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Scherrer formula: estimation of error in determining small nanoparticle size
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The lower limit of the applicability of the Scherrer formula has been established by calculating the diffraction patterns from model nanoparticles

by the Debye formula. Particle size was calculated using the Scherrer formula for different hkl-peaks. The obtained data of particle sizes were

compared with “real” sizes of model particles in the same hkl-directions. The form-factor Khkl was analyzed as main correction of Scherrer

formula. It was shown that the Scherrer formula error increases nonlinearly at particle sizes less than 4 nm. For any hkl direction, the absolute

error of average particle size determination using formula does not exceed 0.3 nm. Analysis shows that average particle size can be determined

by Scherrer formula from single diffraction peak of experimental pattern for center-symmetrical particles.
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1. Introduction

One of the most important physical properties of nanostructured materials is particle size. Among the tech-
niques developed for nano-scale particle size determination, the analysis of average size of coherent scattering
regions from X-ray powder diffraction reflection broadening by the Scherrer formula is the simplest and most
convenient [1].

Although there are numerous refinements of the formula, the question of the limits of its applicability is still
unclear. The theoretical upper limit of applicability of the Scherrer formula was analyzed in detail and was found
up to 600 nm for LaB6, Si and CeO2 [2] and 11.9 % from extinction length in general case [3]. Comparison
of different experimental methods based on the Scherrer formula with TEM data for different materials showed
that crystallite size values are the closest when particle sizes are less than 60 nm [4]. The Scherrer formula has
no the lower limit of applicability but the question remains: what is the error of the formula when particle size
decreases to zero nm? In the work [5] experimental investigation of TiO2 anatase nanoparticles shows that absolute
divergence is 0.36 nm for the crystallites smaller than 10 nm and 2.4 nm for the the crystallites larger than 15 nm.

In this work we proposed a facile theoretical analysis of the application of the Scherrer formula to diffraction
reflections calculated by the Debye equation from model particles, and the contribution of the form-factor while
using the Scherrer formula is evaluated. The calculation by the Debye formula is a direct result of scattering on
an ensemble of atoms (irrespective of the character of ordering), which allows evaluation of the Scherer formula
accuracy. Moreover, the Debye formula was deduced in the framework of the same two assumptions that were
used to derive the Scherrer formula [6]. Independence from translational symmetry allows one to use the Debye
equation for investigating the non-crystalline materials [7], stacking faults [8, 9], surface relaxation [10],poorly
crystalline materials [11]. Currently, the powerful software programs as DIANNA [12,13], DEBUSSY [14] allows
to apply Debye function analysis (DFA) as routine procedure for structure interpretation [15]. Nevertheless, the
most material scientists uses the Scherrer formula as the simplest method of particle size determination.

The formula proposed by P. Scherrer in 1918 [16] describes the broadening of diffraction reflection peaks β
as a function of the average particle size D:

β = K
λ

D cos θ
, (1)

where λ is the X-ray wave length, θ is the Bragg reflection angle, and K = 2
√

(ln 2)/π is a constant. Formula (1)
was deduced with two assumptions:

1) an X-ray wave is singly scattered on atoms of a substance (so-called kinematical approximation), and
dynamic effects exert a negligibly small influence on the form of the diffraction pattern;
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2) a material is an “ideal powder” consisting of an infinite number of identical particles located chaotically in
space, which allows the powder crystallite size and shape and sample texture distribution to be neglected.
The particles were supposed by P. Scherrer [16] to have a cubic shape and cubic structure.

Taking into account the above mentioned assumptions, formula (1) should presume no rigorous experimental
check, and its application for the processing of experimental diffraction data has mainly an evaluative character.
The error of formula (1) can be established only by comprehensive consideration of all peculiarities of the equation
and by application to diffraction patterns calculated from model powder.

Let us consider the formula itself in detail. As given in [16], the formula included two ambiguous values.
Firstly, the parameter β, which the author [16] designated as halfwidth in “the generally accepted sense” without
specifying whether this was full width at half maximum (FWHM) or integral breadth (IB) equal to the area under
the peak related to its maximal value. Secondly, the value of constant K called subsequently as the Scherrer
constant or form-factor was not clear from the article. The work [16] interpreted the constant K as a relating

factor between the FWHM and IB of the Gaussian function: FWHMG = 2

√
ln 2

π
IBG = K · IBG, suggesting that

Scherrer supposed the diffraction peak to be approximated by the Gaussian, consequently, β = FWHMG. Then,

the Scherrer formula may be written as FWHMG = K
λ

D cos θ
, where K = 2

√
ln 2

π
. The analogous notation

IBG =
λ

D cos θ
reflects the physical meaning of the formula more clearly – the area under the diffraction curve is

related with the radial distribution of atoms in the particle and, accordingly, with the size of this particle.
The factor K =

√
3/π ≈ 0.977 as a necessary numerical correction appeared for the first time in work [17],

where N. Selyakov presented the first detailed derivation of formula (1) for particles of trigonal structure. In the
subsequent works devoted to this subject [18, 19], the values of the form-factor K were proposed for particles of
different shape depending on hkl directions. According to [19], for a powder consisting of equal cubic crystallites,
the coefficient K for different crystallographic indices (hkl) of the cubic crystal lattice was calculated by the
formula:

