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Vibron transport in macromolecular chains with squeezed phonons
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We investigate physical properties of a single vibronic intramolecular excitation propagating through a macromolecule, whose vibrational state

can be described as a squeezed vacuum state. For a theoretical description of such a process, the partial dressing method of the vibronic

excitation due to its interaction with phonons is used. We study the influence of the model parameters and strength of squeezing on the vibron

dressing. It is demonstrated that for certain critical values of the model parameters a polaron crossover can occur, at which there is a sharp

change in the migration nature of a vibron from the practically free to the heavy quasiparticle dressed by a phonon cloud. Increasing the

strength of phonon squeezing is shown to increase the critical values of the model parameters, so that for high phonon squeezing the polaron

crossover takes place in the very strong-coupling and adiabatic regime.
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1. Introduction

The interest in the use of organic macromolecules (e.g., protein macromolecules, DNA, polymers, and
other biological macromolecular structures) in construction of nanostructures, such as nanoparticles, nanocrys-
tals, nanowires, and molecular circuits becomes actual again. Its ability in the field of the miniaturization of
microelectronic and optoelectronic devices and, at the same time, its self-assembly capabilities makes them very
promising materials in microelectronic and optoelectronic technology [1–3]. The efficient application of such ma-
terials requires the knowledge of mechanisms that rule the charge and energy migration along the macromolecule
spine at such distances that are comparable to the dimension of the macromolecule. Unfortunately, the formulation
of a theoretical model based on the principle of quantum mechanics, which could explain such processes in a
satisfactory manner, is not yet complete.

One of the earliest quantum mechanical-based models of the charge and energy transfer in protein molecules
was developed by Davydov and his coworkers [4,5]. In these papers Davydov tried to explain the ability of charge
and energy transfer at long distances (i.e., along the MC spine) by a soliton model, because the mean life-time
of a dressed quasiparticle is much longer than the mean life-time of a bare one. This model was based on the
assumption that an external excitation might be captured by a macromolecular chain (MC) due to the interaction
with oscillations of the macromolecular chain structure elements. Such a self-trapped (ST) excitation becomes
dressed by the phonon cloud and it can move in a soliton form through the macromolecular chain. However,
because of the lack of direct experimental evidence for the existence of a soliton in such substances, Davydov’s
idea has been considered only as an interesting theoretical concept of academic interest. The situation changed when
Alexander and Krumhansl [6] suggested that appearance of the so-called unconventional amide-I band observed in
crystalline acetanilide (ACN) may be explained in the framework of small-polaron (SP) theories. They supposed
that in the process of the vibron-exciton self-trapping a non-adiabatic (small) polaron appears instead of a soliton.

In the polaron theory, the basic energy parameters that determine how the ST particle process will take place
and what type it will arise are as follows: the quasiparticle binding energy, the characteristic phonon energy
and the energy of quasiparticle-phonon interaction. The standard SP theory works in the case of the strong
quasiparticle-phonon interaction [7,8]. But the strength of vibron interaction with the phonon subsystem belongs to
an intermediate or even a weak coupling regime [9]. It became clear that the standard SP model cannot be applied
to biological macromolecular structures, requiring certain modifications. One way to overcome this problem is to
apply the model of the partially dressed SP quasiparticles. Such a method was developed in order to intermediate
between the weak and strong coupling limits of exciton-phonon interaction [10–13].
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When describing the transport mechanism in macromolecular chains, it was usually assumed that the os-
cillations of their structural elements are due to the thermal fluctuations. However, recent experiments have
demonstrated the possibility of transitioning phonon excitations in crystals to a squeezed state [14–16]. Such a
phenomenon was achieved due to the action of femtosecond laser pulse radiation in a squeezed state. In particular,
this effect was theoretically predicted in Refs. [17–19]. Therefore, it is possible to assume that the state of oscil-
lations of structural elements in the molecular chain can also be brought into a squeezed state under the action of
external fields in analogy with crystals.

In this paper we investigate the vibron exciton transport in the framework of partially dressed vibron states
as a result of interaction of vibrons with oscillatory excitations of chain structural elements. Here we assume that
the quantum state of these excitations are described by the squeezed vacuum state. Special attention is paid to
calculation of the dependence of the dressing parameter on the squeezing parameter.

