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Asymptotic analysis of thin viscous plate model
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A cell membrane is a very complex medium, which is difficult to study. One of the simplest approaches is to assume it purely elastic or purely

viscous. In this paper, we follow the second assumption and derive mathematical model of nearly-planar viscous plate evolving under action

of applied forces. The obtained model is non-linear and covers both stretching and bending of the membrane. In contrast to analogous works

on viscous sheets, we use a unique scale for velocity components and take a few first terms in asymptotic expansion. The developed approach

can be used for description of the cell membrane with nanoparticles inserted.
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1. Introduction

Interest for flows in layers of narrow thickness (nanolayers or microlayers) is due to the rapid development of
fluid-based transport processes using in nanotechnologies (see, e.g., [1] and references therein). A special interest in
the field is caused by the relation to power systems, medicine, the development of advanced filter elements, etc. For
example, the authors of [2] proposed and fabricated a multilayer lateral-flow nanoparticle filtration and separation
device. Results of [3] are relevant for water desalination applications. Paper [4] describes a system for ultra-fast
mixing of solvents with aqueous fluids and subsequent precipitation of poorly water soluble drug nanoparticles
or colloidal carrier particles. Work [5] describes various applications of carbon nanotubes in nanofluidic-based
devices. There are great medical challenges in the field. For example, paper [6] studies selective killing of
cancer cells by nanoparticle-assisted ultrasound. The author discovered that if the cell membrane contains gold
nanoparticles then cancer cell membranes are destroyed by ultrasound with essentially greater probability than that
for the corresponding normal cell. To give a theoretical explanation of the phenomenon, one needs a mathematical
model. A way to its creation lies through an assumption that the cell membrane is a viscous fluid. Models of such
type exist (see, e.g., [7]) but there is no rigorous mathematical background. The aim of this paper is mathematical
(more precisely, asymptotic) analysis of viscous plate model. This creates a basis for the following construction of
a thin viscous layer containing nanoparticles. One can obtain a solvable model by considering the nanoparticle as
a point-like obstacle, so-called stokeslet (see, e.g., [8, 9]). The mathematical background of the approach is given
by the operator extensions theory (see, e.g., [10,11]). We will describe the nanoparticle inclusions in the following
paper.

Asymptotic analysis is made with respect to small parameter, ratio of the transversal and longitudinal sizes of
the viscous layer. Scaling analysis allows us to reveal the orders of terms. We obtained equations describing terms
of different orders. Finally, we come back to dimensional form of these equations.

2. Problem description

We consider a viscous layer of thickness h(t, x, y), which is bounded by two surfaces z = H(t, x, y) −
h(t, x, y)/2 and z = H(t, x, y) + h(t, x, y)/2. Here the center-surface is denoted by z = H(t, x, y). This
configuration is illustrated in Fig. 1.

We will study layer’s behavior under action of arbitrary volumetric and surface forces. The fluid dynamics is
described by Navier-Stokes equations [12]:

ρ (∂tv + (v · ∇)v) = ∇ · σ + f , (1)

∇ · v = 0, (2)

where ρ if the fluid density, v = (u, v, w) is the velocity vector, f = (fx, fy, fz)T is the volumetric force vector,
σ is the stress tensor defined as

σ = −pI + µ
(
∇v + (∇v)

T
)
, (3)
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FIG. 1. A viscous layer

where I is the unit tensor, p is the pressure, µ = µ(x, y) is the fluid’s dynamic viscosity.
In addition, we set the boundary conditions on the free surfaces. They include the conditions on stress:

n± · σ± · ex = F±x , (4)

n± · σ± · ey = F±y , (5)

n± · σ± · ez = F±z , (6)

where n± are normal vectors to the top and bottom surfaces, σ± are values of the stress tensor on the free surfaces,
ex, ey , ez are Cartesian basis vectors, F±x , F±y , F±z are applied surface stresses.

Finally, the kinematic conditions take the form:

∂tH ±
1

2
∂th+ u

(
∂xH ±

1

2
∂xh

)
+ v

(
∂yH ±

1

2
∂yh

)
− w = 0. (7)

Here the sign “+” is related to the top free surface, and “−” — to the bottom surface.

3. Scaling analysis

The governing equations (1)–(7) describes dynamics of the layer, but they are highly nonlinear and difficult
to solve. And the main challenge is that due to free surfaces the computation domain is unknown and should be
resolved along with velocity and pressure fields. However, we can employ the fact that the considered layer has
a small thickness comparing to characteristic length and carry out asymptotic analysis. The first step is scaling
analysis.