Khkl =
6 |h|3

(h2 + k2 + l2)1/2(6h2 − 2 |hk|+ |kl| − 2 |hl|)
. (2)

In this study, cubic particles of simple cubic structure with the space group Pm3̄m have been chosen as
model objects, since the Scherrer formula was derived exactly for such particles. We compared the particle size
values calculated by equation (1) both without using the form-factor Khkl and with the correction expressed
by equation (2). For this purpose, we calculated the diffraction patterns from model particles by the Debye
formula [20]:

I(q) =

N∑
j=1

N∑
k=1

fj(q)fk(q)
sin(qRjk)

qRjk
, (3)

where I(q) is the scattering intensity, Rjk is the distance between the j-th and the k-th atoms; q is the modulus of
the scattering vector; and fj(q) is the atomic scattering vector for the j-th atom. The scattering intensity on “ideal
powder” is composed of scattering intensities on each individual powder particle and, consequently, is determined
by integration over all possible positions of this particle-object in space.

The model cubic particles were set by generating the atomic coordinates with the use of a simple cubic
lattice with a distance between nearest atoms equal to 0.3 nm. The atomic scattering factors fj(2θ) = fj(q) of
model particles were calculated by approximating the tabular data for silicon atoms [21]. In the calculation of
the scattering intensity measured in a real X-ray diffraction experiment by the Bragg–Brentano method, angular
scattering factors should be also taken into account along whith the structural factor: the geometric factor G, the
Lorentz factor L and the polarization factor P (θ) = (1 + cos2 2θ)/2. The correction is made by multiplying the

intensity by the angular factor, LPG(θ) =
1 + cos2 2θ

4 · sin 2θ · sin θ
. The diffraction patterns were calculated for CuKα

radiation with wavelength 0.154 nm.
Diffraction peak profiles can be approximate by different methods with the highest degree of accuracy [22–24].

For accurate description of the peak shape, each diffraction peak was approximated by the pseudo-Voigt function
by the formula:

V (θ) = ca

[
1 +

(θ − θ0)2

θ2L

]−1

+ (1− c)a exp

[
− (θ − θ0)2

2θ2G

]
= c · l(θ) + (1− c) · g(θ),
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where l(θ) is the Lorentz function; g(θ) is the Gaussian function; c is the relative contribution of the Lorentz func-
tion to the total reflection intensity; θL and θG are the Lorentz and Gaussian distribution parameters, respectively;
a is the normalizing factor of intensity; and θ0 is the position of the pseudo-Voigt function maximum. The exact
FWHMV value is determined by the solution of the nonlinear equation

V (θh) =
ac

1 + (θh/b)2
+ a (1− c) exp

[
− (θh/b)

2

2

]
=
a

2
,

which is not solved analytically, but the solution of this equation is satisfactorily described by the quadratic
dependence θh = 2.355 − 0.276c − 0.079c2, consequently, FWHMV = b(2.355 − 0.276c − 0.079c2). The error
of such approximation is about 0.01 %. The numerical values of the parameters a, b = θL = θG, c, 2θ0 of each
reflection were obtained in the framework of the application program SigmaPlot.

Figure 1 displays the results of the calculations for the X-ray diffraction patterns. The diffraction patterns
were calculated for cubic nanoparticles containing 8, 27, 64, 125, 256, 1728 or 17 576 atoms. The number of unit
cell translations was 1, 2, 3, 4, 5, 11 and 25, respectively. With an increase in the nanoparticle size, the broad
reflections typical for amorphous substance tend to turn into narrow peaks peculiar to coarse-crystalline material.

FIG. 1. Diffraction curves calculated by the Debye formula (grey) for cubic particles of the cubic
unit cell structure, and approximation of reflections by the pseudo-Voigt function (black). The
corresponding model particles are shown next to the diffraction patterns, the edge length is given
in nm
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The particle size was calculated by formula (1) DSch = λ/FWHMV cos θ0 and also with the correction for
Khkl: D

Sch
hkl = Khklλ/FWHMV cos θ0. The coefficient Ka for the determination of the linear size DDeb = Ka · a

of a cubic particle with edge side a in a given direction (hkl) was calculated in a similar way. For example, the
linear particle size in the direction (111) is equal to the body diagonal of a cube a

√
3. This makes it possible to

relate the sizes of a preset model cubic particle with the sizes determined by the Scherrer formula. The average
size of each particle was calculated as the arithmetical mean value in all directions hkl, since the sizes of one
particle depend strongly on the hkl direction. The calculated values are listed in the Table 1. In other words, the
results obtained from simulated pattern can be used as the Scherrer constant [25].

