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Testing Bell inequalities for multi-partite systems
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Generalizing the problem of state nonlocality measurement, we suggest a multi-partite Bell test for multi-photon frequency-entangled quantum

state in a quantum network. Each side of this network is equipped with a generalized detector, consisting of an electro-optic phase modulator,

frequency filter and photo-counter. In our paper, we develop a theory of Bell nonlocality measurement in frequency domain, using generalized

Svetlichny inequalities. Solving the optimization problem for detectors inputs, we obtain optimal measurement parameters which allow strong

violation of considered inequalities. As a particular case, we consider bi- and tripartite cases for EPR, GHZ and Wigner states correspondingly.
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1. Introduction

One of the most crucial experiment testing the validity of quantum mechanics is examination of nonlocal
nature of quantum correlations [1]. Quantum entanglement [2], which is usually used as a basic resource for
communication and information processing appears to be an echo of this quantum phenomenon [3–5]. In 1964,
Bell [6] approved his famous theorem which states incompatibility between predictions of quantum theory and
any physical theory satisfying notion of locality and hidden variable assumption. The Bell parameter S being the
function of detector’s local settings and state of monitored composite system violates certain inequality in the case
of nonlocal correlation existence. For the bipartite system, this may take the form of Clauser–Horne–Shimony–
Holt [8] (CHSH) inequality |S(2)| ≤ 2, whereas in the tripartite case, we have Mermin |S(3)| ≤ 2 and Svetlicnhiy
|S(3)| ≤ 4 counterparts [9, 10].

From the perspective of application in quantum nano-technologies and quantum communication protocols [11]
it is very attractive to realize Bell test on photonic quantum states, which are widely used in quantum cryptog-
raphy and information processing [12, 13]. Current experimental methods in quantum optics allow generation of
entanglement in many-photon systems as soon as manipulating by single- and multi-photon states in integral silica
devices [14,15]. With these techniques, Bell inequalities were tested for bipartite and tripartite systems in the case
of polarization and time-bin coding [16, 17]. Frequency-bin coding is another attractive way for representation of
quantum information units due to relatively simple technique of manipulating collective state of frequency-encoded
qubits by phase shifters and electro-optical modulators [18,19]. By analogy, with linear optical quantum computa-
tion (LOQC), this branch of quantum information science was titled Spectral-LOQC (S-LOQC) [20]. Recently [21]
it was reported about testing CHSH inequality in frequency domain for biphotons generated in spontaneous-down-
conversion process by choosing optimal parameters of modulation. In [22], the Bell inequality was tested on
frequency-bin entangled photon pairs using time-resolved detection.

Here, we deal with generalization of the problem solved for bipartite case in [21, 23]. In our model, N
communicating parts of quantum network realize Bell test on common multi-photon state. Each part of the
network is equipped with a phase modulator, filter and photo-detector and receive only one photon. We estimate
modulation parameters, which allow us to register nonlocal property of shared state and violate of some inequality
(CHSH, Mermin, Svetlichniy, etc.) using Bell theorem. For these, we use the full-quantum model of electro-optical
phase modulation process including finite number of interacting modes [24]. This model asymptotically approaches
the semi-classical one, which was considered in [23], when number of interacting modes goes to infinity. Testing
a number of cases with different shared entangled states, we solve the optimization problem obtain corresponding
modulation parameters, which prove state nonlocality for each case. Additionally, we estimate the region of
detection settings, which reveals Bell nonlocality.

Our paper has the following structure. Section 2 is devoted to main definitions and mathematical model of
multi-partite Bell test. In Section 3, we introduce the notion of frequency bin and derive multi-photon frequency-
entangled quantum state, shared between all parties of quantum network. In Section 4, we describe generalized
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measurement procedure at each size of the network and formulate Svetlichny inequality for the case under investi-
gation. Numerical modelling and solution of optimization problem for particular cases of entangled two (EPR) and
three (GHZ and Wigner) states are in Section 5. Section 6 is devoted to discussion and conclude the paper.