We define the longitudinal and transversal spatial scales as L and H0 correspondingly and introduce parameter
ε = H0/L, which we will exploit as a small parameter. As for the velocity scale, we will not vary the longitudinal
and transversal directions, as done in the works [13–15]. Instead, we choose a universal scale U , which will be
discussed later. The viscosity scale is denoted by µ0 and the pressure scale is chosen in the way to meet the scale
of viscous stresses.

The dimensionless variables are introduced in the following way:

x̃ =
x

L
ỹ =

y

L
, z̃ =

z

H0
, H̃ =

H

H0
, h̃ =

h

H0
, t̃ =

H0

U
t,

µ̃ =
µ

µ0
, ũ =

u

U
, ṽ =

v

U
, w̃ =

w

U
, p̃ =

H0

µ0U
p,

f̃x =
fx
F‖
, f̃y =

fy
F‖
, f̃z =

fz
F⊥

, F̃x =
Fx

F‖
, F̃y =

Fy

F‖
, F̃z =

Fz

F⊥
,

where the scales of volumetric forces F‖, F⊥ and surface stresses F‖, F⊥ will be discussed further. The introduced
dimensionless variables imply scales for the stress tensor components.



Asymptotic analysis of thin viscous plate model 449

The introduced scales imply scaling of the stress tensor σ:

σ̃xx =
H0

µ0U
σxx, σ̃xy = ε

H0

µ0U
σxy, σ̃yy =

H0

µ0U
σyy,

σ̃xz =
H0

µ0U
σxz, σ̃yz =

H0

µ0U
σyz, σ̃zz =

H0

µ0U
σzz.

Further we will omit the sign˜over dimensionless variables in the sake of simplicity.
Components of the stress tensor are expressed as:

σxx = −p+ 2εµ∂xu, σyy = −p+ 2εµ∂yv, σzz = −p+ 2µ∂zw,

σxy = σyx = µ(∂yu+ ∂xv), σxz = σzx = µ(∂zu+ ε∂xw), σyz = σzy = µ(∂zv + ε∂yw).
(8)

The equations (1)–(2) takes the dimensional form:

ReIu = ε∂xσxx + ε2∂yσxy + ∂zσxz +
H2

0F‖
µ0U

fx, (9)

ReIv = ε2∂xσyx + ε∂yσyy + ∂zσyz +
H2

0F‖
µ0U

fy, (10)

ReIw = ε∂xσzx + ε∂yσzy + ∂zσzz +
H2

0F⊥
µ0U

fz, (11)

ε∂xu+ ε∂yv + ∂zw = 0, (12)

where Reynold number Re is defined as:

Re =
ρUH0

µ0
,

and the inertial terms are denoted as:

Iu = (∂tu+ εu∂xu+ εv∂yu+ w∂zu) , (13)

Iv = (∂tv + εu∂xv + εv∂yv + w∂zv) , (14)

Iw = (∂tw + εu∂xw + εv∂yw + w∂zw) . (15)

The boundary conditions (4)–(6) takes the form:

σxz − εσxx
(
∂xH ±

1

2
∂xh

)
− ε2σxy

(
∂yH ±

1

2
∂yh

)
= ∓

H0F‖

µ0U

F±x
N±

, (16)

σyz − ε2σyx
(
∂xH ±

1

2
∂xh

)
− εσyy

(
∂yH ±

1

2
∂yh

)
= ∓

H0F‖

µ0U

F±y
N±

, (17)

σzz − εσzx
(
∂xH ±

1

2
∂xh

)
− εσzy

(
∂yH ±

1

2
∂yh

)
= ∓H0F⊥

µ0U

F±z
N±

, (18)

where:

N± =

(
1 + ε2

(
∂xH +

1

2
∂xh

)2

+ ε2
(
∂yH +

1

2
∂yh

)2
)−1/2

. (19)

Kinematic condition (7) is rewritten as:

w = ∂tH ±
1

2
∂th+ ε

[
u

(
∂xH ±

1

2
∂xh

)
+ v

(
∂yH ±

1

2
∂yh

)]
. (20)

4. Viscous plate equations

The equation (9) can be treated as a first order equation on σxz , which can be solved, giving:

σxz = σxz|− +

z∫
−

[
ReIu − ε∂xσxx − ε2∂yσxy −

H2
0F‖
µ0U

fx

]
dz′, (21)



450 I. F. Melikhov, I. Yu. Popov

where σxz|− is the value of σxz at the bottom surface H −h/2 taken from the boundary conditions, and the lower
integration limit ¡¡−¿¿ is denoted to the surface H − h/2. In addition, this solution should satisfy the boundary
conditions on the top surface H + h/2. It leads to the solvability condition of the equation (9):

σxz|+ = σxz|− +

+∫
−

[
ReIu − ε∂xσxx − ε2∂yσxy −

H2
0F‖
µ0U

fx

]
dz,

where the integrals are taken over the interval from H − h/2 to H + h/2.

