytical expressions are obtained for the pre-exponential factor as well as the activation energy.

2. Model

We will consider a single domain magnetic island supported on a solid surface in the presence of an external
magnetic field H. The direction of the magnetic moment of the island is determined by two angles, θ and φ, as
shown in Fig. 1. The direction of the magnetic field will be characterized by angles θH and φH .

The energy density can be written as the sum of an anisotropy term and a Zeeman term

E/V = Eanis/V + EZ/V. (1)
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FIG. 1. Single domain magnetic island on a solid surface. ~M is the total magnetic moment of
the island and its direction with respect to the anisotropy axis and the surface normal is given by
the spherical polar angles θ and φ.

Here, the anisotropy term can be written as

Eanis/V = −K1 sin2 θ sin2 φ+K2 cos2 θ, (2)

where K1 and K2 are anisotropy constants. For a permalloy island in a spin ice structure [17], K1 > 0 and K2 > 0
describe easy axis shape anisotropy and easy plane shape anisotropy, respectively. For CoPt islands [31, 32], there
is an intrinsic out of plane anisotropy and K2 < 0 whereas K1 ≈ 0 due to the round shape of the islands. The
same system can be described by K1 < 0 and K2 ≈ 0 when the y-axis is chosen to be perpendicular to the island
plane.

FIG. 2. Energy surface determined by eqs. (1-3) for parameters mimicking CoPt islands [31,32],
c = 1.3 and h = 1.8 with magnetic field H = 1.33 MA/m in a direction given by θH = π/10
and φH = π/2 (the parameters used in the calculations are M0 = 836 kA/m, K1 = 386 kJ/m3

and K2 = 501.8 kJ/m3). The local minima corresponding to the two stable states, A and B, are
marked with white disks and the minimum energy path connecting them is shown with a white
dotted line. The first order saddle point is marked with s and a dividing surface separating the A
and B states, defined by F (θ, φ) = 0, is shown with a black line. The velocity perpendicular to
the dividing surface, V⊥, near the saddle point is shown with a red arrow. The two normal mode
vectors at the saddle point are shown as black arrows labeled q1 and q2

The Zeeman energy is given by the equation

EZ/V = −µ0HM0(sin θ sin θH sinφ sinφH + sin θ sin θH cosφ cosφH + cos θ cos θH), (3)

where M0 is the magnetization of the material and H is the magnetic field strength.
An example energy surface determined by eq. (1–3) is depicted in Fig. 2. The values of parameters are

c ≡ K2/K1 = 1.3 and h ≡ µ0M0H/2K1 = 1.8 (The parameters used in the calculations shown in Fig. 2 are
M0 = 836 kA/m, K1 = 386 kJ/m3 and K2 = 501.8 kJ/m3. In the calculations shown in Fig. 3 the value of K2

is different, 116 kJ/m3, to roughly correspond to CoPt islands [31, 32]), and the magnetic field is chosen to have
strength of H = 1.33 MA/m and direction given by θH = π/10 and φH = π/2. There are two local minima
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A and B on the energy surface corresponding to the stable magnetic states. The dividing surface separating the
orientations that correspond to the A and B states can be represented as a continous curve F (θ, φ) = 0. The MEP
between the stable states was found using the geodesic nudged elastic band method [24], a generalization of the
frequently used NEB method for atomic rearrangements [33]. The exact position of the first order saddle point
was determined with the climbing image algorithm [34].

When the magnetic field is applied along or perpendicular to the easy axis and in the plane of the island, the
energy surface is more symmetric and the values of the angles corresponding to stable states, the MEP and saddle
point can be obtained analytically. Fig. 3 shows such a case for a magnetic field of H = 100 kA/m. If the field is
directed perpendicular to the easy axis (the y-axis), the local minima are at θ = π/2 and φ = π ± arccosh. The
value of θ is constant along the MEP and the saddle point is at θ = π/2, φ = π. The activation energy is the same
in this case for transitions in both directions ∆E/V = K1(1−h)2. If the field is directed parallel to the easy axis,
the local minima are at θ = π/2 and φ = π ± π/2 and the saddle point is at θ = π/2, φ = π + arcsin(−h).

FIG. 3. Energy surface of a single domain magnetic island with parameter values the same as
for Fig. 2 except that c = 0.3 and the field strength is H = 100 kA/m (the parameters used in the
calculations are M0 = 836 kA/m, K1 = 386 kJ/m3 and K2 = 116 kJ/m3). The field is pointing
perpendicular to the easy axis (the y-axis) on the left side, but parallel to the easy axis on the
right side. The local minima and the first order saddle point are marked with white dots.

The two wells corresponding to the stable states are not equally deep. For transitions from the metastable state
to the ground state, the activation energy is again ∆E/V = K1(1 − h)2. Note that the positions of the minima
and saddle point as well as the activation energy do not depend on the in-plane anisotropy, K2. The direction of
the MEP is along θ = π/2, also independent of K2. However, K2 affects the shape of the energy surface, the
variation of the energy with respect to θ when φ is constant, so the rate constant ends up being dependent on K2,
see below.

