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Methodology of analyzing the CdSe semiconductor quantum dots parameters
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Direct methods (using a laser particle size analyzer) and indirect (from the analysis of spectral characteristics and differential normalized tunnel

CVC) methods of CdSe QD size estimation allowed determination of the size (4 – 5 nm) and shown good qualitative and quantitative agreement

of the results with an error of less than 10 %. It is concluded that the tunnel differential CVC analysis is an effective method for express

measurement that can be used in quantum-size object investigations.
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1. Introduction

Semiconductor structures, used in solid-state electronic devices, can contain single or multiple and associated
quantum-size objects. Quantum dots (QD) are one of the most interesting quantum-size structures in terms of
application in optoelectronics and nanoelectronics.

Semiconductor compounds A2B6 are among the most promising and interesting semiconductor materials from
a practical point of view, and have been so for many years. These materials have a high luminescence quantum
yield, photostability and are widely used in optoelectronics [1–4].

The purpose of this paper is to develop and substantiate a methodology for studying the electrophysical
properties of a monolayer film structure of semiconductor quantum dots of the A2B6 group (e.g. CdSe).

2. Samples obtaining technologies

CdSe quantum dots monolayers, formed on the water surface and transferred to solid substrates with an
indium-tin oxide (ITO) conductive layer by using Langmuir–Blodgett technology, were investigated. The quantum
dots were synthesized according to previously-described methodologies [5–7].

3. Research methods

The obtained samples were investigated by scanning tunneling microscopy (STM), laser particle size analyzer
and optical spectroscopy methods.

In the optical spectroscopy method, a standard violet LED with 500 mCd luminous intensity and a spectrum
maximum wavelength 380 nm was used as the primary excitation light source. Light from this source fell on
a sample that was placed in a diffuse reflection attachment (0 – 45 ◦), which allowed collection of light that
was diffusely reflected from the sample and emitted by the sample (secondary). Then, the light passed through a
band-pass filter, and in the long-wavelength part of the spectrum, a filter with a 360 – 600 nm transmission was
automatically replaced by filter with a 600 – 1000 nm transmission. The measurement process was carried out in
an automatic mode, the rate of the spectrum acquisition was 70 nm/min, and the sampling interval was 1 nm.

Scanning electron microscope (SEM) and optical spectroscopy methods may not always provide unambiguous
interpretation of the experimental data, e.g. in situations when the quantum-size particle has an inhomogeneous
structure or when the several particles form a conglomerate. In this case, for more complete analysis of the
electrophysical properties of the obtained QD film samples, in particular, the electronic spectrum, we used STM.
This method was realized by using a scanning probe microscope NANOEDUCATOR-2. Before the investigation
of nanoparticles tunnel CVC, the film surface was scanned by STM methods in a constant current mode. After
analysis of the obtained STM image of the sample’s surface, 10 points on the surface were selected for the
obtaining of CVC. At each point, not less than 10 CVC were obtained in automatic mode. Measurements were
carried out for current values ranging from 10−11 to 10−7 A and voltage ranging from 0 to 5 V. By reproducibility
of the measurement results, we selected points with stable characteristics, and after that, we averaged the obtained
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CVC. The measurements results were processed according to the generally accepted methods for scanning probe
microscopy of semiconductor nanostructures.

For the experimental tunnel CVC analysis, we used the differential CVC method – dependence (dI/dV )/(I/V )
on the voltage V [8, 9]. Additionally, as shown in [10, 11], this method can be used for analyzing the investigated
structures’ conductivity mechanisms, parameter calculation and a number of other important electronic processes.

4. Model and numerical estimates

The model of electrons tunneling through the energy levels of the discrete spectrum of the QD was considered
in [12].

When QD model of a cubic shape with an edge a, the position of QD energy spectrum levels:

εi =
(π ~)2

2m∗ · 1

a2
·
(
l2 +m2 + n2

)
, (1)

where l,m, n = 1, 2, 3, . . . – are positive natural numbers corresponding to the level numbers; m∗ – effective mass
of the electron; a – characteristic size of the QD.

In the case of a spherical QD with radius a in the one-electron spectrum in a parabolic well approximation:

εi =
(π ~)2

2m∗ · 1

a2
· (4n+ 2l + 3) , (2)

where n – radial quantum number (n = 0, 1, 2, . . . ); l – orbital quantum number (l = 0, 1, 2, . . . ).
The calculated electron energy values for the first three allowed energy levels (1, 2, 3) in accordance with (1),

(2) for CdSe are shown in Fig. 1(b). The electron’s effective mass value in the CdSe conduction band, used in
calculations m∗ = 0.13m0, where m0 – is the free electron mass. In accordance with this model it is possible to
estimate the QD characteristic size.

We considered and analyzed normalized differential tunneling CVC with a negative bias potential on the
substrate relative to the probe (Fig. 1a). In this case, electrons tunnel from the ITO electrode through the discrete
levels of a quantum-size object to the tunneling microscope probe. The conduction electron discrete energy
spectrum of a quantum-size object determines the peaks on the normalized differential CVC (arrows in Fig. 1).
The black solid line in Fig. 1a is a trend line constructed using linear filtering (by MS Excel tools).

The obtained values on the axis of the bias potential were put in correspondence with the energy values on the
calculated energy spectrum dependence for the models used. For example, in Fig. 1, the peak values corresponded
to 0.40 V; 0.62 V; 0.81 V. On the graphs of the energy spectra (Fig. 1b), this corresponds to a range of QD values
of 4.4 – 4.8 nm for the “spherical” model and 4.3 – 5.4 nm for the “cubic” model.

