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We study the properties of coupled periodic dielectric nanowaveguides and reveal that finite arrays of equally spaced waveguides with certain

parameters support edge modes, which originate due to the presence of the long-range interactions between the waveguides. We provide a

simple model of the coupled waveguides with next-to-nearest neighbors interaction that captures the main properties of the considered system

including the formation of the edge states. The predicted results suggest that the arrays of periodic dielectric nanowaveguides may serve as a

fruitful system for studying the discrete coupled systems with long-range interaction and realizing optical metasurfaces with novel functionalities

for guiding surface waves.
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1. Introduction

Recently, arrays of coupled dielectric and plasmonic waveguides have been studied in a vast amount of
theoretical and experimental works and have been proven to serve as a very convenient platform to study various
optical effects such as discrete diffraction [1], observation of topologically protected photonic edge states [2–4]
and formation of optical solitons [5, 6]. The properties of the waveguide arrays usually can be determined very
accurately within the tight-binding approximation, which allows one to employ such discrete systems for emulation
and direct observation of optical analogues of many effects from solid state physics such as Bloch oscillations [7–9],
Zener tunneling [10, 11], Anderson localization [12–14] etc [15].

The flexibility of the waveguide arrays in terms of their modulation in transverse or longitudinal direction pro-
vides additional versatility to these systems [16]. Such modulation, typically achieved by bending the waveguides
or by changing the refractive index in the direction of the waveguide axis changes their propagation constants
or interaction constants between the waveguides and leads to such phenomena as dynamic localization and sub-
diffractive propagation of light [16]. The extreme case of longitudinal refractive index modulation corresponds to
the formation of a periodic waveguide that consists of separate parts [17–19]. Such waveguides, composed of indi-
vidual dielectric nanoparticles with high refractive index, such as silicon, were proposed and theoretically studied
few years ago and experimentally realized only recently [20]. The dispersion properties of such nanowaveguides
are mostly determined by the optical response of their constituent elements, i.e. dielectric nanoparticles. Extensive
studies in this field in the last several years have provided multiple experimental observations of the efficient
geometrical tuning of the high-index dielectric nanoparticles [21], which consequently suggests a wide potential in
controlling the properties of the nanoparticle waveguides [22].

The presence of the periodicity in a waveguide might bring additional features in the properties of the coupled
waveguides system due to several reasons. First, the electromagnetic fields in the nanoparticle waveguides become
highly confined, and, therefore, their vectorial nature has to be taken into account. Second, as compared to an
array of homogeneous waveguides, where the only parameter is the distance between the waveguides, periodic
waveguides can also be shifted relative to each other along their axis. Such a shift results in the formation of a
different system with potentially different properties similar to the modulated optical lattices.

In a conventional scenario, the edge modes in coupled discrete systems appear as a result of a perturbation
at the boundary of the structure or propagation constant shift in nonlinear regime [23]. However, in systems with
complex geometry surface states can exist even without any perturbation. For instance, in an array of curved
waveguides, the surface states can appear due to transverse modulation of the waveguides axes, which induces
“virtual” perturbation at the boundary of the array [24]. Here, we show that an array of equally spaced alternating
nanoparticle waveguides of two types, as schematically shown in Fig. 1, may possess nontrivial eigenmode
structure. In particular, we demonstrate that the specially designed array of nanocylinder chains shifted relative
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to each other by half of the period possesses a gap in the spectrum of the eigenstates, which is accompanied by
the formation of the edge states in the finite size array, despite the absence of any edge perturbation. We show
that the presence of the spectral gap cannot be understood within the conventional tight-binding approximation and
requires taking into account at least the next-to-nearest neighbor’s interaction.