2. Model

The model Hamiltonian for describing the single-vibron propagation along a macromolecular chain can be
given in a form of the Holstein type [7]:

Ĥ = ∆
∑
n

Â†nÂn −
∑
n

JgÂ
†
n(Ân+g + Ân−g) +

∑
q

~ωqB̂†qB̂q

+
1√
N

∑
q

∑
n

Fqe
iqnRÂ†nÂn(B̂q + B̂†−q). (1)

Here Ân is the vibron annihilation operator on the n-th lattice site, ∆ is the vibron excitation energy, Jg is the
hopping constant (i.e. it is the energy of the dipole-dipole interaction of neighboring structure elements on the
MC), B̂q is the phonon annihilation operator with the frequency ωq , Fq is the vibron-phonon coupling parameter,
R stands for the distance between two neighboring sites. The transition to the partially dressed polaron picture is
achieved by applying the modified Lang-Firsov transformation [10, 12, 13, 20]

Û = exp

{
− 1√

N

∑
q

∑
n

fqe
−iqnRÂ†nÂn(B̂−q − B̂†q)

}
, (2)

where fq = δ · F ∗q /(~ωq), and δ is the variational parameter which measures the degree of the vibron dressing

(0 ≤ δ ≤ 1). By introducing operators of new quasiparticles for dressed vibrons ân = Û ÂnÛ
† (â†n = Û Â†nÛ

†),

and new phonons b̂q = Û B̂qÛ
† (b̂†q = Û B̂†qÛ

†), one gets the transformed Hamiltonian in the form ˆ̃H = ÛĤÛ†

ˆ̃H = E
∑
n

â†nân −
∑
n

Jgâ
†
n(ân+gΦ̂n(g) + ân−gΦ̂n(−g)) +

∑
q

~ωq b̂†q b̂q

+
1√
N

∑
q

∑
n

(Fq − ~ωqf∗q )eiqnRâ†nân(b̂q + b̂†−q) (3)

+
1

N

∑
q

[~ωq|fq|2 − Fq(fq + f∗−q)]
∑
n 6=n′

eiqR(n−n′)â†nânâ
†
n′ ân′ ,

where E = ∆− (1/N)
∑
q

[Fq(fq + f∗−q)−~ωq|fq|2] is energy of dressed vibron (which is shifted from the energy

of the energy of bare excitation), and

Φ̂n(g) = exp

{
1√
N

∑
q

fqe
−iqnR(b̂−q − b̂†q)(e−iqRg − 1)

}
.

Defining exciton states in the representation of wave vectors k by âk = (1/
√
N)
∑
n

eiknRân, the Hamiltonian (3)

for the single vibron excitation reads:

ˆ̃H = E
∑
k

â†kâk +
∑
q

~ωq b̂†q b̂q +
1√
N

∑
q

∑
k

(F ∗q − ~ωqfq)â†kâk+q(b̂−q + b̂†q)

− 1√
N

∑
k1

∑
k2

Jgâ
†
k1
âk2{e−ik2gRΦ̂k1−k2(g) + eik2gRΦ̂k1−k2(−g)}, (4)
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where Φ̂k(g) = (1/
√
N)
∑
n

eiknRΦ̂n(g).

In order to account for the influence of the mechanical oscillation of the chain structure elements on the
properties of the ST vibron, we apply the mean-field approach by the averaging of the transformed Hamiltonian
over the phonon subsystem. The averaged Hamiltonian obtains the form:

ˆ̃HMF = E
∑
k

â†kâk +
1√
N

∑
q

∑
k

(F ∗q − ~ωqfq)â†kâk+q〈b̂−q + b̂†q〉ph

− 1√
N

∑
k1

∑
k2

Jgâ
†
k1
âk2{e−ik2gR〈Φ̂k1−k2(g)〉ph + eik2gR〈Φ̂k1−k2(−g)〉ph}, (5)

in which the symbol 〈. . .〉ph = Tr{%̂b . . .} denotes the average over the phonon ensemble.

