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On the behavior of the solution of a nonlinear polytropic filtration problem
with a source and multiple nonlinearities

Z. R. Rakhmonov, A. I. Tillaev

National University of Uzbekistan, Applied Mathematics and Computer Analysis,
Universitet, 4, Tashkent, 100174, Uzbekistan

zraxmonov@inbox.ru, tillayev1@mail.ru

PACS 02.30.Jr, 02.30.Mv, 02.60.-x, 11.10.Jj, 11.10.Lm

DOI 10.17586/2220-8054-2018-9-3-323-329

In this paper, we study the global solvability and unsolvability conditions of a nonlinear filtration problem with nonlinear boundary flux. We

establish the critical global existence exponent and critical Fujita exponent of nonlinear filtration problem in inhomogeneous medium. An

asymptotic representation of the solution with a compact support is obtained, which made it possible to carry out a numerical experiment.
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1. Introduction

Consider the following parabolic equation

ρ (x)
∂u

∂t
=

∂

∂x

(∣∣∣∣∂u∂x
∣∣∣∣p−2 ∂u∂x

)
+ ρ (x)uβ , (x, t) ∈ R+ × (0, +∞) , (1)

with nonlinear boundary flux

−
∣∣∣∣∂u∂x

∣∣∣∣p−2 ∂u∂x (0, t) = uq (0, t) , t > 0, (2)

and initial value condition
u (x, 0) = u0 (x) ≥ 0, x ∈ R+, (3)

where p > 2, β, q > 0, ρ(x) = x−n, n ∈ R, u0(x) – is a bounded, continuous, nonnegative and nontrivial initial
data.

Equations (1) occur in various fields of natural science [1, 3–5]. For example, equation (1) arises in the
mathematical modeling of thermal conductivity of nanofluids, in the study of problems of fluid flow through
porous media, in problems of the dynamics of biological populations, polytropic filtration, and the formation of
structures in synergetics and in nanotechnologies, and in a number of other areas [1, 4].

Equation (1) is called a parabolic equation with inhomogeneous density [1] and the case p > 2 corresponds to
the slow diffusion equation [2]. The problem (1) – (3) has been intensively studied by many authors (see [2,6–17]
and references therein) in different values of numerical parameters.

The authors in [2] considered the Cauchy problem for the equation (1) at n = 0, proving that if 0 < β < 1,
then all solutions of (1) are global in time, while for β > 1 there are solutions with finite time blow-up. Also in
this paper the following statements were proved:

– If 1 < β < 2p− 1, then every solutions of Cauchy problem (1), (3) blow up in finite time;
– If β > 2p − 1, then the Cauchy problem (1), (3) admits nontrivial global solutions with small initial data.

The value β = 2p− 1 is Fujita type critical exponent.
Some properties of the solutions of (1)–(3) at ρ(x) = 1 were studied in [9] by Zhongping Li, Chunlai Mu and

Li Xie. They obtained the critical global existence exponent and the critical Fujita exponent by constructing sub
and supersolutions.

In [6,7], the authors studied the unboundedness of the solution for the following reaction-diffusion model with
nonlocal nonlinearities

ut = ∆um + uβ , (x, t) ∈ Ω× (0, T ) ,

∂u

∂η
= uq, (x, t) ∈ ∂Ω× (0, T ) ,

u (x, 0) = u0 (x) , x ∈ Ω,
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where Ω ∈ RN is a bounded domain. Authors obtained that all positive solutions exist globally if and only if β,
q ≤ 1 when m > 1 and if and only if β ≤ 1, q ≤ 2m/(m+ 1) when m ≤ 1.

The authors of the work [15] have studied problem (1)–(3) at n = 0. They obtained the principal terms for the
asymptotic of self-similar solutions.