2. Polarization properties of individual nanoparticle waveguides

As a first step, we consider the polarization properties of the eigenmodes of the individual nanoparticle
waveguides. Dispersion properties of such waveguides are discussed in details, e.g. in the Ref. [19]. Here, in
Figs. 2(a,b) we show the schematic representation of the magnetic field polarization that can be understood within
the framework of the dipole model. In this approximation all particles are modelled as point magnetic dipoles [19],
with their instantaneous directions indicated by the arrows inside the circles at points “O”. Such approximation
can be justified for particles that possess only magnetic dipole resonant response, which is often the case, e.g.
for silicon nanoparticles with typical linear size ≈ 100-300 nm in visible and near infrared frequency range [25].
Although, the resonant frequencies of high-index dielectric nanoparticles depend on their shapes and in some
specific cases high-order multipoles should be taken into account [26], there is a wide range of parameters when
the frequency of the fundamental magnetic dipole resonance is well separated from the higher-order ones, which
in turn can be neglected. For instance, such approximation can be considered as relatively accurate even in the
simplest case of spherical particles. In the dipole model two modes polarized in x− y plane can be distinguished:
x-polarized mode corresponds to the oscillation of magnetic dipoles along the waveguide axis and y-polarized
mode correspond to the transverse oscillations of the dipoles. In what follows, we consider the waveguide modes
close to the edge of the Brillouin zone, i.e. with Bloch wavenumber in x direction close to βx = π. In this case
the fields in neighbor particles (or the neighboring dipoles) oscillate out-of-phase.

If we want to establish the polarization of the magnetic field at the points “B” or “B′”, which are shifted along
the y axis from the center of the particle (point “O”), we need to add the contributions from all dipoles in the chain.
In general, all dipoles except the nearest one numbered as j = 0 induce both x and y components of the magnetic
field at the points “B” and “B′”. However, the contributions of the y (x) component from the pair of dipoles with
number +j and −j cancel each other in the case of x-polarized (y-polarized) eigenmodes, respectively, because
they oscillate in phase. Therefore, at these points magnetic field of the x-polarized (y) mode oscillates in x (y)
direction. To estimate the phase of the magnetic field we recall that the full field produced by a dipole is given by
the dyadic Green’s function [27]. Since it decreases with the distance, in the zeroth approximation we can assume

FIG. 1. A scheme of the array of periodic waveguides composed of dielectric nanoparticles with
every other waveguide shifted in x direction by ax/2. The distance between the waveguides
is ay . Waveguides denoted by “X” (“Y”) are composed of dielectric cylinders with radius RX
(RY ) and height H (dimension along z direction) placed with the period ax. Polarization of the
waveguide modes are determined by the magnetic field in the center of the cylinders. In the
waveguides “X” (“Y”) eigenmodes are polarized in x (y) direction, which is indicated by the red
arrows
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FIG. 2. (a,b) Schemes of the polarization of x- and y-polarized modes, respectively. Red arrows
indicate the direction of magnetic field. (c,d) Instantaneous Hx and (e,f) Hy components of the
magnetic field distribution in chains of cylinders with (c,e) radius RX that exhibit x-polarized
mode, and (d,f) radius RY that exhibit y-polarized mode. Parameters of the waveguides are given
in the text

that the largest contribution to the total field comes only from the nearest dipole. Further, we take into account
only the near-field part of Green’s function, which is ∝ 2/r3 in the case of x polarization and ∝ −1/r3 in the
case of y polarization. This provides a qualitative explanation of why there is a zero phase difference between the
magnetic field at points “B”,“B′” and the dipole oscillations (indicated by the arrow at point “O”) in Fig. 2(b),
while for x-polarized mode in Fig. 2(a) the corresponding phase difference is equal to π.

The direction of the fields at points “A”, “A′” and “C”, “C′” can be analyzed in the same way. Now, the x (y)
component is cancelled for the x (y) polarized mode. For instance, at the point “A” in Fig. 2(a) the x component
is cancelled because the dipole with numbers j and −j + 1 (e.g. 0 and 1) oscillate out-of-phase. Due to electric
mirror symmetry with respect to x − z plane we can immediately say that in Fig. 2(a) the field at the point “A′”
(“C′”) should by oriented opposite to that at the point “A” (“C”). The same consideration applies to the y-polarized
mode in Fig. 2(b) due to magnetic mirror symmetry.

