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N wells at a circle. Splitting of lower eigenvalues

T. F. Pankratova

ITMO University, 49 Kronverkskiy, St. Petersburg, 197101, Russia

tanpankrat@yandex.ru

PACS 32.30-r; 03.65-w; 73.21.Fg; 78.67.De; 31.15-xr; 05.45.xt DOI 10.17586/2220-8054-2018-9-2-212-214

A stationary Schrödinger operator on R2 with a potential V having N nondegenerate minima which divide a circle of radius r0 into N equal

parts is considered. Some sufficient asymptotic formulae for lower energy levels are obtained in a simple example. The ideology of our research

is based on an abstract theorem connecting modes and quasi-modes of some self-adjoint operator A and some more detailed investigation of

low energy levels in one well (in Rd).
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1. Introduction. Modes and quasi-modes

We use terms modes and quasi-modes following V. I. Arnold [1]. An eigenvalue and eigenvector of some
operator A, i.e. a pair (λ, u) which satisfies equation Au = λu exactly, is called a mode. Some value and vector
which satisfy this equation approximately with some error of order ε is called a quasi-mode. More precisely, the
result is as follows:

Let A be a self-adjoint operator in a Hilbert space H, λ0 – a real value, orthonormal vectors u1, u2, ..., uN ∈
D(A), Q is a positive constant, ε = max

1≤i≤N
‖(A− λ0)ui‖, 0 < 4

√
3Nε < Q, λ1, ..., λN are the eigenvalues of the

matrix M with the inputs {Mik} = {〈Aui, uk〉} (〈·, ·〉 means a scalar product in H), every eigenvalue is counted
according to its multiplicity.

Theorem 1. Suppose the interval I = [λ0 −Q,λ0 +Q] contains at most N eigenvalues of A. Then, the interval

I1 =
[
λ0 −Q+ 4

√
3Nε, λ0 +Q− 4

√
3Nε

]
contains exactly N eigenvalues of A. There exist constants p and q

such that if 0 < ε < p then, any interval δj =
[
λj − qε2, λj + qε2

]
is included in I1 and contains an eigenvalue

of A. Any connected component of the set
N⋃
j=1

δj contains exactly as many eigenvalues of A as there are intervals

δj forming it.

Theorem 1 allows us to describe eigenvectors and eigenvalues of A based on the knowledge only of its quasi-
modes. If δj does not intersect with δj+1, the distance between their middle points gives us a good approximation
of the distance between the two nearest eigenvalues. The first proposition of Theorem 1 guaranties the absence of
additional eigenvalue of A in our interval.

2. A self-adjoint Schrödinger operator on Rd

Let us consider the Schrödinger equation:

−h
2

2
∆u+ V u = Eu, (1)

where ∆ =

d∑
i=1

∂2

∂2i
is the Laplace operator, V is a real valued function defined on Rd having nondegenerate

minima (wells) with some kind of symmetry, h (small parameter) is the Planck constant (in special system of
units). Let A be the corresponding Schrödinger operator defined by the left hand side of equation (1) in L2(Rd).

If V in (1) has a finite number of identical wells which differ only by space translations and V (x) > C
beyond the region of the wells where C exceeds the value of V at minimum, lower part of the spectrum of
operator A is organized in the following way. There is a set of finite groups of eigenvalues (each of them is related
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to some quantum vector n ∈ Nd), the distance between the groups being of the order h, and the distance between
eigenvalues in each group, the splitting, being exponentially small with respect to h.

It is possible to find explicit formulae for the widths of these splittings using semi-classical asymptotics for
each well. The problem was considered in different ways by different authors and almost completely solved in
one dimensional case [1–8]. The case d > 1 is much more complicated. There are many results obtained in this
area (see [9–17] and the list is far from exhaustive). The semiclassical asymptotics of the discrete spectrum and
strict estimates of the splittings are described in [9] and other works of these authors (using the theory of pseudo
differential operators). The semiclassical expansion for the eigenfunctions and the rigorous asymptotics for the
splitting widths in the lowest levels were obtained in [10] (with the use of Maslov’s canonical operator). The
possibility to solve this problem in that case was discussed during the Diffraction Day Conference 2014 in the talk
of A. Anikin and M. Rouleux [12].

In the present work, in order to write down strict asymptotic formulae for splittings in two-dimensional case,
one has to use Theorem 1. It is necessary to find a sufficiently accurate semiclassical approximation to eigenstates
for a single well in some vicinity of a minimum, independent of h. Such an approximation was constructed
in [11,13]. The formal series on powers of h were obtained. Coefficients in all terms were found in some domain
independent of h. Terms for eigenfunctions are analytic for analytic potential. If we truncate the series at the m-th
term the remaining sums satisfy the equation (1) with an error of the order of hm+1 exp (−S/h), where S is a
nonnegative function defined in [11]. The possibility to take m as large as we like and exponential decreasing of
all terms beyond some vicinity of a minimum allows one to construct sufficient quasi-modes. Each quasi-mode has
to be constructed from semiclassical approximations of lower eigenfunctions in the region of the bottom of each
well vanishing beyond it.

