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Molecular dynamics simulation of fluid viscosity in nanochannels
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The viscosity of fluids in a plane nanochannel has been studied by molecular dynamics method. The effective viscosity coefficient was

determined using the fluctuation-dissipation theorem derived previously by the authors from the nonequilibrium statistical theory of fluid

transport in confined conditions. It has been found that the fluid viscosity in a nanochannel is strongly dependent on the interaction potential

between the fluid and channel wall molecules. In particular, increasing the depth of the potential well of this interaction leads to an increase

in the viscosity. At the same time, if the depth of the potential well is small, the fluid viscosity in a nanochannel may be even lower than its

viscosity in an unconfined (bulk) system. Thus, the fluid viscosity in a nanochannel and hence the channel flow resistance can be varied by

changing the material of the nanochannel walls.
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1. Introduction

Interest in fluid-based transport processes (i.e. liquids and gases) in nanochannels is due to the rapid develop-
ment of nanotechnologies related to power systems, medicine, the development of advanced filter elements, etc. At
present, it is obvious that the properties of fluids in nanochannels and nanometer-sized pores differ fundamentally
from their bulk properties. In these channels, the fluid density becomes nonuniform [1], the molecular diffusion
is anisotropic [2], and other transport properties should also change. However, so far, there is no consensus about
what relations should be used to describe the fluid transport coefficients, in particular viscosity, under confined
conditions.

Simple models have been developed [3, 4] which consider a fluid layer with altered properties, in particular
viscosity, near the channel walls. However, these models do not provide an answer to the question of how to
determine the size of this layer and how the viscosity in it changes. The need to use constants that cannot
be determined within the proposed theoretical model is a serious problem (see, e.g., [5, 6]). Of course, the
unknown constants can be determined using experimental data; however, the available data for nanochannels are
contradictory [7, 8]. Moreover, these experimental data are often unreliable as there are no direct methods for
measuring physical characteristics in nanochannels and they have to be extracted from certain measured integral
characteristics and interpreted using conventional macroscopic theories.

A statistical theory of transport processes under confined conditions was developed in [9, 10]. It has been
established that the transport properties of fluids in nanochannels and nanopores are determined not only by the
characteristics of the fluid, but also by the properties of the entire fluid – channel (pore) wall system. These transport
properties are described by effective transport coefficients, which in [9, 10] are determined using fluctuation-
dissipation relations between the transport coefficients and correlation functions of the corresponding microscopic
fluxes. These relations extend the well-known Green-Kubo formula for fluids in bulk.

Analytically, the correlation functions can be calculated only in the simplest case of a rarefied gas (see [11–13]).
In all other cases, it is necessary to use methods of molecular modeling. The purpose of the present study was to
perform a molecular dynamics (MD) method to calculate the viscosity of fluids in a plane nanochannel (nanoslit)
and study the factors that determine the fluid viscosity. We modeled the viscosity of argon and benzene in channels
of different heights and simultaneously studied the fluid structure in these channels.

2. Method for determining the effective viscosity coefficient

In [9, 10], explicit expressions for the effective viscosity coefficient η of fluids in confined conditions were
constructed using methods of nonequilibrium statistical mechanics. This coefficient is expressed in terms of time
correlation functions of microscopic stress tensors. Along with the contribution from the stress tensor of the fluid,
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it includes cross correlations characteristic of the fluid–wall surface system and due to the interaction between the
fluid molecules and the molecules of the channel walls. The viscosity is given by the relation:

η = ηff + ηfb, (1)
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Ĵf (0) : Ĵf (t)
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where the integrands in formulas (2) are classical correlation functions [13, 14], the angular brackets denote
averaging over the equilibrium distribution function, T is the temperature, k is the Boltzmann constant, and τ is
the time when the viscosity reaches the so-called plateau value [15] that corresponds to the time of decay of the
correlation functions. Here and below, the subscript f corresponds to the fluid molecules, and b to the molecules
of the channel walls.

The time correlation functions in formulas (2) are determined by the corresponding microscopic fluxes:
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Here ri and pi are the radius vector of the center of mass and momentum of the i-th molecule of phase α and Fij
is the intermolecular interaction force.

In this paper, we present an investigation of fluid viscosity in a plane channel. The channel walls were
modeled by two square plates, each consisting of two rows of molecules. The size of the plates was chosen so that
the results remained unchanged as it increased. The molecules were located at the sites of a face-centered cubic
lattice. On the channel boundaries along the walls, periodic boundary conditions were used.

The viscosity coefficient (1), (2) was calculated by the standard molecular dynamics method (see e.g., [16]).
This was performed with the original SibMD software package which has previously been used to solve various
nanofluid transport problems [1, 15, 17, 18]. The Newton equations were integrated by the Schofield scheme [19].
The integration step is equal to 1.09 fs. Due to the local instability and mixing of phase trajectories of the system in
the molecular dynamics calculation [1,3,20,21], the results should be averaged over an ensemble of independently
obtained phase trajectories. In the calculations presented in this paper, averaging was carried out over five thousand
independent phase trajectories.