As it is well known, degenerate equations need not possess classical solutions. Therefore, its solution is
understood in the generalized sense.
Definition 1. The function u (x, t) is said to be the weak solution to problem (1)–(3) in Ω = {R+ × (0, T )},

if 0 ≤ u(x, t) ∈ C (Ω) ,

∣∣∣∣∂u∂x
∣∣∣∣p−2 ∂u∂x ∈ C (Ω) and if it satisfies (1)–(3) in the sense of distribution in Ω, where

T > 0 is the maximal existence time.

2. Main results

In this section, we show the critical global existence curve and critical Fujita curve, and characterize when all
solutions to the problem (1)–(3) are global in time or they blow up.

Theorem 1. If 0 < β ≤ 1 and 0 < q ≤ (2− n) (p− 1)

p− n
then each solution of problem (1)–(3) is global in time.

Proof. We look for a globally defined in time supersolution of the following self-similar form

ū(x, t) = eBt
(
D + e−Lξ

)
, ξ = xe−Jt,

where D > ‖u0‖∞, L(p−1)/q − e−L = D, B =
Lp (p− 1) +

(
D + e−L

)β
D

, J =
B (p− 2)

p− n
.

After computation, we have:

ρ (x)
∂ū

∂t
=
(
BeBt(D + e−Lξ) + LJe(B−J)t(1 + x)

)
e−nJtξ−n ≥ BDe(B−nJ)t,

ūβ = eβBt
(
D + e−Lξ

)β
e−nJtξ−n ≤ e(βB−nJ)t

(
D + e−L

)β
,

∂

∂x

(∣∣∣∣∂ū∂x
∣∣∣∣p−2 ∂ū∂x

)
= Lp (p− 1) e(B(p−1)−Jp)te−L(p−1)ξ,

−
∣∣∣∣∂ū∂x

∣∣∣∣p−2 ∂ū∂x (0, t) = Lp−1e(B−J)(p−1)te−B(p−1).

Now, we shall show that the function ū (x, t) is a supersolution of problem (1)–(3). According to the comparison
principle it must satisfy the following inequality:

ρ (x)
∂ū

∂t
≥ ∂

∂x

(∣∣∣∣∂ū∂x
∣∣∣∣p−2 ∂ū∂x

)
+ ρ (x) ūβ , (x, t) ∈ R+ × (0, +∞) , (4)

−
∣∣∣∣∂ū∂x

∣∣∣∣p−2 ∂ū∂x (0, t) ≥ ūq (0, t) , t > 0. (5)

It is not difficult to verify that if 0 < β ≤ 1 and 0 < q ≤ (2− n) (p− 1)

p− n
, by definition B, L, D, J the inequalities

(4) and (5) are valid. Hence, ū (x, 0) ≥ u0 (x) and ū (0, 0) ≥ u0 (0). Thus, by comparison principle, Theorem 1 is
proved.
Remark 1. Theorem 1 shows that the critical global existence exponent of the problem (1)–(3) is{
β = 1, 0 < q ≤ (2− n) (p− 1)

p− n

}
∪
{
q =

(2− n) (p− 1)

p− n
, β ≤ 1

}
.

Theorem 2. If β < 1 and q >
(2− n) (p− 1)

p− n
then every solution of problem (1)–(3) blows up in time.

Proof. We shall seek a blow up subsolution of the self-similar form:

u− (x, t) = tσϕ (η) , η = xt−γ (6)

where σ =
1

1− β
, γ =

p− 1− β
(1− β) (p− n)

and ϕ (η) is the solution of the following problem

d

dη

(∣∣∣∣dϕdη
∣∣∣∣p−2 dϕdη

)
+ γη1−n

dϕ

dη
− ση−nϕ+ η−nϕβ = 0, (7)
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∣∣∣∣p−2 dϕdη (0) = ϕq (0) . (8)

In order u− (x, t) to be a subsolution of problem (1)-(3) function ϕ (η) should satisfy following:

d

dη

(∣∣∣∣dϕdη
∣∣∣∣p−2 dϕdη

)
+ γη1−n

dϕ

dη
− ση−nϕ+ η−nϕβ ≥ 0, (9)

