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1. Introduction

Nanostructures having the form of chains of short-range potentials are widely used in nanotechnologies.
Berezin and Faddeev (see [1]) showed that the Hamiltonian with zero-range Fermi type potential is just an
extension of a suitable defined symmetric operator. Later, it has been shown by Pavlov [2], that the structure of the
standard point interaction models can be enriched substantially when the self-adjoint extensions are constructed in a
wider Hilbert space. This idea yields various models of zero-range interaction with an additional internal structure
(see, e.g., [3–5]). In papers [6,7] this method has been used to construct and investigate explicitly solvable models
of the scattering of the neutron on a point nucleus, whose internal structure depends on a stochastic magnetic field,
and of the scattering of acoustic waves on a stochastic point defect with an internal structure.

In the present paper, an exactly solvable model of the neutron scattering on the one-dimensional infinite chain
embedded into the three dimensional configuration space R3. We will suppose that the chain is inserted into the
stochastic magnetic field. The nuclei in the chain are assumed to be equivalent with the internal structure dependent
on the magnetic field. This model corresponds to the case, when the whole chain belongs to one magnetic domain.
In the absence of the stochasticity, such model was investigated by Albeverio, Gesztesy, Hoegh-Krohn, Holden [8],
Karpeshina [9], Subramanian [10], Kurasov and Pavlov [11]. It was shown that the spectrum of the related operator
is purely continuous and consists of two branches:

1) Scattered waves branch σs; corresponding eigenfunctions are defined by free waves reflected by the lattice.
This branch coincides with the spectrum of the free Laplacian −∆ in L2

(
R3
)

.
2) Waveguide branch σw; corresponding eigenfunctions are localized in a vicinity of the lattice. In the

discussing periodic case these functions are of the Bloch type.
It will be shown that the spectral properties of the problem with the stochastic filed are related to the properties

of the problems without any stochasticity.

2. Model operator

This section is devoted to the construction of the model operator describing scattering in the stochastic magnetic
field. Let L2

(
R3
)

be an external space and free Laplacian −∆ defined on W 2
2

(
R3
)

be an unperturbed operator,
simulating the Hamiltonian of the free neutron. Let Eint = ⊕ΣnEn be an orthogonal sum of unitary equivalent
finite-dimensional Hilbert spaces. We will restrict our consideration to the simplest case, En = C2, n ∈ Z. Let An
be selfadjoint operators in En which are mutually unitary equivalent. We will consider, as in the paper [6]:

An = A (H (τ)) ≡ diag {λ0, λ1}+ σ3H (τ) , H (τ) = ±ez, (1)

Where λ0, λ1 are the “levels” of the nucleus, σ3 =

(
q 0

0 −q

)
is Pauli matrix corresponding to the direction

of the stochastic magnetic field H (τ) parallel to the z-axis. Let Aint = ⊕ΣnAn then the nonperturbed operator
is defined as a direct sum L = (−∆) ⊕ Aint in the space L2

(
R3
)
⊕ Eint of the kinetic energy operator (−∆)
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and the “inner” operator Aint. The restriction −∆ ⇒ −∆0 on the linear set Dext
0 of all W 2

2 -smooth functions in
R3\ {xn}n∈Z which have the following asymptotic:

u(x) ∼
x→xn

un−

4π |x− xn|
+ un0 + o (1) , (2)

creates the boundary form:

Jext (u, v) = 〈−∆∗0u, v〉 − 〈u,−∆∗0v〉 = −
∑
n∈Z

(un vn0 − un0vn ). (3)

Here, xn = n−→e are the positions of nuclei of the lattice.
The restriction of the inner operator Aint → Aint0 to the linear set Dint

0 described in [2, 6] also leads to
nontrivial boundary form:

