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Solid-state transformations of the oxide core in core-shell structures Oxide@C consisting of oxide nanoparticles covered with a carbon coating

were studied at temperatures of up to 1500 ◦C. It is shown that such coating can stabilize the size of the oxide core nanoparticles for alumina,

zirconia, calcium and lanthanum aluminates and act as a shell of a nanoreactor where phase and chemical transformation can take place. For

ZrO2@C and Al2O3@C it is demonstrated that it is the preservation of the small particle size that accounts for the preservation of cubic

ZrO2 and δ-Al2O3 until the carbothermal reduction temperatures of the corresponding oxides (above 1400 ◦C for Al2O3). The electride state

C12A7:e is shown to be formed in C12A7@C material at temperatures above its melting point. The surface of activated C12A7 was found to

have a significant concentration of active OH radicals capable of converting diphenylamine into stable nitroxyl radicals.
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1. Introduction

Core-shell structures with different chemical composition are widely used as nanoreactors in modern chemical
studies [1–6]. The main goals for design of such materials are the formation of optimal conditions for operation
of the core materials that do not depend on the external conditions, preservation of the core composition and size,
performing selective chemical reactions with participation of the core using reagents penetrating through the shell,
etc. It is obvious that the choice of the core and shell materials depends on their role and the range of operation
conditions. In most cases, such systems are used either for reactions carried out in the liquid phase or in catalytic
reactions taking place in the gas phase at moderate temperatures. The shells for catalysts operating at relatively
high temperatures are commonly made of either SiO2 [1, 2, 6] or carbon [3–5].

Carbon-coated nanocrystalline MgO was shown to preserve the small particle size and have superior reactivity
in decomposition of chlorinated compounds [7,8]. In our recent papers [9–12] it was demonstrated that the carbon
coating in Oxide@C core-shell structures can function as a relatively solid nanoreactor shell, which is permeable
to molecules from the gas phase and stabilizes the size of the oxide core at high temperatures.

A natural condition that limits this temperature range is the temperature of the oxide core carbothermal
reduction, which depends on its composition. For aluminum-containing oxide systems studied by us (Al2O3,
calcium and lanthanum aluminates) this temperature exceeds 1400 ◦C. So, the synthesis of core-shell particles
makes it possible to study the effect of the nanoparticle oxide core size on solid state reactions in a wide
temperature range. Meanwhile, for TiO2, carbothermal reduction starts already at 800 ◦C. Above this temperature,
the TiO2@C core-shell structure is destroyed, and non-stoichiometric titanium oxide phases are formed.

High-temperature treatment of aluminum-containing oxide systems Oxide@C (above 1100 – 1200 ◦C) gives a
unique possibility to synthesize relatively dispersed oxide materials that do not contain structural water. Synthesis
of such materials under conventional conditions is practically impossible because intense sintering of the samples
and the accompanying phase transformations take place in this temperature range.

Electron paramagnetic resonance (EPR) is an excellent method for characterization of various active sites
present of the surface of oxides, which can generate radical or ion-radical species after adsorption of suitable spin
probes [13–16]. Electron-donor sites on such oxide supports as Al2O3, MgO, ZrO2, etc. can be studied using
aromatic nitro compounds due to their pronounced electron-acceptor properties, leading to the formation of stable
radical anions [17, 18]. Various aromatic donor molecules can be used to characterize electron-acceptor sites on
the surface of a great variety of oxide materials, which can generate radical cations by abstracting a single electron
from them [15, 16, 19]. The strength of the surface acceptor sites can be qualitatively characterized by selecting
probe molecules with different ionization potentials [16].

The goal of this study was to compare high-temperature transformations of several oxide and core-shell
structures based on them and determine the effect of the oxide nanoparticles size on their chemical transformations.
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Special attention was paid to characterization of the active sites on the surface of Al2O3 and C12A7 materials that
are important for their application as supports for catalyst synthesis.

2. Experimental

The following materials were used as the main objects in this study. Nanocrystalline alumina (AP-Al2O3)
was prepared using the aerogel technique described in detail elsewhere [20, 21]. A γ-Al2O3 sample (SB1-Al2O3)
prepared by decomposition of Condea Pural SB1 pseudoboehmite was studied for comparison. Before deposition
of the carbon coating, the samples were calcined in a muffle furnace in air at 720 ◦C for 6 h. The specific surface
area of the used samples was ∼ 200 m2/g.