∣∣∣∣dϕdη
∣∣∣∣p−2 dϕdη (0) ≤ ϕq (0) . (10)

We set:

ϕ (η) = E
(
a− η

p−n
p−1

) p−1
p−2

+
, (11)

where E, a are constants to be determined. It is easy to see that

ϕ′ (η) = −p− n
p− 2

Eη
1−n
p−1

(
a− η

p−n
p−1

) p−1
p−2

,

d

dη

(∣∣∣∣dϕdη
∣∣∣∣p−2 dϕdη

)
= −Ep−1

(
p− n
p− 2

)p−1
η−n

(
a− η

p−n
p−1

) p−1
p−2

,

∣∣∣∣dϕdη
∣∣∣∣p−2 dϕdη (0) = 0.

By taking

Ep−2
(
p− n
p− 2

)p−1
≥ γ, a

(p−1)(β−1)
p−2 ≥ Ep−2−β

(
p− n
p− 2

)p−1
+ E1−βσ

it is easy to check that if β < 1, then (9) and (10) are valid. Thus u− (x, t) is a subsolution of the problem (1)–(3)
with every nontrivial initial data.

Theorem 3. If β > 2p− 1 and q <
(2− n) (p− 1)

p− n
then every solution of problem (1)–(3) blows up in time.

Proof. In this case we prove that the flux condition makes the solution large enough to be in the set of initial
data for which the reaction term alone is enough to cause blow up. We consider the self-similar subsolution of the
problem (1)–(3) without a source:

ub (x, t) = tαg (ξ) , ξ = xt−γ (12)

where α =
p− 1

(p− 1) (2− n)− q (p− n)
, γ =

p− 1− q
(p− 1) (2− n)− q (p− n)

. Let us show that function ub (x, t)

defined by (12) is a subsolution. Then, according to the comparison principle, function g (ξ) should satisfy the
following inequalities:

d

dξ

(∣∣∣∣dgdξ
∣∣∣∣p−2 dgdξ

)
+ γξ1−n

dg

dξ
− αg (ξ) ≥ 0, (13)

−
∣∣∣∣dgdξ

∣∣∣∣p−2 dgdξ (0) ≤ gq (0) . (14)

Let us set

ḡ (ξ) = B (b− ξ)
p−1
p−2

+ ,

where b and B are positive constants to be determined. After some computations, we have

ḡ′ (ξ) = −Bp− 1

p− 2
(b− ξ)

1
p−2

+ ,

∣∣∣∣dḡdξ
∣∣∣∣p−2 dḡdξ = −Bp−1

(
p− 1

p− 2

)p−1
(b− ξ)

p−1
p−2

+ ,

d

dξ

(∣∣∣∣dḡdξ
∣∣∣∣p−2 dḡdξ

)
= Bp−1

(
p− 1

p− 2

)p
(b− ξ)

1
p−2

+ .
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Noting that

γξ1−n
dḡ

dξ
− αḡ (ξ) ≥ −γBp− 1

p− 2
(b− ξ)

1
p−2

+ b− αB (b− ξ)
1
p−2

+ b =

= −Bb (b− ξ)
1
p−2

+

(
γ
p− 1

p− 2
+ α

)
.

By taking:

Bp−2
(
p− 1

p− 2

)p
≥ b

(
γ
p− 1

p− 2
+ α

)
, Bp−1−q

(
p− 1

p− 2

)p−1
≤ b

(q−1)(p−1)
p−2

and q <
(2− n) (p− 1)

p− n
, it is easy to check that (13) and (14) are valid. It follows from the comparison principle

that the problem (1)–(3) exists a solution blowing up in a finite time.
Theorem 4. If β > 1 and q < (2− n) (p− 1), then every solution of problem (1)-(3) blows up in time.
Remark 2. Theorem 3 and Theorem 4 shows that the critical Fujita curve of the problem (1)–(3) is {β = 2p− 1, q ≥ 2 (p− 1)}∪
{β ≥ 2p− 1, q = 2 (p− 1)}.