To prove that this analysis is relevant to realistic systems, in Figs. 2(c-f) we show the numerically calculated
magnetic field distribution of the eigenmodes of the chain of dielectric cylinders that correspond to Figs. 2(a,b).
In Figs. 2(c,e) we show the field distribution in the chain of cylinders (one unit cell) with radius RX = 135 nm
and height H = 240 nm (dimension along z direction) made from dielectric with permittivity ε = 13 and placed
with the period ax = 380 nm. The individual chain of such particles possesses x-polarized mode at the frequency
ω0 ≈ 2π ·290 rad/s with wavenumber βx = π. Cylinders in Figs. 2(d,f) have slightly smaller radius RY = 120 nm,
so the chain of such cylinders supports y-polarized at approximately the same frequency ω0. We observe that the
dipole model provides us with an adequate picture of the modes polarization for realistic parameters.

The conducted analysis and numerical calculations provide an intuitive picture of the coupling between the
neighboring chains of nanoparticles. When there is no shift between the waveguides along x direction, there is an
interaction only between the waveguides of the same type, i.e. that support eigenmodes with the same polarization.
When there is a non-zero shift, both x and y polarized waveguide modes can couple to each other, provided
they have close eigenfrequencies. In the special case, when the waveguides are shifted by half of the period, the
polarization in the points of the interest is rotated by π/2 in the x − y plane, as compared to the direction of
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oscillation of the field in the centers of particles. Therefore, there is an interaction only between the waveguide
modes with different polarization.

3. Couple mode theory for nanoparticle waveguides

From the analysis of the polarization properties of the individual nanoparticle waveguide eigenmodes we can
develop a simple model for the eigenmodes of the coupled array of the nanoparticle waveguides. If we assume
that the waveguides are coupled only to their nearest neighbors, the system of equation appears as follows:{

(ω0 − ω)Y + (J1 + J2e
−iβy )X = 0,

(ω0 − ω)X + (J1 + J2e
iβy )Y = 0,

(1)

where ω0 is the frequency of the eigenmodes of individual chains, ω is the frequency of the eigenmodes of the
array of coupled waveguides, βy is the Bloch wavenumber along the y axis, and coupling constants J1 and J2 are
assumed to be real-valued, since there is no phase delay between the field at points “O” and “A”,“C” in Figs. 2(a,b).
In general, the system (1) is the celebrated SSH model [28, 29], which is known to possess two bands separated
by the bandgap when the coupling constants J1 and J2 are different. In this work, we restrict ourselves with the
case when the distance between the waveguides is the same. As a consequence the coupling constants J1, J2 have
the same magnitude and only differ in sign. Therefore, from the simple tight-binding model one cannot expect the
formation of the gap in the spectrum of the array of equally spaced waveguides.

However, it is known that at the points close to the edge of the Brillouin zone, where the group velocity is
small, coupling not only to the nearest neighbors might become substantial [30]. To estimate the effect caused by
the long-range interaction we consider the model that takes into account also the coupling between next-to-nearest
neighbors. Since the analysis of the eigenmodes polarization in Figs. 2(a,b) is valid for arbitrary x coordinates of
the points “A-C”, we can expect that the waveguides X (Y) will couple not only to the nearest neighbor waveguides
Y (X) but also to next-to-nearest neighbor waveguides X (Y) with a certain coupling constant JX (JY ). Due to
difference in the phase shift between the points “O” and “B” for different polarizations (see previous section)
we expect coupling constants JX and JY to have different signs. The values of JX and JY in realistic systems
may differ substantially from those expected from Figs. 2(c,f) mainly because we are interersted in fields at larger
distances in y direction. However, as we will see further, the main feature, which is the non-zero difference
|JX − JY |, remains unaffected.

The model that includes the interaction between the next-to-nearest neighbors appears as follows [31]:{
(ω0 − ω + 2JX cosβy)X + (J1 + J2e

iβy )Y = 0,

(ω0 − ω + 2JY cosβy)Y + (J1 + J2e
−iβy )X = 0.