Using the rule of integral differentiation and accounting for boundary conditions (16), we come to the following
form of the solvability condition:

ε∂x

 +∫
−

σxx dz

+ ε2∂y

 +∫
−

σxy dz

 = ReĪu −
H2

0F‖
µ0U

f̄x +
H0F‖

µ0U

(
F+
x

N+
+
F−x
N−

)
, (22)

where Īu, f̄x are thickness-averaged inertia terms and volumetric force:

Īu =

+∫
−

Iu dz, f̄x =

+∫
−

fx dz.

Treating two other components of equation (9) in the same way we get the expressions of σyz , σzz:

σyz = σyz|− +

z∫
−

[
ReIv − ε2∂xσyx − ε∂yσyy −

H2
0F‖
µ0U

fy

]
dz′, (23)

σzz = σzz|− +

z∫
−

[
ReIw − ε∂xσzx − ε∂yσzy −

H2
0F⊥
µ0U

fz

]
dz′ (24)

and solviability conditions for (10)–(11):

ε2∂x

 +∫
−

σyx dz

+ ε∂y

 +∫
−

σyy dz

 = ReĪv −
H2

0F‖
µ0U

f̄y +
H0F‖

µ0U

(
F+
y

N+
+
F−y
N−

)
, (25)

ε∂x

 +∫
−

σzx dz

+ ε∂y

 +∫
−

σzy dz

 = ReĪw −
H2

0F⊥
µ0U

f̄z +
H0F⊥
µ0U

(
F+
z

N+
+
F−z
N−

)
. (26)

Consider the integral
∫ +

− σzx dz, which after differentiation by parts and accounting for (9) can be written as:

+∫
−

σzx dz = (z −H)σzx|+− −
+∫
−

(z −H)∂zσzx dz =

= (z −H)σzx|+− + ε

+∫
−

(z −H)∂xσxx dz + ε2
+∫
−

(z −H)∂yσxy dz+

+
H2

0F‖
µ0U

+∫
−

(z −H)fx dz −Re
+∫
−

(z −H)Iu dz.
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Applying integral differentiation rule we get:

+∫
−

σzx dz =

= ε∂x

 +∫
−

(z −H)σxx dz

+ ε2∂y

 +∫
−

(z −H)σxy dz

+ ε∂xH

+∫
−

σxx dz + ε2∂yH

+∫
−

σxy dz+

+
H2

0F‖
µ0U

+∫
−

(z −H)fx dz −Re
+∫
−

(z −H)Iu dz −
H0F‖

µ0U

h

2

(
F+
x

N+
− F−x
N−

)
. (27)

Calculating
∫ +

− σzy dz in the same way and substituting the obtained expressions in (26), we get the final form
of the third solvability condition:

ε∂x

ε∂x
 +∫
−

(z −H)σxx dz

+ ε2∂y

 +∫
−

(z −H)σxy dz

+

+ε∂xH

+∫
−

σxx dz + ε2∂yH

+∫
−

σxy dz

+

+ε∂y

ε2∂x
 +∫
−

(z −H)σyx dz

+ ε∂y

 +∫
−

(z −H)σyy dz

+

+ε2∂xH

+∫
−

σyx dz + ε∂yH

+∫
−

σyy dz

 =

= −H
2
0F⊥
µ0U

f̄z − ε
H2

0F‖
µ0U

∂x
 +∫
−

(z −H)fx dz

+ ∂y

 +∫
−

(z −H)fy dz

+

+
H0F⊥
µ0U

(
F+
z

N+
+
F−z
N−

)
+ ε

H0F‖

µ0U

[
∂x

(
h

2

(
F+
x

N+
− F−x
N−

))
+ ∂y

(
h

2

(
F+
y

N+
−
F−y
N−

))]
+

+Re

Īw + ε∂x

 +∫
−

(z −H)Iu dz

+ ε∂y

 +∫
−

(z −H)Iv dz

 . (28)

Further, we will consider systems with Re = O(ε4). The force scales F‖, F⊥, F‖, F⊥ we define from (22),
(25), (28). We focus on the cases, when external forces are balanced by viscous stresses, which implies:

F‖ = ε2
µ0U

H2
0

, F‖ = ε2
µ0U

H0
,

F⊥ = ε3
µ0U

H2
0

, F⊥ = ε3
µ0U

H0
.