Theorem 5. If β >
(p− n) q − p+ 1

p− 1
and q > (2− n) (p− 1) then each solution of problem (1)–(3) is global in

time.
Theorems 4 and 5 can be proved in the same manner as it was done in [13, 16].
Let us show the asymptotics of self-similar solutions.

The case 1/(p− 1) < β ≤ 1, q >
(2 − n) (p− 1)

p− n
. Consider the following self-similar solution of problem

(1)–(3):
u1 (x, t) = tαϕ (ξ) , ξ = xt−γ , (15)

where α =
1

1− β
, γ =

p− 1− β
(p− n) (1− β)

and ϕ (ξ) is solution of the following problem

d

dξ

(∣∣∣∣dϕdξ
∣∣∣∣p−2 dϕdξ

)
+ γξ1−n

dϕ

dξ
− αξ−nϕ+ ξ−nϕβ = 0 (16)

−
∣∣∣∣dϕdξ

∣∣∣∣p−2 dϕdξ
∣∣∣∣∣
ξ=0

= ϕq (0) (17)

Consider the function

ϕ̄ (ξ) =

(
a− p− 2

p− n
γ

1
p−1 ξ

p−n
p−1

) p−1
p−2

+

, (18)

where a > 0, (y)+ = max(0, y). We show that the function (18) is the asymptotics of the solutions of problem
(16), (17).
Theorem 6. The compactly supported solution of problem (16), (17) has the asymptotic

ϕ (ξ) = ϕ̄ (ξ) (1 + o(1)),

when ξ →
(

a (p− n)

(p− 2) γ1/(p−1)

)(p−1)/(p−n)

.

Proof. We seek a solution of equation (16) in the following form

ϕ = ϕ̄ (ξ)w(τ), (19)

with τ = − ln
(
a− bξ

p−n
p−1

)
, b =

p− 2

(p− n)
γ1/(p−1), where τ → +∞ at ξ → (a/b)

(p−1)/(p−n).

Substituting (19) into equation (16) with regard to (18), it takes the form:

d

dτ
(L1w)

p−1
+

(
k1φ1 (τ)− p− 1

p− 2

)
(L1w)

p−1
+ k2L1w − k3wφ2 (τ)− k4wβφ3 (τ) = 0, (20)

where L1w =
w

p− 2
− w′

p− 1
, φ1 (τ) = e−τ , φ2 (τ) = e−τ

/(
a− e−τ

)
, φ3 (τ) = e−

β(p−1)−1
p−2 τ

/(
a− e−τ

)
,

k1 =
p− 1

b (p− n)
, k2 =

γ (p− 1)

(b (p− n))
p−1 , k3 =

α(p− 1)

bp−1(p− n)
p , k4 =

p− 1

(b (p− n))
p .
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We note that the study of the solutions of the last equation is equivalent to the study of those solutions of
equation (1), each of which satisfies the inequalities in some interval [τ0, +∞):

w (τ) > 0,
w (τ)

p− 2
− w′ (τ)

p− 1
6= 0.

We verify that the solution w (τ) of the equation (20) has a finite limit w0 or not at τ → +∞. Let ν (τ) =

(L1w)
p−1. Then, for the derivative of the function ν (τ), we have:

v′ = −
(
k1φ1 (τ)− p− 1

p− 2

)
v − k2L1w + k3wφ2 (τ) + k4w

βφ3 (τ) .