Hydrated zirconia samples with the surface area ∼ 300 m2/g were prepared by traditional precipitation from
a ZrOCl2 solution with ammonia at pH = 10.6. The precipitate was washed with a water excess until neural pH.
The obtained sample was dried at 110 ◦C for 12 h and was not subjected to any heat treatment before deposition
of the carbon coating.

A mixture of aluminum hydroxide (Condea Pural SB1 pseudoboehmite) and calcium hydroxide with the
required stoichiometric ratio was used as a precursor for C12A7 synthesis. The mixture was thoroughly stirred in
distilled water for 10 h, filtered and dried at 110 ◦C. Then it was calcined in a muffle furnace in air at 550 ◦C for
6 h. The obtained C12A7-550 sample was used as a starting material for further synthesis.

Core-shell materials were prepared by mixing each oxide powder with polyvinylalcohol (PVA) in the weight
ratio 7 : 3 followed by calcination of the obtained mixture in argon at desired temperature typically for 6 h. The
carbon-coated samples will be hereafter denoted as Oxide@C−T , where Oxide is the type of the oxide core, and
T is the final calcination temperature in ◦C.

LaAl11O18 and LaAlO3 samples were synthesized by a modified Pechini route from ethylene glycol – citric
ester polyester precursors [22]. After aerobic decomposition of the polymeric precursors 400 ◦C, further calcination
of the samples with preservation of the carbon shell was carried out under argon at 700 – 1300 ◦C. So, the procedure
used for synthesis of core-shell samples was different for this material. The samples without the carbon coating
were calcined in air.

The EPR spectra were recorded at room temperature using an ERS-221 EPR spectrometer working in the
X-band. The experimental installation was described in detail elsewhere [23]. 1,3,5-Trinitrobenzene (TNB),
anthracene, phenothiazine and diphenylamine probes used to characterize various surface active sites were adsorbed
from 20 mM solutions in toluene. Prior to adsorption of the probe molecules, the samples were activated in air
at 500 ◦C for 3 h. The probe adsorption and spectrum recording procedure was reported in detail in our earlier
publications [16, 18].

Specific surface areas determined by the BET method were calculated from the data obtained by low-
temperature argon adsorption using an ASAP-2400 instrument. XRD analysis was performed using a Brucker
D8 diffractometer with Co Kα irradiation. High-resolution transmission electron microscopy images were obtained
using a JEM-2010CX microscope with 1.4 Å line resolution.

3. Results and discussion

3.1. Al2O3@C

γ-Al2O3 is widely used in chemical technology as a sorbent and a catalyst support. This compound preserves
its phase composition and relatively high surface area (200 – 300 m2/g) up to 700 – 800 ◦C. At higher temperatures,
it is subjected to dehydration and sintering of nanoparticles to form δ-Al2O3 phase with typical surface area 100 –
120 m2/g. Further temperature increase is accompanied by the surface area drop to 1 – 5 m2/g with the formation of
corundum (α-Al2O3) phase. Usually, this corresponds to complete alumina dehydration. It has been demonstrated
that size effects play an important role in the phase transformations of this oxide [24–26]. The γ-Al2O3 phase is
thermodynamically stable for samples with high specific surface area and the corresponding small particles size.
Meanwhile, α-Al2O3 is formed only after substantial growth of the oxide nanoparticles due to their sintering caused
by the presence of direct contacts between the nanoparticles. Deposition of any shell eliminating such contacts
favors the particle size stabilization and, as result, prevents the corundum phase formation and dehydration of
catalytic materials. Earlier, we demonstrated that the size of the oxide core can be stabilized for various oxide
nanoparticles in core-shell structures Oxide@C after deposition of the carbon coating on the surface. It is evident
that the size of the starting oxide core, its morphology and the properties of the deposited carbon shell may have
a significant effect on the thermal stability of such materials.

Data for the surface areas and the phase composition of AP-Al2O3 and the oxide core in AP-Al2O3@C system
at high temperatures are shown in Figs 1 and 2. The presented data clearly demonstrate that complete conversion
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to corundum is not observed for AP-Al2O3@C, even at temperatures as high as 1400 ◦C. Meanwhile, the thermal
stability of the low-temperature alumina phases in SB1-Al2O3@C is substantially lower [10, 12].