All intermolecular interactions were described by the cutoff Lennard-Jones potential:

Φ(r) =

4εαβ

((σαβ
r

)12
−
(σαβ
r

)6)
− Φ0, r ≤ RC ;

0, r > RC ,
(3)

where σ is the effective diameter, ε is the depth of the potential well, RC is the cutoff radius of the potential, and
r = |ri − rj | is the distance between the centers of molecules, α, β = f, b. The cutoff radius of the potential
was set equal to RC = 2.5σff , the potential shift Φ0 was determined from the condition Φ(RC) = 0. Interaction
parameters between the fluid molecules and the walls were calculated from the interaction constants of individual
substances using the following combination relations σfb =

√
σffσbb and εfb =

√
εffεbb.

The effective viscosity coefficient of a fluid in the nanochannel was compared with the viscosity coefficient of
the same fluid in a bulk system, which was also simulated by the molecular dynamics method. In this case, for the
simulated cubic cell filled with molecules, we used periodic boundary conditions in all directions. The comparison
was carried out at the same pressure and fluid temperature. The pressure in the channel was determined from the
force per unit area of the walls, and the pressure in bulk was determined by the virial theorem [14].

3. Simulation results

In formulas (2), we can distinguish three types of correlation functions φ which define the effective viscosity
coefficient: the kinetic correlation functions, φk ∼ 〈pixpiy(0) · pixpiy(t)〉, the potential correlation functions, φp ∼
〈(xi − xj)Fijy(0) · (xi − xj)Fijy(t)〉, and the cross-correlation functions, φc ∼ 〈(xi − xj)Fijy(0) · pixpiy(t)〉. The
corresponding contributions also appear when calculating the viscosity coefficient (1). The kinetic contributions
are due to momentum transfer during molecular motion. It is these contributions that determine the momentum
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transfer in a rarefied gas and the viscosity of the gas. The above-mentioned potential contributions are due to
momentum transfer in the interaction of molecules.

Figure 1 shows the time dependences of these three components and the total correlation function for the
viscosity of argon in the nanochannel considering both fluid – fluid and fluid – wall interactions. The spherically
symmetric potential (3) adequately describes inert argon molecules (σff = 3.405 Å, εff/k = 119.8 K). In an
unconfined system, viscosity can be determined with good accuracy by the MD method, at least up to the
saturation line [22]. The temperature in our MD simulation was 160 K, and the reduced concentration of molecules
nσ3 = 0.4 (here and below, σ = σff ). All the correlation functions are normalized to

〈
p2xp

2
y

〉
, so that the initial

value of the kinetic component is unity. The density of the system is high enough, and the potential contribution
is the major one.

FIG. 1. Viscosity correlation function and its components versus time (in picoseconds) for argon
in a nanochannel of height h = 27.2 Å (solid line). The dashed line corresponds to the potential
component, the dotted line to the kinetic component, and the dash-dotted line to the cross-
correlation. The parameters of the potential of the wall molecules correspond to argon

Let us consider in more detail the relaxation of the components of the correlation functions in bulk and in the
nanochannel. A comparison of the two cases is shown in Fig. 2 (the data in the figure are given on a logarithmic
scale).

Two important points should be noted. First, the values of the potential component in the nanochannel far
exceed those in bulk throughout its time evolution. Second, there is anisotropy in momentum transfer during
collisions in the nanochannel (see curves 4 and 5 in Fig. 2). The correlation function increases more strongly in
the plane perpendicular to the walls of the channel.

In contrast, the kinetic component in the nanochannel is practically isotropic and decays faster than in bulk
(see curves 1 and 2 in Fig. 2), which is due, in particular, to the faster velocity relaxation of the molecules in
collisions with the channel walls.

The viscosity coefficient (1), (2) is a function of the time. Its evolution for the system described above
(Figs. 1 and 2) is shown in Fig. 3. The value of the viscosity coefficient is obtained only when this function
reaches a plateau value in about 3 psec. The main contribution to the viscosity coefficient comes from the potential
component. The viscosity coefficient in nanochannels is approximately 40 % higher than that in bulk.

To answer the question of how and which properties of the channel walls affect the viscosity, we performed
a systematic simulation of fluid viscosity in channels where the interaction parameters σbb and εbb of the wall
molecules (3) were varied.

It was found that the variation in the effective size of the wall molecules σbb had little effect on the effective
viscosity in the channel. At the same time, the viscosity changed greatly with a change in εbb. Fig. 4 shows the
relative viscosity coefficient η∗ = η/η0 in a channel of height h = 27.2 Å normalized by the viscosity in bulk η0
versus the parameter εbb. Increasing this parameter leads to a rapid increase in the effective viscosity coefficient.