Jint (η, ξ) = −
∑
n∈Z

(
ηn−ξn0 − ηn0ξn−

)
, (4)

where η, ξ ∈ Eint. We consider here the infinite vectors {un−}, {un0}, {vn−}, {un0}, etc., to be elements
from `2. It is obvious that the restricted operators −∆0 and Aint0 have infinite deficiency indices (∞,∞). The
boundary form Jext (u, v)+Jint (η, ξ) vanishes on the Lagrange planes given by the translation-invariant boundary
conditions described in [11]:(

un−

ηn−

)
=
∑
m∈Z

Γn−m

(
un0

ηn0

)
, Γ−n = Γ∗n, |n| > N → Γn = 0;

or (
un−

−ηn0

)
=
∑
m∈Z

Bn−m

(
un0

ηn−

)
, B−n = B∗n, |n| > N → Bn = 0. (5)

Interaction between the nearest neighbors is introduced by these boundary conditions. We restrict our consideration

to the case N = 0, Γ0 =

(
0 α

α 0

)
:(

un−

ηn−

)
=

(
0 α

α 0

)
·

(
un0

ηn0

)
, =mα = 0. (6)

A self adjoint extension L
(−→
H (τ)

)
of the operator −∆0⊕Aint0 specified by the boundary conditions (6) simulates

the Hamiltonian of the “neutron-lattice” system. Since
−→
H =

−→
H (τ), this Hamiltonian is time-dependent. We

consider
−→
H (τ) to be a Markovian stochastic process with two stochastic states. The corresponding evolution

operator U (t), restricted to a fixed trajectory of the process
−→
H (t), is the solution of the Cauchy problem:

1

i
· ∂U
∂τ

= L
(−→
H (τ)

)
U, U |τ=0 = Iq ≡ Ie ⊕ Ii, (7)

where Ie and Ii are the identity operators in the external and internal spaces respectively.
Together with the stochastic evolution described by equation (7), we will consider the “deterministic” evolutions

corresponding to the Hamiltonians L (+H) and L (−H), in which the magnetic field is fixed in up-state
−→
H = H−→e z

or in the down state
−→
H = −H−→e z . On the intervals where

−→
H (τ) is constant, the evolution equation (7) can be

solved by the time-ordered exponentials corresponding to the operators L (+H) and L (−H) respectively. On each
trajectory of magnetic momentum, the evolution operator (7) is the T-product of the corresponding exponentials
(see [6]).

Starting with the equation for the transition probabilities whose resolvent matrix P represents a solution of the
following equation:

dP
dτ

= χ

(
−1 1

1 −1

)
P, P (0) =

(
1 0

0 1

)
, (8)

we introduce the measure on the space of trajectories according to the paper [6]. The probability of the beam of
trajectories which are in the states αs = ±H at the moments t = sδ, s = 0, 1, 2, . . . , n can be defined by the
following formula:

Pαn,αn−1,...,α1 =

n∏
s=1

{
exp

[
χ

(
−1 1

1 −1

)]
δ

}
αn,αn−1

.
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The averaged evolution operator can be calculated by the Trotter formula. By the same method as in [6] the
following theorem can be proven:

Theorem 1. The quantum evolution operator, averaged over the set of trajectories of magnetic field starting
in the stochastic state β at τ = 0 and ending in the stochastic state α at τ = T coincides with the element
Uαβ (T ) of the operator matrix, which satisfies the differential equation

1

i
· ∂
∂τ
U = L̂χU, U |t=0 =

(
Iq 0

0 Iq

)
. (9)

Here, the generator L̂χ of the averaged semigroup U (τ) is given by the following expression:

L̂χ =

(
L(+H) 0

0 L(−H)

)
+ iχ

(
Iq 0

0 Iq

)
. (10)

It acts in the quantum-stochastic space L̂χ =
[
L2

(
R3 ⊕ Eint

)]
⊗R2 which is the tensor product of the quantum

space Hq = L2

(
R3
)
⊕ Eint by the stochastic space R2, H = Hq ⊕Hq .