FIG. 1. Effect of calcination temperature on the surface area of AP-Al2O3 (1) and AP-Al2O3@C
sample after burning its carbon shell by calcination in air at (2)

FIG. 2. Effect of calcination temperature on the corundum concentration in AP-Al2O3 (1) and
AP-Al2O3@C (2)

The evolution of Raman spectra of the carbon shell in AP-Al2O3@C at different calcination temperatures is
presented in Fig. 3. Intense G lines at ∼ 1590 cm−1 corresponding to allowed E2g vibrations of the graphite
hexagonal lattice and disorder-induced D lines attributed to activated A1g mode due to the finite crystal size [27,28]
at ∼ 1340 cm−1 were observed in the first-order scattering spectra of all AP-Al2O3@C samples. As the temperature
increases, the ID/IG ratio increases from 0.83 to 1.47, and a second-order 2D line appears in the spectrum. A
line at ∼ 864 cm−1, corresponding to the most intense A1g line of Al4C4 appears in the spectrum of the sample
calcined at 1500 ◦C [29]. Its appearance corresponds to the start of the oxide core carbothermal reduction to
aluminum carbide.

As was noted above, a natural restriction on the highest temperature at which the oxide core size can be
preserved for Oxide@C materials is the temperature of the chemical reaction between the shell and the core
materials. Based on the presented data, we managed to approach this maximum temperature for Al2O3@C using
the AP-Al2O3 core and our carbon shell deposition technique.

Alumina is a popular catalyst support. The presence of certain types of active sites on its surface is crucial
for this application. So, we compared the concentrations of different active sites on the Al2O3 surface and on the
surface of the Al2O3 core of Al2O3@C calcined at high temperature after removing the carbon shell from them
by calcination in air. 1,3,5-Trinitrobenzene adsorption was used for characterization of electron-donor sites [18].
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FIG. 3. Raman spectra of AP-Al2O3@C samples calcined in Ar at 650 ◦C (1), 1200 ◦C (2) and
1500 ◦C (3). Inset shows the section of the spectrum where the A1g line of Al4C4 is observed

Electron-acceptor sites were characterized using anthracene adsorption [30]. A δ-Al2O3 sample obtained by aerobic
calcination of SB1-Al2O3 sample at 1000 ◦C for 6 h was used as a reference.

Typical EPR spectra observed after adsorption of the probe molecules on the studied samples are shown in
Fig. 4. The relative intensity of the signals reflects relative concentrations of electron-donor (Fig. 4A) and electron-
acceptor (Fig. 4B) sites. The presented results indicate that the properties of the active sites on the oxide core in
Al2O3@C are preserved, even after calcination at 1250 ◦C, and their concentration correlates with the surface of
the sample obtained after this treatment.

3.2. ZrO2@C

ZrO2 is another frequently used catalyst support. Depending on synthesis conditions and temperature, it can
consist of cubic or monoclinic phase, or mixture of the two phases. The surface area dependence on the heat-
treatment temperature for samples ZrO2, ZrO2@C and ZrO2@C-600 where the carbon coating was removed by 6 h
calcination in air at 600 ◦C are shown in Fig. 5. The obtained results demonstrate a significant effect of the carbon
coating on stabilization of the oxide core in ZrO2@C system, similar to that observed for Al2O3@C. Comparison
of the surface area of ZrO2@C samples with that of the samples obtained after burning of the carbon shell in air
(series ZrO2@C and ZrO2@C-600) indicates a substantial contribution of the carbon coating to the surface area
measured for ZrO2@C samples. Still, preservation of the oxide core surface area (∼ 20 m2/g after calcination of
the core-shell material at 1400 ◦C) proves that the carbon coating assists in stabilization of the oxide core size. As
in the case of alumina, the temperature range over which the cubic phase originally formed after synthesis is more
stable in ZrO2@C core-shell materials than in pure ZrO2 (Fig. 6). It correlates with the temperature range where
relatively high surface area of the oxide is preserved.

3.3. LaAlO3@C

Lanthanum monoaluminate and hexaluminate are used as high-temperature catalyst supports. As the required
phases of these materials are formed at high temperatures, synthesis of these materials with high specific surface
area is quite complicated. Depending on the stoichiometry of the La2O3–Al2O3 system, either β-alumina structure
LaAl11O18 is formed at La/Al = 8.3 % or LaAlO3 with a perovskite structure at La/Al = 50 %. These phases have
different temperature ranges of thermodynamic particle stability.