2. Modelling of multi-partite Bell test

In a model of our theoretical Bell experiment, we will use notations following [1]. We set A (Alice), B (Bob),
C (Charlie), ... as communicating parts of considered quantum network (see fig. 1). At each side of this network,
there is a measurement device DA, DB , DC ,... with a definite input: x(A) ∈ {xi}nAi=1 for DA, y(B) ∈ {yj}nBj=1 for

DB , z(C) ∈ {zk}nCk=1 for DC , ... . Possible outcomes of measurement procedure on each detector is denoted by
a ∈ {aα}mAα=1 for Alice side, b ∈ {bβ}mBβ=1 for Bob side, c ∈ {cγ}mCγ=1 for Charlie, etc. The object of our interest
will be a set P of joint probabilities p (aα, bβ , cγ ...|xi, yj , zk...) to detect results aα, bβ , cγ , ... setting parameters
xi, yj , zk,... which usually called behaviour. For instance, local behavior PL of distributed detection system is
supposed to satisfy the following condition for each join probability p ∈ PL:

p (aα, bβ , cγ ...|xi, yj , zk...) =

∫
Λ

dλq(λ)p (aα|xi, λ) p (bβ |yj , λ) p (cγ |zk, λ) .... (1)

Here, λ ∈ Λ is “hidden” variable taking value in space Λ and distributed according to the probability density q(λ).
Quantum mechanics gives the following rule for calculating probabilities:

p (aα, bβ , cγ ...|xi, yj , zk...) = tr
(
ρABC...Maα|xi ⊗Mbβ |yj ⊗Mcγ |zk ⊗ ...

)
, (2)

that form quantum behaviour PQ of measurement apparatus. Here, ρABC... is quantum state on common Hilbert
space HA⊗HB⊗HC⊗ ..., and M are measurement operators (positive operator-valued measures) on corresponded
subspace. Due to the fact that PL ⊂ PQ, there exist quantum states (nonlocal) with statistics different from that
of correspondent to local behavior. This means that probability distribution of the form (1) for any quantum
state ρABC... does not exist. Inequality for detecting genuine multi-partite nonlocality was introduced [25] and
generalized [26] by Svetlichny. It has the form:

SN = 〈SN−1r
′
N 〉+

〈
S′N−1rN

〉
≤ 2N−1, (3)

obtained from repeating the procedure which allowed us to build Svetlichny’s inequality from CHSH:

S3 = 〈r′1r2r3〉+ 〈r1r
′
2r3〉+ 〈r1r2r

′
3〉 − 〈r′1r′2r′3〉+ 〈r′1r′2r3〉+ 〈r′1r2r

′
3〉+ 〈r1r

′
2r
′
3〉 − 〈r1r2r3〉 ≡

〈Sr′3〉+ 〈S′r3〉 ≤ 4. (4)

Here it is supposed that all measurements are dichotomic and their results are denoted by rj = ±1 and r′j = ±1,
where r1 = a, r2 = b, r3 = c, ... .

FIG. 1. Quantum network for N -photon experiment. The source is a pump laser that generates
frequency-entangled photons resulting from cascade spontaneous parametric down-conversion
process. In each channel, tuned EOPMs are located. Photons phases are modulated by EOPMs
driven by signals at certain frequencies with respective pairs of parameters. FR for drop filters,
DR for detectors (SSPDs)
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In the next section we will define common N -photon quantum multi-mode state shared between all N parties
of the quantum optical network and describe procedure revealing it’s nonlocal properties using formalism presented
in this section.

3. Frequency-bin coding and multi-mode quantum states

We will consider a process of entangled N -photon quantum state generation resulting, for example, from
cascade spontaneous down conversion scheme. This process produce photons in frequency-entangled state of the
form ρABC... = |χ〉 〈χ|, where:

|χ〉 ≡ |χ〉ABC... =

∞∫
−∞

dωadωbdωc...F (ωa, ωb, ωc, ...) |1ωa〉A |1ωb〉B |1ωc〉C .... (5)

Here, F (ωa, ωb, ωc, ...) is spectral density distribution and |1ωr 〉R is denoted single photon state with frequency
ωr, r ∈ {a, b, c, ...} transmitted to channel R ∈ {A,B,C, ...}. Each channel R is equipped with electro-optical
phase modulator EOPMR, frequency filter FR and photo-counter DR. Modulation frequency ΩMW for all EOPMR

is assumed to be the same, while other parameters may be different. The action of EOPMs on arriving state can
only change the frequencies by integer multiples of ΩMW . For the next, following [21] we introduce the notion
of frequency bin: all photons whose frequencies are contained in an interval [ω0 − Ω/2, ω0 + Ω/2] are grouped
into a single frequency bin centred on frequency ω0. Assuming Ω � ΩMW we can write our initial state in the
discretized form:

|χ〉ABC... =
∑

a,b,c,...∈Z

Fa,b,c,... |1a〉A |1b〉B |1c〉C ..., (6)

where we introduced ωr ≡ ω0 + rΩMW and dropped leaving only index r. Considering photon creation operator
a†r,R on frequency ωr in channel R and fixing order for R (to drop R), we finally obtain:

|χ〉ABC... =
∑

a,b,c,...∈Z

Fa,b,c,...a
†
aa
†
ba
†
c... |0〉. (7)

The state of this form will be the subject of our investigation of it’s nonlocal properties with the help of inequali-
ties (3) and (4).