3. Rate constant

Within TST, the rate of transitions can be found as the product of the probability of reaching the transition
state, a thin ribbon of configuration space around the dividing surface, F (θ, φ) = 0, and the flux out of the
transition state. The key approximation of TST is that a dynamical trajectory starting from the initial state only
crosses the dividing surface once until the system thermalizes in the product state. Recrossing events during the
traversal over the energy barrier are neglected. Dynamical trajectories started at the transition state, can be used to
correct the TST estimate of the rate constant. The TST estimate of the rate constant is

kTST =
1

Z

∫∫
S

e−E(θ,φ)/kBTV⊥ sin θdθdφ, (4)

where S denotes the dividing surface and

Z =

∫∫
A

e−E(θ,φ)/kBT sin θdθdφ (5)
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is the configuration integral for the system in the initial state, A, and V⊥ is the projection of the velocity vector,
~V , onto the local normal of the dividing surface (that points to the final state B),

V⊥ =
∇~F
||∇~F ||

· ~V . (6)

When the harmonic approximation is used, i.e. in HTST, the dividing surface is taken to be a hyperplane
going through the first order saddle point with normal pointing along the MEP. A quadratic approximation of the
energy surface in terms of θ and φ around the initial state minimum and the first order saddle point are used to
estimate the activation energy and the flux out of the transition state. In order to eliminate mixed terms in the
quadratic approximation, it is convenient to define a new coordinate system in terms of the eigenvectors of the
Hessian matrix, the vibrational normal coordinates qβ1 and qβ2 , where β = s at the saddle point and β = m at the
initial state minimum

E(qβ1 , q
β
2 ) = E(θβ , φβ) +

1

2
[εβ1(qβ1 )2 + εβ2(qβ2 )2], (7)

where, εβ1 and εβ2 are the eigenvalues of the Hessian matrix at the saddle point or initial state minimum. The
velocity is given by the Landau-Lifshitz equation, which in the vicinity of the first order saddle point, can be
written in terms of the normal coordinates as

q̇s1 =
γεs2

VM0 sin θs
qs2 (8)

and
q̇s2 = − γεs1

VM0 sin θs
qs1. (9)

where γ is the gyromagnetic ratio. If at the saddle point εs1 < 0 and εs2 > 0, then V⊥ = q̇s1 sin(θs). Otherwise, if
εs1 > 0 and εs2 < 0, then V⊥ = q̇s2 sin θs. The integral over the dividing surface in eqn. (4) needs to be carried
out only for regions where V⊥ > 0, i.e. for trajectories that are heading away from the initial state and towards
the product state [11]. The velocity is zero at the saddle point, but non-zero contributions to the flux are obtained
from one half of the hyperplanar dividing surface. Integration gives

kHTST =
γ
√
εm1εm2

2πM0V sin θm
e−∆E/kBT . (10)

It is interesting to note that the pre-exponential factor does not depend on the Hessian at the saddle point, only
at the initial minimum through the eigenvalues εm1 and εm2. This occurs for two-dimensional energy surfaces
because V⊥ > 0 is proportional to the one positive eigenvalue of the Hessian at the saddle point, but the same
eigenvalue also appears in the denominator and thus cancels out. The pre-exponential factor also does not depend
on the volume, V , because the eigenvalues of the Hessian at the minimum are proportional to the volume, and the
volume also appears in the denominator, so it cancels out.

For the cases when the applied magnetic field is directed either parallel or perpendicular to the easy axis,
an analytical expression for the rate constant in terms of the parameters characterizing the energy surface can be
obtained. When the magnetic field is perpendicular to the easy axis, the result is

kHTST⊥ = f0⊥ e
−∆E/kBT =

γK1

√
(1− h2)(2c+ 1)

πM0
exp

[
−V K1

kBT
(1− h)2

]
, (11)

and when it is parallel to the easy axis, the result is

kHTST‖ = f0‖ e
−∆E/kBT =

γK1

√
(1− h)(2c− h+ 1)

πM0
exp

[
−V K1

kBT
(1− h)2

]
. (12)

Figure 4 shows the dependence of the pre-exponential factor, f0, on the anisotropy parameters, K1 and K2 in
the absence of an external magnetic field, when M0 = 200 kA/m. A decrease of K1 leads to a decrease of the
pre-exponential factor but reduces at the same time the activation energy. These results show that a value of 109

Hz as was assumed in refs. [31, 32] gives reasonable approximation.

4. Conclusion

We have presented here simple equations that can be easily evaluated to estimate to estimate the rate constant
for remagnetization transitions in a single domain magnetic particle where the transition occurs by uniform rotation.
While the saddle point needs to be found in order to estimate the activation energy, ∆E, the eigenvalues of the
Hessian are not needed there, only at the initial state minimum.
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FIG. 4. Dependence of the pre-exponential factor on the anisotropy parameters K1 and K2 when
the saturation magnetization is M0 = 200 kA/m and no external magnetic field is present, H = 0

Especially simple analytical equations were obtained for the cases where the applied field is directed in either
a parallel or perpendicular manner to the easy axis, or is absent. All that is needed to evaluate the rate constant in
such cases is the saturation magnetization of the material and the two anisotropy constants. The rate constant turns
out to be independent of the volume of the magnetic particle.

These results should be of value for theoretical estimates of magnetic transition rates in, for example, artificial
spin ice systems, where previously, values of the pre-exponential factor have usually simply been assumed to have
some value without relating to the basic properties of the individual islands. The approach presented here has
already been shown to be accurate in calculations of the lifetime of single and double kagome rings [18].

For large enough islands compared with the strength of the magnetic interaction between the spins within the
island, a uniform rotation is not the preferred transition mechanism, but rather a temporary domain wall. The
results presented here do not apply to such situations. Calculations of Fe islands indicate that the pre-exponential
factor can be substantially larger in such cases [15]. The reason may be that lower frequency modes then appear at
the saddle point. Further analysis of the systematic trends in the pre-exponential factor in such cases as a function
of the materials properties and the size and shape of the islands remains a topic of future studies.

Also, for low enough temperatures, quantum mechanical tunneling as opposed to the over-the-barrier mecha-
nism considered here, will become the preferred transition mechanism. Recently, general equations for estimating
the onset temperature for tunneling have been presented [35, 36] and can be used to give a lower bound on the
temperature range for which the equations presented here remain reliable approximations.
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