3. Spectral analysis of the averaged operator

We will consider the perturbed L̂χ and the unperturbed operator L̂0
χ together. The unperturbed operator

corresponds to the case when the quantum operator can be presented as the orthogonal sum of the operators in the
external and internal spaces. It corresponds to the coupling constant α equal to zero. The external and internal
parts of the unperturbed operator are:

−∆̂ =

(
−∆ 0

0 −∆

)
+ iχ

(
Iq −Iq
−Iq Iq

)

Âint =

(
Auint 0

0 Adint

)
+ iχ

(
Ii −Ii
−Ii Ii

)
, (11)

where Au,dint = ⊕
∑
n
Au,d; Au = A (+H), Ad = A (−H).

The unperturbed operator L̂0
χ = −∆̂⊕Âint is normal and its spectral characteristics can be calculated explicitly.

For example, the spectrum of this operator is the sum of the spectrum of the operator −∆̂ (whose spectrum is
purely continuous and consists of the two branches: λ = k2 and λ = k2 + 2ıχ, =mk = 0) and the spectrum of the
operator Âint, which consists of four eigenvalues of infinite multiplicity:

λ1,2

(
Âint

)
= λ0 + iχ±

√
H2 − χ2

λ3,4

(
Âint

)
= λ1 + iχ±

√
H2 − χ2. (12)

Calculating the resolvent of operator L̂χ one can obtain, that the spectrum of L̂χ is purely continuous and
consists of the following branches:

1) R+ and R+ + 2iχ, which coincide with the spectrum of the operator L̂0
χ

2) four branches, or bands, each corresponding to one of the eigenvalues of operator L̂0
χ. These branches can

be calculated by solving the following equations:

λ− λn
(
L̂0
χ

)
= ± α2

i

32π

Fn(λ, t)√
h2 − χ2

+ o(α2). (13)

This formula is valid for the small values of the coupling constant α only. Sign “-” in the rhs of (13)
corresponds to n = 1, 3, “+ ” to n = 2, 4. Function Fn (λ, t) defined by the following expression:

Fn (λ, t) = (B+
nB
−
n )−1

{
B+
n

(
C−n ∆n

u + iχnu
)

+B−n
(
C+
n ∆n

d + iχnd
)}
, (14)

∆n
u,d = R+ (λ)D±nB

∓
n − iχR− (λ)B±n A

∓
n , n = 0, 1; (15)

∇nu,d = R− (λ)D∓nB
±
n − iχR+ (λ)B∓n A

±
n , n = 0, 1;

R± (λ) = B̂
(√

λ, t
)
± B̂

(√
λ− 2iχ, t

)
, (16)

where A±n , B
±
n , D

±
n are defined as in [6]:

A±0 = λ0 ±H, A±1 = λ1 ∓H,
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B±n = A±n − i, D±n = (iχ− λ)A±n − i.
Parameter t in the formulas (13), (14), (16) is the quasimomentum and it belongs to the interval [−π, π]. The
function B̂(

√
λ, t) is the lattice sum for the linear infinite chain:

B̂
(√

λ, t
)

= ik +
∑
n∈Z

exp
(
i
√
λ|n|

)
4π|n|

exp(−itn) = ln

(
1

2(cos
√
−(λ0 +H0)− cos t)

)
, (17)

which was calculated first by Subramanian [10]. The branch of the logarithm is fixed by the condition of analytical

continuability of B̂
(√

λ, t
)

into the complex spectral plane λ and vanishing of the imaginary part of the logarithm

on the negative semi-axis. The properties of the function B̂
(√

λ, t
)

were described in [11].

Analysis of the equation (13) can be carried out for the small values of the coupling constant a� 1 and of the
stochastic evolution parameter χ � 1. In this case the resonant bands correspond to the negative eigenvalues of

the operators Au =

(
λ0 +H 0

0 λ1 −H

)
and Ad =

(
λ0 −H 0

0 λ1 +H

)
. For example, let λ0 be negative.