The ratio
(
DSch

av −DDeb
av

)
/DDeb

av characterizes the deviation between the average particle size determined
by the Scherrer formula and the average size of model particle. Fig. 2 shows the error of the Scherrer formula
versus the average size of model particle both with and without correction for the form-factor Khkl. In both
cases, the divergence of sizes determined by the Scherrer formula from the given size was 76 % for a cubic
particle consisting of 8 atoms, with edge length equal to one translation As the particle size increases, the deviation
exhibited a nonlinear behavior tending to smaller values. When the particle size was more than 10 unit cell
translations (∼ 4 nm), the error in the calculation by the original formula (1) was up to 2 %. If the form-factor
Khkl is taken into account, the error is negative, which leads to a considerable particle size underestimation (over
10 %).

FIG. 2. The deviation of the Scherrer formula versus the size of model cubic nanoparticles
determined by formula (1) and with correction for the form-factor Khkl by formula (2)

The Scherrer formula implies scattering on a centrosymmetric particle (sphere, for example). The size values
for different hkl-directions vary nearby the average particle size DSch

av (Table 1, column 3). As particle increases
(Table 1, column 1), the sizes determined at any hkl-directions approach the average particle size DSch

av . On the
other hand, the average size of the model particle DDeb

av also demonstrates tendency to the size of centrosymmetric
particle with increasing of number of atoms in the particle. Thus, the particle of 8 atoms is described by one size
at one hkl-direction, and the particle of 256 atoms is described by 5 sizes at 5 hkl-directions. The more items (sizes
at different hkl) in the sum the closer average particle size to a value characteristic of a centrosymmetric particle.
According to this, the average particle sizes DSch

av and DDeb
av approach each other as the particle sizes increase,

and they become an equal at value 4.27 nm.
This implies that form-factor Khkl can be ignored for estimation of particle size. The main role of the form

factor Khkl is to take into account the deviation of the particle size from centrosymmetry. The correction Khkl

strongly underestimates the size of the cubic particle body diagonal (Table 1, hkl = 111), so the average particle
size drops sharply (Table 1, column 4). In other hkl directions, the sizes obtained with the Khkl correction behave
ambiguously with respect to the model particle size at the same hkl directions. The influence of the form factor is
supposed to differ for particle size larger than 10 nm. Nevertheless, using form factor for the refinement procedure
seems to be useless for the size range below 10 nm.

Despite the significant relative deviation of the average particle size, the absolute value of error does not exceed
0.3 nm. As a rule, this accuracy is sufficient for powder diffraction investigations. More accurate measurement
requires detailed high-resolution transmission electron microscopy. In other words, the Scherrers formula can be
used even for estimation of sizes of small particle. Moreover, due to the proximity of particle sizes at different
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TABLE 1. The particle size versus hkl directions, and the average size D̄ in all directions hkl

1 2 3 4 5

Number
of atoms

hkl
Particle size DSch

by formula (1)
Particle size DSch

hkl

with correction (2)
Model particle size
DDeb = a ·Ka

8 100 0.53 0.51 0.30

D̄8 0.53 0.51 0.30

27 100 1.02 0.99 0.60

110 0.91 0.85 0.85

D̄27 0.97 0.92 0.72

64 100 1.30 1.26 0.90

110 1.60 1.49 1.27

111 1.05 0.95 1.56

D̄64 1.32 1.23 1.24

125 100 1.71 1.65 1.20

110 1.82 1.70 1.70

111 1.40 1.26 2.08

210 1.99 1.63 1.20

D̄125 1.73 1.56 1.54

256 100 2.05 1.99 1.50

110 2.35 2.19 2.12

111 1.89 1.69 2.60

200 2.31 1.99 1.50

210 2.47 2.02 1.68

D̄256 2.21 1.97 1.88

1728 100 4.18 4.04 3.30

110 4.43 4.13 4.67

111 4.34 3.89 5.72

200 4.13 3.54 3.30

210 4.51 3.69 3.69

211 4.02 3.12 4.95

D̄1728 4.27 3.74 4.27

17576 100 9.18 8.88 7.20

110 9.75 9.09 10.18

111 9.34 8.36 12.47

200 9.30 7.98 7.20

210 9.18 7.52 8.05

211 10.12 7.87 10.80

D̄17576 9.48 8.28 9.32
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hkl-directions to the average value, it is not necessary to use all peaks of diffraction pattern. The calculations show
(Table 1, column 3) that applying the Scherrer formula to a single reflex of the diffraction pattern is enough to
estimate the average particle size.

This is very important in cases of multiphase samples, where most reflections of different phases overlap in
the experimental diffraction pattern. The possibility to use the only reflex for estimation the size of a particle with
insignificant error can be great help for majority of material science researchers. Hence, in order to decrease the
error of size estimation and to account the asymmetric shape of particle, the simulation of diffraction pattern by
the Debye formula and high resolution electron microscopy investigation are required.

This analysis allows one to conclude that at the range below 10 nm, the Scherrer formula without Khkl-
correction gives more exact values. If the sizes of crystal nanoparticle are less than 4 nm, the relative error of the
Scherrer formula increases appreciably. Nevertheless, the absolute error of the Scherrer formula does not exceed
0.3 nm for estimation of the average size of center-symmetrical particle.
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