3. Squeezed-vacuum phonon state

The non-classical behavior of phonons upon the action of ultrashort laser pulses on a crystal, as shown in
Ref. [21], is due to the generation of biphonon-like states. Such states are characterized by the excitation of
phonon modes with equal frequencies and identical in absolute value, but opposite in sign wave vectors, i.e.
they are associated with operators b̂q and b̂−q . Thus, one can presume that it corresponds to the generation of a
multimode squeezed vacuum state of phonons, |0〉MSV S , which is defined by the unitary operator [22]:

Ŝ = exp

{∑
q

[
ξ∗q b̂q b̂−q − ξq b̂†q b̂

†
−q

]}
, (6)

with the squeezing parameter ξq = rqe
iθq , satisfying the conditions:

Ŝ†b̂qŜ = cosh rq b̂q − eiθq sinh rq b̂
†
−q,

Ŝ†b̂†qŜ = cosh rq b̂
†
q − e−iθq sinh rq b̂−q, (7)

so that
|0〉MSV S = Ŝ|0〉b, (8)

where |0〉b is the phonon vacuum state, i.e. b̂q|0〉b = 0. Then, for the averages over the phonon ensemble in such
a state, we have:

〈b̂−q + b̂†q〉ph ≡ 〈b̂−q + b̂†q〉MSV S = 0, (9)

since 〈b̂q〉MSV S = 〈b̂†q〉MSV S = 0, and

〈Φ̂k1−k2(g)〉ph =
1√
N

∑
n

ei(k1−k2)nR〈Φ̂n(g)〉MSV S , (10)

where the average 〈Φ̂n(g)〉MSV S , as it turns out, does not depend on the site number n, i.e.

〈Φ̂n(g)〉MSV S = exp

{
− 1

N

∑
q

|fq|2(1− cos qgR)(cosh 2rq − sinh 2rq cos θq)

}
≡ e−WSV (g), (11)

so that
〈Φ̂k1−k2(g)〉ph = e−WSV (g) δk1,k2 . (12)

Here the function

WSV (g) =
1

N

∑
q

|fq|2(1− cos qgR)(cosh 2rq − sinh 2rq cos θq)

=
1

N

∑
q

|fq|2(1− cos qgR)
[
e−2rq cos2(θq/2) + e2rq sin2(θq/2)

]
(13)

is positive definite and might play a role of the vibron-band narrowing factor that is caused by the exciton
interaction with squeezed phonons.

Thus, the mean-field Hamiltonian (5) takes the form:

ˆ̃HMF =
∑
k

ESP(k)â†kâk, (14)
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with the energy of the small-polaron band state:

ESP(k) = ∆− 1

N

∑
q

[Fq(fq + f∗−q)− ~ωq|fq|2]− 2Jge
−WSV (g) cos(gkR). (15)

4. Degree of small-polaron dressing

The optimal polaron state should be determined by the minimization of the polaron ground-state energy (15),
namely

EGS = ESP (k = 0) = ∆− 1

N

∑
q

[
Fq(fq + f∗−q)− ~ωq|fq|2

]
− 2Jge

−WSV (g). (16)

Consequently, for the fixing of the variational parameter δ in the unitary transformation (2) the procedure of mini-
mization of the small-polaron ground state energy EGS is to be used, i.e. ∂EGS/∂δ = 0 provided ∂2EGS/∂δ

2 > 0.
Under the assumption that the vibron interacts with optical phonon modes, one can use the dispersionless ap-
proximation ωq = ωC and Fq = FC , so that fq = δ · F ∗C/(~ωC). Then it is convenient to introduce two
system dimensionless parameters, namely the adiabatic parameter B = 2|Jg|/(~ωC) and the coupling constant

S = EB/(~ωC) (where EB = (1/N)
∑
q

{|Fq|2/(~ωq)} = |FC |2/(~ωC) is the lattice deformation energy). These

parameters are very convenient for describing the polaron properties. The adiabatic parameter B determines the
character of the lattice deformation engaged in the polaron formation, while the coupling constant S (which was
originally introduced by Holstein) determines the polaron spatial size [7, 8] Thus the problem of minimization of
EGS reduces effectively to minimization of the function

E = −S(2− δ)δ −Be−δ
2WSV (S), (17)

where E is the polaron ground state energy normalized to the characteristic phonon energy ~ωC . The first therm
in Eq. (17) corresponds to the polaron binding energy, while the second one corresponds to the width of the
quasiparticle energy band. The vibron-band narrowing factor (13) in the case when rq = r and θq = θ takes the
form

WSV (S) = S(cosh 2r − sinh 2r cos θ) = S
[
e−2r cos2(θ/2) + e2r sin2(θ/2)

]
. (18)

It is worth noting that the vibron-band factor (18) for squeezed phonons is principally different from the analogous
factor for thermal phonons [12]. This is due to the fact that with an appropriate choice of squeezing phase, e.g.,
when θ = 0 and Eq. (18) has the form WSV (S) = S exp(−2r), for a fixed parameter S the narrowing factor can
be made arbitrarily small for large values of the strength of squeezing r, while the narrowing factor for thermal
phonons is limited by the value WT (S) = S at zero temperature. Thus, by choosing the phase and the strength
of squeezing of phonons in a proper way, it opens up new opportunities for control of the character of energy
transport through macromolecular chains.