In addition to the equations of dynamics (9)–(11), we consider continuity equation (12). Integrating it with
respect to z-coordinate, we find:

w = w|− − ε
z∫
−

∂xu+ ∂yv dz. (29)

As before, applying boundary conditions on the top surface leads to the solvability condition:

∂th+ ε∂x(hū) + ε∂y(hv̄) = 0, (30)
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where thickness-averaged velocities ū, v̄ are found as:

ū =
1

h

+∫
−

u dz, v̄ =
1

h

+∫
−

v dz.

Finally, we find the form of average vertical velocity w̄. Integrating the expression (29), employing the
equation (12) and using the boundary conditions we get:

w̄ = ∂tH + εh−1

∂x
 +∫
−

(z −H)u dz

+ ∂xH

+∫
−

u dz + ∂y

 +∫
−

(z −H)v dz

+ ∂yH

+∫
−

v dz

 . (31)

Note that, in general, the average velocity w̄ is not equal to the velocity of the center surface ∂tH .
In the subsequent analysis, we will focus on the cases, when F±x = F±y = 0 ∂zfx = ∂zfy = 0. Then the

equations (22), (25), (28) can be written in simpler form, similar to elastic plate equations:

ε−1∂xNxx + ∂yNxy = ε2Re∗Īu − f̄x, (32)

∂xNyx + ε−1∂yNyy = ε2Re∗Īv − f̄y, (33)

∂xQx + ∂yQy = εRe∗
[
Īw + ε

(
∂x

¯̄Iu + ∂y
¯̄Iv

)]
− f̄z +

(
F+
z

N+
+
F−z
N−

)
, (34)

where the effective in-plane stresses are defined as:

Nxx =

+∫
−

σxx dz, Nyy =

+∫
−

σyy dz, Nxy = Nyx =

+∫
−

σxy dz, (35)

the residual forces are:

Qx = ε−1∂xMxx + ε−1Nxx∂xH + ∂yMxy +Nxy∂yH, (36)

Qy = ∂xMyx +Nyx∂xH + ε−1∂yMyy + ε−1Nyy∂yH (37)

and bending moments are:

Mxx =

+∫
−

(z −H)σxx dz, (38)

Mxy = Myx =

+∫
−

(z −H)σxy dz, (39)

Myy =

+∫
−

(z −H)σyy dz, (40)

symbols ¯̄Iu, ¯̄Iv , ¯̄Iw are denoted to the moments of inertial forces:

¯̄Iu =

+∫
−

(z −H)Iu dz,
¯̄Iv =

+∫
−

(z −H)Iv dz,
¯̄Iw =

+∫
−

(z −H)Iw dz. (41)

5. Asymptotic solution

Up to know we just rearranged non-dimensional Navier-Stokes equations without using the small parameter
expansion. Now we are going to find velocity distribution through thickness, expanding the variables on small
parameter:

A = A(0) + εA(1) + ε2A(2) + o(ε2).

From the equations (21), (23) we have in zero order

σ(0)
xz = 0, (42)

σ(0)
yz = 0, (43)
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or

µ∂zu
(0) = 0,

µ∂zv
(0) = 0,

which has the following solution:

u(0) = ū(0)(t, x, y), (44)

v(0) = v̄(0)(t, x, y). (45)

The continuity equation (12) implies:
∂zw

(0) = 0,

thus
w(0) = w̄(0)(t, x, y). (46)

Finally, for zz-stress in zero order, we have:

σ(0)
zz = 0, (47)

therefore
−p(0) + 2µ∂zw

(0) = 0

or, taking into account (46),
p(0) = 0. (48)

Note that:
σ(0)
xx = σ(0)

yy = −p(0) = 0.

Since the equations (32)–(34) include terms of the order ε−1, the obtained expressions are not enough. We
have to continue with analysis of the first order.

Due to (21) the stress σxz in the first order is equal to

σ(1)
xz = σ(0)

xx

∣∣∣
−

(
∂xH −

1

2
∂xh

)
−

+∫
−

∂xσ
(0)
xx dz, (49)

where the right-hand side is zero. Thus:

µ
(
∂zu

(1) + ∂xw̄
(0)
)

= 0.