Analysis of the peak’s position on differential normalized tunnel CVC on the basis of averaging over a group
of samples allowed us to estimate the linear size of quantum-size objects, which ranged from 4 – 5 nm (with an
error in the peak’s position measurement not more than 2kT ). The use of a “spherical” QD model for the samples
makes it possible to obtain more accurate size determination than the “cubic” QD model: the range of values on the
“size” axis compared with the corresponding ranges of energy values is defined much more accurately (Fig. 1b).

To clarify the validity of this method based on the analysis of the peaks position on differential normalized
tunnel CVC, in addition, we estimated the QD size by analyzing the spectral characteristics of the samples (Fig. 2).
In Fig. 2, samples with different QD formation time (from 15 to 300 sec) are presented.

The QD size estimation, when considering Eqs. (1) and (2), the energy of the width of the material band
gap εg = 1.74 eV, and assuming that the change in the position of the QD first energy level εc1 relative to the
conduction band bottom of bulk material εc is several times greater than the corresponding change the valence
band top energy εv1 relatively εv (because m∗

n � m∗
p), gave the result 4.1 – 5.1 nm.

The results of CdSe QD investigations using the Malvern ZetaSizer Nano ZS laser particle size analyzer are
shown in Fig. 3.

The obtained results, with an assumed QD shell thickness of ∼ 1 nm, showed the characteristic QD size of
3.9 – 4.9 nm.

The processing of the investigated samples made it possible to conclude that the calculated QD sizes obtained
by experimental differential tunnel CVC analysis, spectral characteristic analysis and measurement with a laser
particle size analyzer are in good qualitative and quantitative agreement.
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(a)

(b)

FIG. 1. Typical differential current-voltage characteristics of CdSe QD (a), (b) – accordance with
the calculated levels of the energy spectrum according to the spherical QD model and according
to the cubic QD model

FIG. 2. Spectral characteristics of CdSe QD: 1, 2, 3, 4 – different samples
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FIG. 3. CdSe QD size estimating using a laser particle size analyzer

5. Conclusions

Thus, based on the CdSe QD size estimate analysis, we can conclude that both direct (using a laser particle
size analyzer) and indirect (from the analysis of spectral characteristics and differential normalized tunnel CVC)
methods of QD size determination have shown good qualitative and quantitative agreement of the results with an
error less than 10 %. Additionally, the differential normalized tunnel CVC analysis method made it possible to
determine a more suitable model for determining the energy spectrum of the investigated samples – the spherical
QD model. Moreover, this method can be used to analyze the conductivity mechanisms of investigated structures,
as well as calculate parameters for many other important electronic processes. All this allows us to consider, that
the differential normalized tunnel CVC method is an effective method for rapid quantification, which can be used
in studies involving quantum-size objects.

Acknowledgements

The authors are sincerely grateful to Prof. I. Goryacheva for provided samples of quantum dots. This
work was supported by grants from the Russian Foundation for Basic Research Projects No. 16-07-00093 and
No. 16-07-00185.

References

[1] Karpovich I.A. Quantum engineering: self-assembled quantum dots. Soros educational journal, 2001, 7 (11), P. 102–108 (in Russian).
[2] Karpov S.V., Mikushev S.V. Electron-hole excitations in CdSe quantum dots under strong and intermediate confinement conditions. Physics

of the Solid State, 2010, 52 (8), P. 1750–1756.
[3] Boichuk V.I., Leshko. R.Ya., Holskyi V.B., Karpyn D.S. Optical spectra of small CdS nanocrystals. Semiconductor Physics, Quantum

Electronics & Optoelectronics, 2016, 19 (4), P. 384–390.
[4] Vitukhnovskii A.G., Vashchenko, A.A., Lebedev V.S., et al. Organic light-emitting diode with an emitter based on a planar layer of CdSe

semiconductor nanoplatelets. JETP Letters, 2014, 100 (2), P. 86–90.
[5] Reiss P., Protiere M., Li L. Core/shell semiconductor nanocrystals. Small, 2009, 5 (2), P. 154–168.
[6] Speranskaya E.S., Goftman V.V., Goryacheva I.Yu. Preparation of water soluble zinc-blende CdSe/ZnS quantum dots. Nanotechnologies

in Russia, 2013, 8 (1–2), P. 129–135.
[7] Kosolapova K.I., Al-Alwani A.J.K., Gorbachev I.A., Glukhovskoy E.G. Purification non-aqueous solution of quantum dots CdSe-CdS–ZnS

from excess organic substance-stabilizer by use PE-HD membrane. J. Phys.: Conf. Ser., 2015, 643, P. 012084(1–5).
[8] Troyan V.I., Pushkin M.A., Borman V.D., Tronin V.N. Physical basis of techniques for studying nanostructures and surface of solids, Ed.

by V.D. Borman, MEPhI, Moscow, 2008, 260 p. (in Russian).
[9] Demikhovskii V.Ya., Filatov D.O. Scanning probe microscopy study of electronic states in low-dimensional structures: learning guide on

physicochemical fundamentals of nanotechnology, Nizhny Novgorod, 2007, 77 p. (in Russian).
[10] Mikhailov A.I., Kabanov V.F., Zhukov N.D. Peculiarities of field electron emission from submicron protrusions on a rough InSb surface.

Technical Physics Letters, 2015, 41 (11), P. 1065–1067.
[11] Mikhailov A.I., Kabanov V.F., et al. Electronic properties of A2B6 quantum dots incorporated into Langmuir-Blodgett films. Bulletin of

the Russian Academy of Sciences: Physics, 2017, 81 (12), P. 1472–1475.
[12] Mikhailov A.I., Kabanov V.F., Zhukov N.D., Glukhovskoy E.G. Features of the energy spectrum of quantum dots indium antimonide.

Nanosystems: Physics, Chemistry, Mathematics, 2017, 8 (5), P. 596–599.