Then the corresponding eigenvalue of the operator L̂0
χ is given by the following asymptotic expression:

λ1

(
L̂0
χ

)
λ0 +H + iχ+ o (χ) , (18)

and corresponding band by the expression:

λ1 (t) = λ1

(
L̂0
χ

)
− α2i

8π
H
[
(λ0 +H)

2
+ 1
]

ln
1

2
(

cos
√
−(λ0 +H)− cos t

) + o(α2, χ), (19)

where ln is defined as a function of the real variable. The right edge of the band coincides with λ (π) and the

left one with λ (0). The function B̂
(√

λ, t
)

is an even function of the variable t, hence the multiplicity of the

spectrum is two (see Fig. 1).

FIG. 1. Spectral band formed by the negative eigenvalue. The right edge of the band coincides
with λ1 (π) and the left one with λ1 (0), where the argument t of the function λ1 (t) is the
quasimomentum (see formula (19) describing the band)

The structure of the band spectrum corresponding to the positive eigenvalues of the operators Au, Ad is more
complicated. Analysis of the equation (13) shows that the bands corresponding to each positive eigenvalue of L̂0

χ

have a gap (see Fig. 2). Let, for example,
√
λ0 +H be from the interval [0, π]. Then, the band has a gap near

λ1

(
L̂0
χ

)
. The second band of solutions of the equation (13) is situated exactly under this band, but it does not

correspond to the spectrum of the operator. The first band transforms into the stationary (waveguide) band with
the gap near λ0 +H when the parameter χ tends to zero. The second band transforms into the resonant gap (see
Fig. 2 – Spectral band formed by the positive eigenvalue). The first band corresponds to the values of λ, that are
less than |t|2, the second - to λ : |λ| > |t|2. When

√
λ0 +H is greater than π, no stationary band appears.

Thus, the spectrum of the operator L̂χ consists of two scattered waves branches R+ and R+ + 2iχ and not
more than four stationary bands (see Fig. 3). The Bloch waves corresponding to the resonant bands are increasing
at infinity functions and are not eigenfunctions of the operator. We are going to prove that the generator L̂χ is a
dissipative operator with complex branches of the continuous spectrum. The corresponding eigenfunctions can be
calculated (see the following papers [6, 11]). The eigenfunctions corresponding to the branches R+ and R+ + 2iχ
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FIG. 2. Spectral band formed by the positive eigenvalue. Analysis of the equation (13) shows
that when

√
λ0 +H is from the interval [0, π], this band have a gap. When

√
λ0 +H is greater

than π, no stationary band appears

FIG. 3. Spectrum of the averaged operator. It consists of two branches R+ and R+ + 2iχ,
eigenfunctions corresponding to which have a form of scattered waves, and not more than four
stationary bands

have a form of scattered waves. The initial plane wave is symmetric with respect to the stochastic variables for
the branch R+ (or stable branch) of the spectrum:

Ψs (λ,ν) =

{
ψexts (x, λ,ν)

ψints (λ, nu)
, λ = k2, k ≥ 0, ν ∈ S2, (20)

ψexts (x, λ,ν) = exp
{
−i
√
λ 〈ν,x〉

}
·

(
1

1

)
+

f00 (λ,ν)
∑
n∈Z

exp (ik |x− xn|)
4π |x− xn|
·

(
1

1

)
+

+ f10 (λ,ν)
∑
n∈Z

exp
(
i
√
λ− 2iχ |x− xn|

)
4π |x− xn|

·

(
1

−1

)]
exp

(
−i
√
λ 〈ν,xn〉

)
, (21)

(
ψints (λ,ν)

)
n

=

(
η0
u

η0
d

)
(λ,ν) exp

(
−i
√
λ 〈ν,xn〉

)
, xn = ne.