4. Detection procedure and inequality derivation

As it was mentioned above, each side of our quantum network is equipped with EOPM, filter and photo-
counter. To realize the procedure of state nonlocality detection using inequality (3) we consider these three devices

as generalized measurement apparatus, whose input is parametrized by modulator parameters
(
ϕ, α̃, β̃

)
and filter

properties. The next question is: what agreement should reach all parties about the inputs and outputs of their
measurement devices to reveal nonlocal properties of state (7). We restrict ourselves by two sets of modulation
parameters as to different inputs for each generalized detector. And our goal now is to obtain optimal values of
these parameters to maximize functional (3) solving corresponding optimization problem. To do this, we consider
full quantum model of EOPM, investigated in [24] and write the modulator action as:

U |χ〉ABC... =
∑

a′,b′,c′,...∈Z

Fa′,b′,c′,...ã
†
a′ ã
†
b′ ã
†
c′ ... |0〉, (8)

where evolution operator U ≡ U
(
ϕ, α̃, β̃

)
and output operators ã†r′ are expressed through input ones with use of

the formula:

ã†r′ = U†a†rU = e−i(ω0+r′ΩMW )T
J∑

r=−J
(−1)re−i(r+r

′)α̃dJr′r(β̃)ei(r
′−r)ϕa†r ≡

J∑
r=−J

M
(J)
r′r a

†
r, (9)

where T is modulation time, (2J + 1) is number of interacted modes in modulator and dJµν(β̃) is the Wigner
d-function. Using (9), Eq. (8) may be written as:

U |χ〉ABC... =
∑

a,b,c,...∈Z

F̃a,b,c,...a
†
aa
†
ba
†
c... |0〉, (10)

and
F̃a,b,c,... =

∑
a′,b′,c′,...∈Z

Fa′,b′,c′,...M
(J)
a′aM

(J)
b′b M

(J)
c′c .... (11)
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For physical reasons and from the fact that evolution operator U is unitary, we have ||F ||2 =
∣∣∣∣∣∣F̃ ∣∣∣∣∣∣

2
= 1, where

||F ||2 =
∑

a,b,c,...∈Z

|Fa,b,c,...|2.

After determination of two inputs
(
α̃i, β̃i

)
R

, i = 1, 2 for each measurement device, we characterize measure-

ment result in channel R by random variable θR = ±1, that takes value θr,R = 1 then there was a photo-count
at bin ωr in channel R and θR = −1 otherwise. Joint probability for the events when all photons are detected

at frequency ωaα in channel A, ωbβ in channel B, ωcγ in channel C,... under input parameters xi =
(
α̃i, β̃i

)
A

,

yj =
(
α̃j , β̃j

)
B

, zk =
(
α̃k, β̃k

)
C

, etc. is

p(aα, bβ , cγ , ...|xi, yj , zk, ...) =
∣∣∣ 〈1aα1bβ1cγ |U |χ

〉
ABC...

∣∣∣2 =
∣∣∣F̃aαbβcγ ...∣∣∣2. (12)

To estimate the “true” statistics of initial state before modulation process, we use Bayes’ theorem, which gives
conditional probability:

pB(a, b, c, ...|a′, b′, c′, ...) =

∣∣∣Fa′,b′,c′,...M (J)
a′aM

(J)
b′b M

(J)
c′c ...

∣∣∣2∑
a′,b′,c′,...∈Z

∣∣∣Fa′,b′,c′,...M (J)
a′aM

(J)
b′b M

(J)
c′c ...

∣∣∣2 . (13)

Taking into account the possible values of random variables θr,R ∈ {±1}, we can write:

〈θr1,A, θr2,B , θr3,C , ...〉 ≡ 〈θa,A, θb,B , θc,C , ...〉 = sgn(θa,Aθb,Bθc,C ...)pB(a, b, c, ...|a′, b′, c′, ...). (14)

Thus, we arrive to Svetlichny inequality for frequency-encoded multi-mode quantum states. The next section
will be devoted to optimization problem for modulator parameters which maximize Bell functional and reveal
nonlocality of shared multi-photon entangled quantum state.

5. Numerical modelling: bipartite and tripartite cases

In this section, we will represent the results of some numerical analysis.
Let us choose the system to have 6 interacted modes (this means J = 2.5) in every channel. Photons in every

channel could have their own spectrum, but without loss of generality let us make them all to be equal. We have
there only 6 frequencies from ω0 − 2.5 · ΩMW to ω0 + 2.5 · ΩMW .