On the logarithmic scale of Fig. 4, this increase is almost linear. For a copper wall (εff/k = 1247 K), and for
a zinc wall (εff/k = 1040 K), the viscosity coefficient of argon can be expected to increase by a factor of about
four. In contrast, for small values of this parameter, εbb < εff , the viscosity coefficient decreases and becomes
even less than η0.
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FIG. 2. Components of the correlation function of the argon viscosity coefficient versus time
(in picoseconds) in bulk (the solid line 1 corresponds to the kinetic component, and the solid
line 2 to the potential component) and in a nanochannel of height h = 27.2 Å (the dotted line 3
corresponds to the kinetic component, the dashed line 4 to the potential component in the plane
perpendicular to the channel walls, and the dash-dotted line 5 to the potential component in the
plane of the walls)

FIG. 3. Viscosity coefficient (solid line) and its components versus integration time (in picosec-
onds) for argon in a nanochannel of height h = 27.2 Å (the dotted line corresponds to the
kinetic component, the dashed line to the potential component, and the dot-dashed line to the
cross-correlation component)

This conclusion is supported by the data in Fig. 5, which shows curves of the normalized viscosity coefficient
of benzene (σbb = 5.27 Å, εbb/k = 440 K) at room temperature versus height of channels with different wall
materials. The lines in the figure correspond to the approximations of the results by the function η∗ = 1 ± B/h
(plus for higher line and minus for lower line) in which the constant B depends on the properties of the fluid
and the walls. In the nanochannel with walls of carbon, whose molecules have a small value of ε (σbb = 3.4 Å,
εbb/k = 28 K), the viscosity of argon indeed decreases.

On the other hand, in the channel with aluminum walls (σbb = 2.56 Å, εbb/k = 857.6 K), there is an increase
in viscosity. It can be argued that it is the great depth of the potential well of aluminum molecules that leads to an
appreciable increase in viscosity. In all cases, the differences between the viscosity coefficient in the nanochannel
and the η0 value increase monotonically with decreasing channel height.
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FIG. 4. Normalized viscosity coefficient of argon in a nanochannel versus potential well depth
εbb(K), h = 27.2 Å

FIG. 5. Viscosity coefficient versus channel height (in angstrom units) for the following types of
fluid and channel walls: C6H6–C (•) and C6H6–Al (�)

4. Conclusions

Strictly speaking, the only consistent method for nanochannel flow simulation is the molecular dynamics
method [23]. However, experience has shown that conventional hydrodynamic approach is usually applicable
well beyond its range of validity. Therefore, it is possible to attempt to model flows in nanochannels and small
microchannels using conventional hydrodynamic methods (see, e.g., [24–26] and the reference therein). For this,
however, it is necessary to have adequate data on fluid viscosity in such channels. The present study has shown
that this viscosity is largely determined by the walls of the channel. This is due to the fact that the momentum
redistribution process in the system depends significantly on the interaction between the fluid molecules and the
channel walls, and it is this process that determines the viscosity.

The active interaction of fluid molecules with the channel walls leads to a significant change in the fluid
structure near the wall. Fig. 6 shows the MD simulation data for the radial distribution function g2 of benzene near
the wall of a channel with carbon walls. Its comparison with the radial distribution function of benzene in bulk
shows not only a several-fold increase in the maximum values of the radial function, but also the occurrence of a
quasi-long-range order. This increase in the order of the fluid near the surface will lead to an increase in viscosity
compared to its value in bulk.
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FIG. 6. Radial distribution function of benzene molecules in bulk (solid line) and in a channel
with h = 40 Å (dotted line). Intermolecular distances are in the units of σ for benzene (5.27 Å).
Values are normalized by the average concentration of the molecules

However, the contribution to the viscosity coefficient due to the interactions between the fluid molecules and
the walls also plays a key role. This should be taken into account, and it should be realized that the fluid viscosity
in nanochannels is not only determined by the fluid properties. In this case, it is necessary to introduce the effective
viscosity (and thermal conductivity) of the entire fluid–wall system. This system is a special two-phase medium
in which transport processes are in a sense similar to those in two-phase suspensions, where it is also necessary
to introduce effective transport coefficients (as in the well-known Einstein’s and Maxwell’s formulas) which are
determined by the interaction between base fluid molecules and nanoparticles [18].

Many experiments have demonstrated a significant reduction in flow resistance in microchannels [26,27]. This
is usually associated with the slip effect in such channels [28–31]. However, as indicated above, such a reduction
in flow resistance may also be due to a decrease in the effective viscosity of the fluid compared to its viscosity
in bulk. In this connection, it should be noted that in this paper, we considered flow in a plane channel, in fact,
in a nanoslit. However, in closed nanochannels with a circular or square cross-section, these effects will be more
pronounced.

Finally, another important point should be noted. The MD simulation results show that transport processes
in nanochannels are inhomogeneous, so that, generally speaking, the fluid viscosity also turns out to be inho-
mogeneous. Therefore, a consistent approach to the study of nanofluids’ transport properties requires the use of
generalized nonlocal transport equations and nonlocal transport constitutive relations. Such approaches are well
known and have been successfully used [13, 14, 32–35].
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