The initial plane wave corresponding to the relaxation branch R+ + 2iχ is antisymmetric with respect to the
stochastic variables:

Ψas (λ,ν) =

{
ψextas (x, λ,ν)

ψintas (λ, nu)
, λ = k2 + 2iχ, k ≥ 0, ν ∈ S2, (22)

ψextas (x, λ,ν) = exp
{
−ı
√
λ− 2iχ 〈ν,x〉

}
·

(
1

−1

)
+

[
f01 (λ,ν)

∑
n∈Z

exp (ik |x− xn|)
4π |x− xn|

·

(
1

1

)
+
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f11 (λ,ν)
∑
n∈Z

exp
(
i
√
λ− 2iχ |x− xn|

)
4π |x− xn|

·

(
1

−1

)]
exp

(
−i
√
λ− 2iχ 〈ν,xn〉

)
, (23)

(
ψintas (λ,ν)

)
n

=

(
η0
u

η0
d

)
(λ,ν) exp

(
−i
√
λ− 2iχ 〈ν,xn〉

)
, xn = ne.

One can see, that the functions ψexts , ψextas satisfy Bloch conditions. For example:

ψexts (x +mẽ, λ,ν) = ψexts (x, λ, nu) · exp
(
−i
√
λ〈ν,m~e〉

)
, m ∈ Z (24)

Explicit expressions for the amplitudes fmn (λ,ν) in (21), (23) can be calculated by substitution of the considering
ansatz (21), (23) for the scattered waves into the boundary conditions (6). For example, the amplitude f00 (λ,ν)
is:

f00 (λ,ν) =
α2

4

1∑
n,m=0

(λn − (−1)n+mH − λ) (λn + (−1)n+mH − i) + 2ıχ (λn − i)

[(λn − i)2 −H2]
[
(λn + iχ− λ)2 −

(
H2 − χ2 − Fk

(√
λ, k‖

))]Zmn + o
(
α2
)
, (25)

where the following notations were used:

k‖ = k 〈ν, e〉 ; k =
√
λ; Z0

m = Z+
m, Z

1
m = Z−m; Z±m = iχB±mA

±
m −D±mB±m (26)

The eigenfunctions corresponding to the stationary band can be calculated in the same way

Ψj (t) =

{
ψ extj (x, t)

ψ intj (t)
. (27)

Let us denote by λj (t) the corresponding solution of the equation (13). Then the components of the eigenfunction
are:

ψextj (x, t) =
1

2

∑
n∈Z

C0

exp
(
i ·
√
λj (t) |x− xn|

)
4π |x− xn|

(
1

1

)
+

+Cχ
exp

(
i ·
√
λj (t)− 2iχ |x− xn|

)
4π |x− xn|

(
1

−1

) · exp (−int) ,

ψintj (t) =

(
η0
u

η0
d

)
(j, t) exp (−int) , (28)

where the following notations were used:

C0,χ = const ·α
(
C−mB

+
m ± iχB−m

)
+ o

(
α2
)

;

m = 0 for j = 1, 2 and m = 1 for j = 3, 4;

C±m (λj (t)) = A±m + iχ− λj (t) . (29)

4. Eigenfunction-expansion theorem

We will restrict our consideration to the case of the initial data with the trivial “internal” component, i.e. we
will consider functions:

f̂

(
fu ξu
fd ξd

)
, ξu = ξd = 0. (30)

The external part of the function can be defined as follows:

[f̂ ]ext(x) =

(
fu
fd

)
(x) ≡ f(x), fu, fd ∈ L2(R3). (31)

The following assertion can be proven:
Theorem 2. Let the vector f̂ from the quantum-stochastic space H has the form (30), then the following

representation holds almost everywhere in the Lebesque measure sense:

f (x) =

4∑
j=1

Ki

∫
∆j

dt

∫
R3

dyψextj (x, t)φextj (y, t)f (y) +
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+
1

16π3

∫
R+

k2dk

∫
S2

dν

∫
R3

dy
{
ψexts (x, k,ν)φexts (y, t) + ψextas (x, k,ν)φextas (y, t)

}
f (y) . (32)

Vector-valued functions φi (y, t), φs,as (y, k,ν) are externals parts of the eigenfunctions of the adjoint operator
L̂∗χ corresponding to the stationary bands and branches of the continuous spectrum R+ and R+ +2iχ respectively.
The intervals ∆j = [−αj ,−βj ] ∪ [βj , αj ] are introduced in such a way, that the spectral parameter λj (t) covers
the stationary band twice, when the quasimomentum varies on the interval ∆j .