5.1. Bipartite case

In the section, we investigate two-particle case in a specific scheme, which approve Bell results and in particular
CH74 (Clauser–Horne, [7]) inequality in a frequency domain. This setup was initially proposed in [21] to test
CH74 inequality using phase modulated photons generated in spontaneous down conversion (SPDC) process. Using
the approach presented above, we now can determine S in CH74 inequality and formulate optimization problem,
which has a solution. We got the maximum value for S of 2.389. This result corresponds with [21], but in our
approach we can operate with any frequency spectrum. We show plots in order to get understanding of nonlocality
domain pattern in Fig. 2.

5.2. Tripartite case

Here, we are going to modelling a priory entangled tripartite states in order to verify whether they are nonlocal.

5.2.1. Wigner-state. We start with Wigner state expressed in terms of frequency entangled photon triplet:

|W 〉 = | − 0.5A, 1.5B , 2.5C〉+ | − 0.5A, 2.5B ,−1.5c〉+ |2.5A,−0.5B ,−1.5C〉, (15)

where i.e. | − 0.5〉 means |ω0− 0.5Ω̇RF 〉 and A,B,C represent Alice’s, Bob’s and Charlie’s channels respectively.
We show the spectrum probability density of the state before modulation in the Fig. 3(a).
Every channel has its own EOM [24]. In Fig. 4(a) the spectrum probability density of the Wigner state after

modulation is shown.
For this state we build Svetlichy inequality S (α11, β11, α21, β21, α31, β31, α12, β12, α22, β22, α32, β32). We

found the maximum of the functional in this case as 4.914 at point

{1.946, 4.444, 5.094, 3.691, 6.161, 0.445, 2.371, 5.121, 0.094, 5.482, 3.799, 6.224}. (16)

Now, we can describe domain of nonlocality for our state varying any parameters in 18. For clarity we vary
the second EOM parameter of first channel β11 and the same second EOM parameter of the second channel β21.
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(a)
(b)

FIG. 2. We build 3d-surface of Bell functional, varying two of the parameters. All the parameters
are in [0; 2π]. The surface is projection the Bell inequality onto pair of parameters α̃1 and β̃1

given fixed other parameters
(
S
(

0, 0, 0, 0, 0, α̃1, 0.3, β̃1

))
. There are extremes at points of (x; y)

where x, y ∈ 0, π, 2π. (a) and (b) displays S

(a) (b)

FIG. 3. (a) The spectrum probability density of the Wigner state before modulation for certain
third frequency l. m denotes the first channel frequency, n denotes the second. For other l
the probability function is equal to zero. (b) The spectrum probability density of the GHZ state
before modulation for certain third frequency l. As before for other l the probability function is
equals to zero
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(a) (b)

FIG. 4. (a) The spectrum probability density of the Wigner state after modulation for any third
frequency l. m denotes the first channel frequency, n denotes the second. (b) The spectrum
probability density of the GHZ state after modulation for any third frequency l. m denotes the
first channel frequency, n denotes the second

Domains violating the Svetlichny inequality are shown in Fig.5(a) (as was said before the local boundary of the
inequality is 4).

(a) (b)

FIG. 5. (a) The nonlocal domains of Wigner state in 2d-projection. (b) The nonlocal domains of
GHZ state in 2d-projection

5.2.2. GHZ-state. We designed the method that allows us to check any state for nonlocality. For this purpose, we
need to have only spectrum probability density for a state. We show this with the example of another entangled
state, such as GHZ-state. The spectrum density of GHZ-state is

|GHZ〉 = | − 0.5A,−0.5B , 1.5C〉+ |0.5A, 0.5B ,−1.5C〉 (17)

and is shown before modulation in Fig.3(b) and after modulation in Fig. 4(b).
For the current state, we obtained a violation 4.994 at the point

{4.61, 1.25, 3.095, 3.948, 0.055, 6.213, 0.69, 5.499, 4.129, 0.517, 4.787, 2.15}. (18)

Now we vary β11 and β22 in order to get nonlocality domain of GHZ state in Fig.5(b).

6. Conclusion

The current work is devoted to Bell inequalities in multi-partite systems. We presented Bell formalism
applicable to our problem and formulated CHSH inequality in case of N-dimension problem. Following [21]
we formulate common state which could be modulated in our approach. Also, we derive joint probabilities to
construct genuine spectral density distribution. Using the approach presented in [24], we build the method which
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allows us to test any state of nonlocality and show the operation of this method on different states. We checked a
priori entangled bipartite state and find the point violated CH74 inequality S maximally. The result corresponding
with [21]. We presented violating of W and GHZ states and obtained domains of nonlocality in all. We can
generalize the approach to any-dimensional quantum nanosystem system for any entangled or not entangled state.
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