In this work, a simple example is considered. Here, the circle containing N minima of V is f line of minimum
of the corresponding functional b and it is easy to find b in a plain form.

3. An example. N wells at a circle

Let d = 2. Let V in equation (1) in polar coordinates be of the following form:

V =
ω2
1

2
(r − r0)

2
+
ω2
2

2
sin2 Nφ

2
, (2)

ω1, ω2 are some positive Diophantine numbers. (This means that there exist positive numbers α and β such that

for any k ∈ Z2, k 6= 0, |〈k, ω〉| ≥ β

|k|α
).

It is easy to see that the points Mj

(
r0;

2πj

N

)
, j = 0, 1, ..., N − 1, are nondegenerate minima of V , Mj ∈ Γ,

Γ is a circle r = r0 and

V (r, φ) = V

(
r;φ+

2πj

N

)
. (3)

We put a Cartesian system of coordinates (xj ; yj) in the vicinity of the bottom of each well in such a way that
Mj = Mj (0; 0) in this coordinates, axis xj is tangential to a circle Γ at the point Mj and yj is normal to it. One
can find the following Taylor series for V :

V (Xj) =
1

2

(
ω̂2
1x

2
j + ω̂2

2y
2
j

)
+
∑
|k|≥3

vkX
k
j ,

Xj = (xj ; yj) , k = (k1; k2) , Xk
j = xk1j y

k2
j , |k| = k1 + k2, ω̂i > 0, i = 1, 2,

in a vicinity of Mj . The form of this series does not depend on j because of equality (3).

In order to use Theorem 1, let us find semiclassical approximations
(
ûn, Ên

)
for some first quantum vectors

n = (n1, n2), n1 = 0, 1, ...; n2 = 0, 1, ...; in each domain Dj = {|xj | ≤ γ, |yj | ≤ γ̂}. They are the same for all
Dj , j = 0, 1, ...N − 1. Let us take numbers γ and γ̂ such that two neighboring domains Dj and Dj+1 intersect.

Let domain Gj,j+1 = Dj

⋂
Dj+1 be such an intersection. Let the point M̂j = M̂j

(
r0;

π (2j + 1)

N

)
∈ Gj,j+1,

j = 0, 1, ..., N − 1. Then, we multiply ûn by cutting functions χ[j] = χ[j] (xj , yj) = χ
[j]
1 (xj)χ

[j]
2 (yj), where
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χ
[j]
1 (xj) and χ[j]

2 (yj) are smooth cutting functions, i.e.

χj1 (xj) =

{
1, |xj | ≤ γ,
0, |xj | ≥ γ + ε1,

χj2 (yj) =

{
1, |yj | ≤ γ̂,
0, |yj | ≥ γ̂ + ε2,

ûnχ
[j] = ˆ̂u[j]n .

Function ˆ̂u[j]n is equal to zero beyond rectangular {|xj | ≥ γ + ε1, |yj | ≥ γ̂ + ε2}. We construct N quasi-modes

ũn,k, k = 1, ..., N , as a linear combination of cut-off functions ˆ̂ujn, i.e. ũn,k =

N∑
j=1

αj,k ˆ̂u[j]n , k = 1, ..., N . We find

numbers αj,k in order to orthonormalize the system {ũn,k}Nk=1. Now, we can use Theorem 1 in a way similar to
one presented in [8].

We find that for our example with N wells (eq. (2)) for each quantum vector N eigenvalues Ekn, k = 1, ..., N ,
of operator A has the following form:

Ekn = Ên + µ
[n]
k +O

(
ε2
)
,

where:

Ên =

m∑
j=1

En,jh
j ; En,1 =

(
n1 +

1

2

)
ω̂1 +

(
n2 +

1

2

)
ω̂2,

µ
[n]
k = a · exp

(
−h−1b

)
· cos

πk

N + 1
, k = 1, ..., N, µ

[n]
k = O (ε) , b =

∫
Mk−1Mk

√
2V dS,

Mk−1Mk is a line of minimum of functional b. In our case it is a part of the circle Γ. At this circle,
√

2V = ω2 sin
Nφ

2
, dS = r0dφ. Hence, b =

4

N
r0ω2.

Now, we can write down the splitting formula for lower eigenvalues of operator A:

∆Ekn = Ek+1
n − Ekn = dk exp

(
− b
h

)
(1 +O (h)) , k = 1, ..., N.

One can regard this example as a simple model for some possibly more complicated situation.
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