We introduce the auxiliary function to analyze the solutions of the last equation:

θ (τ, µ) = −
(
k1φ1 (τ)− p− 1

p− 2

)
µ− k2L1w + k3wφ2 (τ) + k4w

βφ3 (τ) (21)

where µ ∈ R. Hence, it is easy to see that for each value of µ the function θ (τ, µ) keep the sign on some interval
[τ1, +∞) ⊂ [τ0, +∞) and for all τ ∈ [τ1, +∞) holds one of the inequalities ν′ (τ) > 0, ν′ (τ) < 0. Then,
analyzing (21) with the help of Bohl’s theorem [13], we conclude that there for the function ν (τ) exists a limit at
τ ∈ [τ1, +∞). It is easy to see that

lim
τ→+∞

φ1 (τ)→ 0, lim
τ→+∞

φ2 (η)→ 0, lim
τ→+∞

φ3 (η)→ 0

at ξ → (a/b)
(p−1)/(p−n)
− . Then taking into account the last limit and w′ = 0 from (20), we obtain following

algebraic equation for w

(p− 1)

(
w

p− 2

)p−1
− k2w = 0.

From this equation, we get that w = 1, thus we have ϕ (ξ) = ϕ̄ (ξ) (1 + o(1)).

The case β > 2p− 1, q <
(2 − n) (p− 1)

(p− n)
.

Theorem 7. The compactly supported solution of problem (1)-(3) has the asymptotic:

u (x, t) = Ctαḡ (ξ) (1 + o(1)),

where C =

(
p− 2

p− 1
bγ

)1/(p−2)
p− 2

B (p− 1)
, ḡ is above defined function.

The critical case (p− n) q = (2 − n) (p− 1). In this case, we consider following exponential form solution
of problem (1)–(3):

u4 (x, t) = eα(t−τ)φ (η) , η = xe−γ(t−τ),

where α =
p− n
2p− 1

, γ =
p− 2

2p− 1
and φ (η) is the solution of the problem

d

dη

(∣∣∣∣dφdη
∣∣∣∣p−2 dφdη

)
+ γη1−n

dφ

dη
− αη−nφ = 0, (22)

−
∣∣∣∣dφdη

∣∣∣∣p−2 dφdη
∣∣∣∣∣
η=0

= φq (0) . (23)

We take:

φ̄ (η) = D

(
Dp−2

(
p− 1

p− 2

)p
− η
) p−1
p−2

+

,

where D > 0.
Theorem 8. The compactly supported solution of problem (22)–(23) has the asymptotic

φ (η) = Cφ̄ (η) (1 + o(1)),

at η → Dp−2
(
p− 1

p− 2

)p
, where C =

(
p− 1

p− 2
γ

)1/(p−2)

.

Theorem 7 and Theorem 8 are proved similarly to the proofs of Theorems 6.
Numerical experiments. It is known that choosing a suitable initial approximation preserving nonlinear properties
is very important in numerical analysis. For this purpose, a computer experiment was conducted on the basis of
the above qualitative properties of solutions for the case of global solvability. Since equation (1) approximated the
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second order of accuracy respect to x and first order of accuracy respect to t. The iterative process for numerical
modeling was constructed, in the inner steps of iteration the node values are calculated by the Thomas algorithm.
It is well known that, the iteration methods required a good initial approximation, which quickly converge to the
exact solution and retain the qualitative properties of the studied nonlinear processes. This is the difficulty of
the numerical analysis of the nonlinear problem. It depends on the values of the numerical parameters of the
equation and can be overcome by successful choice initial approximations. We present some results of numerical
experiments.

Figures 1–3 show that filtration process dependents on the density of the medium. Numerical experiments
show rapid convergence of iterations to the exact solution. It is due to the choice of a suitable initial approximation.
The number of iterations is not more than 5 for various values of numerical parameters.

FIG. 1. Numerical solution of (1)–(3): β = 2.1, p = 2.65, n = 1.2, q = 2.5

FIG. 2. Numerical solution of (1)–(3): β = 2.1, p = 2.35, n = 3.5, q = 3

FIG. 3. Numerical solution of (1)–(3): β = 1.6, p = 2.25, n = 0.8, q = 2.5
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