The formation of the LaAlO3 phases by the Pechini route takes place at 700 ◦C (Fig. 7). No other phases
appear after the temperature increase. Only an amorphous phase containing residual carbon is observed in the
LaAlO3@C sample at the same temperature (Fig. 7).
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FIG. 4. EPR spectra of radicals registered after 1,3,5-trinitrobenzene (A) and anthracene (B)
adsorption from toluene solution on SB1-Al2O3-1000 and SB1-Al2O3-1180 samples, and on the
carbon-coated SB1-Al2O3@C-1250 sample after aerobic calcination at 700 ◦C

FIG. 5. Effect of calcination temperature on the surface area of ZrO2 (1), ZrO2@C (2) and
ZrO2@C-600 sample obtained by burning of the carbon coating in air at 600 ◦C (3)

Preliminary experiments indicate that the presence of the carbon coating favors the formation of lanthanum
hexaaluminate phase at temperatures above 1300 ◦C. The most likely reason for this result is the preservation of
relatively small oxide core particles in the presence of carbon introduced into the material during its synthesis via
the Pechini route.

3.4. C12A7@C

Calcium aluminate materials with different stoichiometry have been well known for some time and thus ex-
tensively studied. They are essential constituents of various cements and are sometimes used as catalyst supports.
The explosive growth of interest in one such material – calcium aluminate with 12CaO7Al2O3 composition, com-
monly denoted as C12A7, was inspired by the revelation of their unique chemical and electrophysical properties,
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FIG. 6. Effect of calcination temperature cubic phase fraction in ZrO2 (1) and ZrO2@C (2)

FIG. 7. XRD patterns of the LaAlO3@C-700 samples calcined at 700 ◦C in argon (1) and in air (2)

discovered and thoroughly investigated by Hosono et al. [31–34]. They contain a stable cationic framework
[Ca24Al28O64]

4+ and relatively mobile anionic sublattice 4 X−. The chemical and electrophysical properties of
such materials can be varied over a wide range by altering the X− anions. Their elementary cell can be written by
the following formula:

1 unit cell = [Ca24Al28O64]
4+ · 4X−, where X− = H−, O−, O−

2 , O
2−, OH−, Cl−, F−, e−.

Especially interesting among this list are electrides – materials with X− = e−. These materials have metal
conductivity, unique emission, optical and chemical properties. However, their synthesis requires temperatures as
high as 1600 ◦C, making it very difficult to prepare these materials in a finely dispersed form. Note that C12A7:e
is the only bulk inorganic electride known to date.

Structural and electrophysical features of the electride phase formation in the carbon nanoreactor conditions
in C12A7@C system have been described in detail in one of our recent publications [11, 35, 36]. One of the
main obtained results is that we managed to stabilize the size of the oxide core in C12A7@C at ∼ 100 nm, even
at temperatures substantially exceeding the C12A7 melting point (1415 ◦C). The small particle size substantially
facilitates diffusion process in this material making it possible to decrease the temperatures required for migration
of anions and electride formation.
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The XRD data presented in Fig. 8 demonstrate that dispersed C12A7 phase can be synthesized in C12A7@C
using the procedure described in the Experimental section starting from temperatures as low as 500 – 600 ◦C.

However, even after the formation of the electride state at 1380 ◦C, the size of the oxide core in such material
is preserved in the range of 100 – 150 nm. Fig. 9 presents an HRTEM image of a typical particle of such material.
Several graphene layers can be observed on the particle surface.

FIG. 8. XRD patterns of C12A7@C samples after calcination at different temperatures in argon flow

FIG. 9. HRTEM image of C12A7@C sample after calcination at 1380 ◦C under argon. The inset
shows a section of the image after Fourier filtration

One possible application for finely dispersed C12A7 materials is their use in catalytic and adsorption tech-
nologies. Therefore, it was important to incorporate various active sites on their surface. No such information was
available in the literature before this study.

EPR spectra observed after adsorption of TNB, phenothiazine and diphenylamine from toluene solutions on
C12A7-600 (A) and Al2O3-720 (B) samples activated at 500 ◦C are presented in Fig. 10. The alumina sample
prepared using the same precursor was chosen as a reference sample because C12A7 contains a substantial amount
of alumina, whereas electron-donor and electron-sites on the alumina surface have been extensively characterized
previously [16,18,30]. Although the surface area of C12A7-600 was lower than that of the alumina sample (80 vs.
200 m2/g), it is sufficiently high for its application as a catalyst support.