5. Results

Here we consider the case of a quasi 1D macromolecular chain, so we take the parameter g equal to 1 that
corresponds to the interaction of the nearest neighboring structural elements of the chain. In our theoretical analysis
we considered the case when θ = 0 in order to explore the parameter region inaccessible to the case of thermal
phonons. For the strength of phonon squeezing we have chosen the following three values, namely r = 0.1, 0.2,
and 0.4, although recent experiments with crystals generate rather moderate degrees of squeezing of phonon states.
The results of minimization of Eq. (17) for various model parameters in terms of B, S, and the strength of phonon
squeezing r are plotted in Fig. 1 and Fig. 2.

In these figures, one can see that for various values of the model parameters there are two different regimes
of the dressed vibron nature. In the first regime, vibron dressing changes continuously with changing the model
parameters, while in the second regime it undergoes an interrupted transition for certain values of model parameters.
Additionally, we can see that the strength of phonon squeezing significantly influences these processes.

More precise details of vibron properties depending on the model parameters are given in Fig 2. Here one can
remark that in the non-adiabatic regime (i.e., for small values of B) vibron dressing increases continuously with
increasing strength of the exciton-phonon coupling S. In this regime an exciton is a strongly dressed quasiparticle,
even in the case of a weak exciton-phonon coupling regime. At the same time, the ground state energy of the vibron
decreases continuously with increasing S. This dependence is typical for standard non-adiabatic polarons (where
the process of the exciton dressing is quite adequately described by the standard Lang–Firsov approach [20]). With
an increase in B, the initial value of the dressing parameter decreases, but with increasing S it smoothly increases
and approaches its maximum value equal to unity (i.e., exciton becomes fully dressed by a phonon cloud). With
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FIG. 1. Dressing fraction δ as a function of the adiabatic parameter B and the coupling constant
S for various strengths of squeezing r (θ = 0)

FIG. 2. Dressing fraction δ (first row) and polaron ground-state energy EGS (second row) as
functions of the coupling constant S for various values of the adiabatic parameter B (indicated
on the curves) and the strengths of squeezing r (θ = 0)

a further increase in B, it reaches such a critical value BC for which δ becomes a discontinuous function of S
for the critical value SC and suffers interruption (such a behavior of the dressing fraction δ at the critical point is
represented by a dashed curve in the left plot of the first row of Fig. 2). At the same time, at the critical point EGS
ceases to be a smooth function of S and has a break (lower curve in the left plot of the second row of Fig. 2).
With a further increase in B, the excitation becomes slightly dressed and enters the adiabatic regime.
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On the other hand, the effect of increasing B can be moderated by an increase in the value of the parameter r.
As a consequence, with the help of increasing the strength of squeezing it is possible to influence the increase in
the system adiabaticity and to keep it in the model-parameter area, that is characteristic for non-adiabatic systems.

Figure 1 shows that there is a whole set of critical values of the model parameters (SC , BC) under which the
polaron crossover occurs. With such a crossover there appears a sharp change in the migration nature of a vibron
from the practically free to the heavy quasiparticle “dressed” by a phonon cloud. These critical values of the
adiabatic parameter BC and the coupling constant SC increase with increasing the strength of phonon squeezing.
It means that for high phonon squeezing the polaron crossover takes place in a very strong-coupling and adiabatic
regime.

6. Conclusion

We have studied propagation of a single vibronic intramolecular excitation along a 1D macromolecule under
the assumption that its vibrational state is described by a squeezed vacuum state. Using the partial dressing
method of the vibronic excitation due to its interaction with phonons, for various model parameters and the degree
of phonon squeezing we have demonstrated the existence of a polaron crossover, at which a sudden change in
the migration nature of a vibron from the practically free to the heavy quasiparticle dressed by a phonon cloud
occurs. Increasing the strength of phonon squeezing is shown to increase the crossover critical values of the model
parameters, so that for high phonon squeezing the polaron crossover takes place in the very strong-coupling and
adiabatic regime. With increasing the strength of squeezing, the crossover critical values of the adiabatic parameter
and the coupling constant were shown to increase, so that for high phonon squeezing the polaron crossover takes
place in the very strong-coupling and adiabatic regime.
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