This theorem can be proved by integrating by parts the bilinear form of the resolvent of the operator L̂χ
around the spectrum. This theorem allows us to calculate the averaged evolution operator U , which will be used
to derive the scattering operator: [

U(τ)f̂
]ext

(x) =
[
exp iL̂χτ f̂

ext
]

(x) =

4∑
j=1

Kj

∫
∆j

dt · exp (iλj (t) τ)

∫
R3

dy · ψextj (x, t)φextj (y, t)f (y) +

+
1

16π3

∫
R+

exp
(
ik2τ

)
k2dk

∫
S2

dν

∫
R3

dy · ψexts (x, k,ν)φexts (y, t)f (y) +

+
1

16π3

∫
R+

exp
(
i
(
k2 + 2iχ

)
τ
)
k2dk

∫
S2

dν

∫
R3

dy · ψextas (x, k,ν)φextas (y, t)f (y) . (33)

5. Scattering operator

The averaging of the quantum evolution leads to the evolution operator semigroup with the generator L̂χ:

U(τ) = exp
(
iL̂χτ

)
, τ > 0,

which acts in the quantum-stochastic space H . Formula (33) shows that the contribution of the nonreal part of
the spectrum tends to zero for large τ → ∞. As a result, only the real branch of spectrum R+ contributes to
the scattering process. We will define the unperturbed operator for the scattering problem as the restriction of the
operator −∆̂ to the stable invariant subspace corresponding to the real branch of the continuous spectrum R+. The
corresponding operator will be denoted by L̂0. It is unitarily equivalent to the nonperturbed Laplacian defined on
the domain W 2

2

(
R3
)
. The identification operator J = J0 is the projector on the set Hs of the functions which

are symmetric with respect to the stochastic variables. In this way we eliminate the relaxation branch and the
scattering matrix can be defined as follows:

Sχ(α, L̂0) = s− lim
τ→∞

exp
(
−iL̂0τ

)
J0 exp

(
2iL̂χτ

)
J∗0 exp

(
−iL̂0τ

)
. (34)

Using the unitary operator Σ : Hs → L2

(
R3
)
:

Σ : f̂ =

(
f

f

)
→ 1

2
(f + f) = f,

the averaged scattering operator from L2

(
R3
)

to L2

(
R3
)

can be written in the following form:

Sχ(α) = s− lim
τ→∞

exp (i∆τ)ΣJ0U(2τ)J∗0 Σ∗ exp (i∆τ). (35)

Then the averaged scattering matrix can be calculated:

Sχ (p,p′) = δ (p− p′)− 1

4π2
δ
(
p2 − (p′)2

)
· f00

(
|p|,− p

|p|

)∑
n∈Z

δ (2πn+ 〈p− p′, e〉) , (36)

Thus the scattering amplitude f (ω,ν, k) has the following form:

f (ω,ν, k) = −f00 (k,ν) ·
∑
n∈Z

δ (2πn+ k〈ν + ω, e〉), (37)

where f00 (k,ν) depends on the direction of the initial plane wave trough the projection of the vector kν on the
lattice vector ẽ:

k‖ = k 〈ν, e〉 .
The scattering amplitude has Laue singularities.
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It is important to discuss the limit of the scattering amplitude when the stochastic parameter tends to zero.
We will denote by f± (ω,ν, k) the scattering amplitudes corresponding to the operators with the fixed stochastic
states: L (+H) and L (−H) . Then the following formula can be derived:

lim
χ→0

f (ω,ν, k) =
1

2

[
f+ (ω,ν, k) + f− (ω,ν, k)

]
. (38)

This formula shows that the limit amplitude is equal to the arithmetic average of the amplitudes corresponding to
the deterministic processes.
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