All the used probe molecules have nitrogen atoms, and their EPR spectra feature 3-component signals due
to hyperfine splitting on a nitrogen atom with S = 1 with frozen rotation. The spectrum observed after TNB
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FIG. 10. EPR spectra observed on the surface of C12A7-600 (A) and Al2O3-720 (B) activated
at 500 ◦C after adsorption of 1,3,5-trinitrobenzene (1), phenothiazine (2) and diphenylamine (3)
from toluene solutions

adsorption on C12A7-600 is similar to the one observed after TNB adsorption on alumina with somewhat smaller
Azz (27 G vs. 30 G on Al2O3). It was previously attributed to TNB radical anion forming an ion par with an
aluminum cation [18]. This means that the studied C12A7-600 also has electron-donor sites of the same type as
those present on the Al2O3 surface. However, their concentration was ca. 8.5-fold lower than on the reference
alumina sample when normalized to the sample weight or about 3.5-fold lower when normalized to the surface
area.

Phenothiazine has very low ionization potential of approximately 6.8 eV; as a result, it can be used for
characterization of very weak electron-acceptor sites. Its adsorption on Al2O3 results in the appearance of a
poorly-resolved three-component spectrum with Azz = 20 G attributable to its radical cations. On C12A7-600,
the spectrum resolution was much better, with slightly smaller hyperfine constant (18 G), whereas the spectrum
intensity, when normalized to the surface area, was approximately the same. So, C12A7-600 has weak electron-
acceptor sites on its surface, and their concentration is approximately the same as on the Al2O3 surface.

Diphenylamine also has low ionization potential, equal to 7.2 eV and can be ionized to its radical cations on
the surface of many acidic materials that have electron-acceptor sites. Apparently, this is what happens after its
adsorption on Al2O3-720, where a wide unresolved spectrum is observed. It resembles the one earlier reported
after diphenylamine on H-ZSM-5 zeolite [37] where it was attributed to a mixture of primary diphenylamine radical
cations and products of their transformations.

However, in solution, diphenylamine is well known to form quite stable diphenyloxyl nitroxyl radicals in the
presence of peroxides, apparently, due to reaction with hydroxyls resulting from their decomposition. The spectrum
observed after diphenylamine adsorption on the surface of C12A7-600 is a triplet with Azz = 16 G, which can be
attributed to diphenyloxyl nitroxyl radicals adsorbed onto its surface. Remarkably, their concentration normalized
to the surface area exceeded the concentration of radical species observed on the Al2O3-720 sample by roughly
3-fold. This means that the surface of activated C12A7 has a significant concentration of active OH radicals. It
seems to be a specific feature of this material related to its unique structure that merits further investigation, as we
did not observe similar signals on other oxide materials that we studied.
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4. Conclusion

It has been demonstrated that it is possible to stabilize dimensions of oxide nanoparticles with different
chemical composition and prevent their sintering at high temperatures by depositing a carbon coating on their
surface. Such approach appears to be fairly universal and can be used for various oxide materials in a wide
temperature range below the temperature of the oxide core carbothermal reduction. The carbon coating prevents
direct contact between the oxide nanoparticles, thus, preventing their sintering. Before our studies, possible effects
of the particle size on the thermodynamic stability of different phases of TiO2 (anatase-rutile) and Al2O3 (gamma,
delta and alpha phases) were known. For TiO2@C and Al2O3@C, the low-temperature phases of the oxide core
could be preserved up to the temperature where they reacted with their carbon shell. So, for TiO2@C the anatase
phase is stable to 800 ◦C. Above this temperature, the carbon shell is destroyed, and non-stoichiometric titanium
oxide phases are formed. For Al2O3@C the corundum phase is formed only at temperatures above 1400 ◦C, when
decomposition of the carbon shell due to its interaction with the oxide core material begins. Based on the results
obtained in this study for zirconium oxide and lanthanum aluminate, the carbon shell also can stabilize both the
size and phase composition.

The data presented for the C12A7@C material exemplify the possibility of stabilizing the size of the oxide
core, even above its melting temperature. Apparently the carbon shell prevents interaction between the droplets
of the melted oxide core. Meanwhile, the carbon coating synthesized using the reported procedure appears to be
permeable for molecules of the gas phase. This makes it possible to perform synthesis of new solid products by
reaction of the oxide core material with gaseous reagents.

Carbon coating is only one of several possible variations of a nanoreactor shell for oxide nanoparticles. Such
shell is not always inert, as is shown in carbothermal reduction processes. Also it is absolutely inapplicable for
reactions at high temperatures in the presence of oxygen. The search of other materials that could function as such
nanoreactor where similar processes could be carried out in the presence of air is important for many practical
applications. One possible approach to creating air-stable materials with an oxide core is the synthesis of core-shell
structures with an oxide shell. The first results we obtained using such shells as SiO2 and MgO for this purpose
seemed to be promising.
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