And we get that:
u(1) = ∂xw̄

(0)(H − z) + ū(1). (50)

In the same way, we obtain that:

σ(1)
xz = 0, (51)

v(1) = ∂yw̄
(0)(H − z) + v̄(1). (52)

The continuity equation (12) in the first order is written as:

∂zw
(1) = −∂xu(0) − ∂yv(0). (53)

The value of ∂zw(1) will be used for calculating the stress σ(1)
zz , which is equal to:

σ(1)
zz = σ(0)

zx

∣∣∣
−

(
∂xH −

1

2
∂xh

)
+ σ(0)

zy

∣∣∣
−

(
∂yH −

1

2
∂yh

)
−

+∫
−

(
∂xσ

(0)
zx + ∂yσ

(0)
zy

)
dz, (54)

where the right-hand side vanishes. Therefore:

−p(1) + 2µ∂zw
(1) = 0

and taking into account (53) we get

p(1) = −2µ
(
∂xu

(0) + ∂yv
(0)
)
. (55)

As for the next order, ε2, we consider only the continuity equation:

∂zw
(2) = −∂xu(1) − ∂yv(1) (56)
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and equation (24):

σ(2)
zz = σ(1)

zx

∣∣∣
−

(
∂xH −

1

2
∂xh

)
+ σ(1)

zy

∣∣∣
−

(
∂yH −

1

2
∂yh

)
−

+∫
−

(
∂xσ

(1)
zx + ∂yσ

(1)
zy

)
dz, (57)

where the right-hand side is zero again. Therefore, we get:

p(2) = −2µ
(
∂xu

(1) + ∂yv
(1)
)
. (58)

Finally, using the expression for longitudinal velocity u (44), (50) and v (45), (52), pressure p (48), (55), (58)
we obtain stress distributions across thickness

σxx = 2εµ
{

2∂x

[
ū(0) + ε

(
∂x

(
w̄(0)(H − z)

)
+ ū(1)

)]
+

+ ∂y

[
v̄(0) + ε

(
∂y

(
w̄(0)(H − z)

)
+ v̄(1)

)]}
+O(ε3), (59)

σxy = µ
{
∂y

[
ū(0) + ε

(
∂x

(
w̄(0)(H − z)

)
+ ū(1)

)]
+

+ ∂x

[
v̄(0) + ε

(
∂y

(
w̄(0)(H − z)

)
+ v̄(1)

)]}
+O(ε2), (60)

σyy = 2εµ
{
∂x

[
ū(0) + ε

(
∂x

(
w̄(0)(H − z)

)
+ ū(1)

)]
+

+ 2∂y

[
v̄(0) + ε

(
∂y

(
w̄(0)(H − z)

)
+ v̄(1)

)]}
+O(ε3). (61)

Integrating it through thickness, we find effective stresses:

Nxx = 2εµh
{

2
[
∂x

(
ū(0) + εū(1)

)
+ ε∂xw̄

(0)∂xH
]

+
[
∂y

(
v̄(0) + εv̄(1)

)
+ ε∂yw̄

(0)∂yH
]}

+O(ε3), (62)

Nxy = µh
[
∂y

(
ū(0) + εū(1)

)
+ ∂x

(
v̄(0) + εv̄(1)

)
+ ε

(
∂xw̄

(0)∂yH + ∂yw̄
(0)∂xH

)]
+O(ε2), (63)

Nyy = 2εµh
{[
∂x

(
ū(0) + εū(1)

)
+ ε∂xw̄

(0)∂xH
]

+ 2
[
∂y

(
v̄(0) + εv̄(1)

)
+ ε∂yw̄

(0)∂yH
]}

+O(ε3). (64)

and bending moments:

Mxx = −ε2µh
3

6

(
2∂2xxw̄

(0) + ∂2yyw̄
(0)
)

+O(ε3), (65)

Mxy = −εµh
3

6
∂2xyw̄

(0) +O(ε2), (66)

Myy = −ε2µh
3

6

(
∂2xxw̄

(0) + 2∂2yyw̄
(0)
)

+O(ε3). (67)

Substituting (62)–(67) in equations (32)–(34), we obtain with accuracy of O(ε2)

ε−1∂xNxx + ∂yNxy = −f̄x, (68)

∂xNyx + ε−1∂yNyy = −f̄y, (69)

∂xQx + ∂yQy = εRe∗∂tw
(0) − f̄z +

(
F+
z + F−z

)
. (70)

Then, the continuity equation (30) takes the form:

∂th+ ε∂x(hū(0)) + ε∂y(hv̄(0)) = 0, (71)

and the average vertical velocity is equal to the center surface velocity:

w̄(0) = ∂tH. (72)
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6. Dimensional equations

In this section, we come back to dimensional variables. First, we collect the expansion for average velocities:

ū = ū(0) + εū(1) +O(ε2),

v̄ = v̄(0) + εv̄(1) +O(ε2),

w̄ = w̄(0) +O(ε).

Then we can rearrange the equation and rewrite them in dimensional form:

∂th+ ∂x(hū) + ∂y(hv̄) = 0, (73)

∂xNxx + ∂yNxy = −f̄x, (74)

∂xNyx + ∂yNyy = −f̄y, (75)

∂xQx + ∂yQy = ρh∂tw̄ − f̄z +
(
F+
z + F−z

)
, (76)

where the membrane stresses are defined as:

Nxx = 2µh [2 (∂xū+ ∂xw̄∂xH) + (∂y v̄ + ∂yw̄∂yH)] , (77)

Nxy = µh (∂yū+ ∂xw̄∂yH + ∂xv̄ + ∂yw̄∂xH) , (78)

Nyy = 2µh [(∂xū+ ∂xw̄∂xH) + 2 (∂y v̄ + ∂yw̄∂yH)] . (79)

the residual forces depend on bending moments and membrane stresses:

Qx = ∂xMxx + ∂yMxy +Nxx∂xH +Nxy∂yH, (80)

Qy = ∂xMyx + ∂yMyy +Nyx∂xH +Nyy∂yH, (81)

and the bending moments are calculated as:

Mxx = −µh
3

6

(
2∂2xxw̄ + ∂2yyw̄

)
, (82)

Mxy = −µh
3

6
∂2xyw̄, (83)

Myy = −µh
3

6

(
∂2xxw̄ + 2∂2yyw̄

)
. (84)

The average vertical velocity is expressed as:
w̄ = ∂tH. (85)

Finally, the average volumetric forces are calculated in the following way:

f̄x =

+∫
−

fx dz, f̄y =

+∫
−

fy dz, f̄z =

+∫
−

fz dz. (86)

Equations (73)–(86) form the viscous plate model. They include terms up to the order of O(ε). The variables
to solve for are the averaged velocities ū, v̄, the deflection H and the thickness h. However, from computational
point of view it is convenient to keep the unknown variable w̄.

For the finite plate, the equations should be accompanied by boundary conditions along the plate’s perimeter.
It can be clamped, hinged or free conditions similar to those for elastic plates.

7. Discussion

During the model derivation we made the assumption that both deflection H and thickness h are of the same
scale H0, which is much smaller than plate’s length. However, we didn’t impose any restrictions on the ratio
H/h. In contrast, classical elastic plate linear theory is applicable only in the cases H/h� 1. Indeed, the derived
equations are analogous to non-linear elastic plate theory (see, e.g., [16]). It is worth noting that inertial effects
appears even for quite small Reynolds numbers Re ∼ ε4.

As we mentioned before, there are two classical problems regarding viscous plate: stretching and bending.
These two effects are described by different scales for velocities. In order to cover them within one model, these
problems were solved separately and then matching asymptotic series was done [13–15]. Our approach has the
benefit of the unique velocity scale.

Let’s consider the system with no transversal forces fz , F±z . In this case, it is enough to consider only ū(0),
v̄(0) for calculation of (59)–(61). Then non-linear terms in (62)–(64), which include w̄(0), are of higher order
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and can be neglected. The bending moments (65)–(67) vanishes, and equation (70) implies H = 0. Thus, plate’s
stretching is described by continuity equation (73) and stress balance equations (74)–(75).

Pure bending can be considered when applied longitudinal forces are zero. Then zero-order equations (32)–(32)
have the only solution ū(0) = v̄(0) = 0, which together with (71) imply constant-in-time thickness ∂th = 0. The
corresponding longitudinal velocities becomes of order ε.

In more involved cases bending and stretching occurs simultaneously. In particular, it happens in the cases of
large deflections, when bending implies stretching. The latter effectively makes the system stiffer.

Different external influences can be treated as applied forces. For example, nanoparticles can be seen as
pointwise forces, applied at the surface.
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