(2)

Solution of the system (2) given the dispersion ω(βy):

ω = ω0 + (JX + JY ) cosβy±√
(JX − JY )2 cos2 βy + J2

1 + J2
2 + 2J1J2 cosβy.

(3)

Now, even when |J1| = |J2| and there is no gap in the nearest neighbor approximation, the long-range interaction
indeed induces the gap for non-equal constants JX and JY . For βy = 0 the spectral gap is given by ∆ωc =

2
√

(JX − JY )2 + (J1 + J2)2, and for βy = π: ∆ωe = 2
√

(JX − JY )2 + (J1 − J2)2. From that we can deduce
that the system is gapped whenever the difference |JX−JY | is non-zero, which is exactly the case for the considered
system. In a particular case when J1 = −J2 = J we have ∆ωc = 2|JX − JY | and ∆ωe = 2

√
(JX − JY )2 + 4J2.

As an example, in Fig. 3(a) we plot the dispersion for the two cases: JX = JY = 0 (solid black curves) and
JX = −JY = 0.4 (dashed blue curves); other parameters are following: ω0 = 0, J1 = −J2 = 1. We observe that
the long-range interaction between the waveguides induces the gap in the eigenmodes spectrum.

It can be shown, that along with the existence of the gap in the infinite system for non-zero values of |JX−JY |,
in the finite size system one can also expect the formation of the edge states. The frequencies of these states ωe1
and ωe2 for the termination at “Y” or “X” site, respectively, can be estimated analytically as follows:

ωe1 ≈ ω0 + 2JY [1− J2
Y /(J

2 + J2
Y − JXJY )],

ωe2 ≈ ω0 + 2JX [1− J2
X/(J

2 + J2
X − JXJY )].

(4)



720 R. S. Savelev

FIG. 3. (a) Spectrum of the eigenmodes calculated with equation (3) for the following parameters:
ω0 = 0, J1 = −J2 = 1, JX = JY = 0 (dashed blue curves), JX = −JY = 0.4 (solid black
curves). (b) Eigenfrequencies of the finite size array consisting of 50 coupled chains for the
parameters corresponding to solid black curves in (a). (c-d) Amplitudes of the edge modes
marked in (b) as a function of the number of site; blue dots correspond to the amplitudes in
sublattice X and black dots — in sublattice Y

The amplitudes in two sublattices are related as X/Y = JX/J for the “X” edge termination and X/Y = JY /J
for “Y” edge termination. Further, since ratios |JX,Y /J | are assumed to be small we may simplify (4) as follows:

ωe1 − ω0 = 2JX(1− J2
X/J

2),

ωe2 − ω0 = 2JY (1− J2
Y /J

2).
(5)

To verify our estimations, in Fig. 3(b) we plot the spectrum of the finite system consisted of the 20 unit cells
(started with “A” on the right edge) for the same parameters as in Fig. 3(a) and JX = −JY = 0.4. We can observe
that the finite array possesses two edge states symmetric with respect to ω0 (due to equality of the magnitudes of
JX and JY ) with the localization length that is determined by the proximity of the corresponding frequency to the
central frequency ω0. The profiles of these states, shown in Fig. 3(c,d), also confirm the predicted ratios between
the amplitude on the two sites within the unit cell.

4. Results of numerical simulation of realistic systems

Next, we study whether the long-range interaction is relevant in realistic systems. For that, we perform full-
wave numerical simulations of the array of the cylinders with z-oriented axis in CST Microwave Studio software,
which numerically solves Maxwell’s equations for given geometrical and material parameters of the structure and
boundary conditions. The parameters of the system were the same as in calculations in Fig. 2: for the sublattice
X — RX = 135 nm, for the sublattice Y — RY = 120 nm; height H = 240 nm, ax = 380 nm, ay = 450 nm.

First, we calculate the spectrum of eigenmodes of the array infinite in both x and y directions. In this case
periodic boundary conditions were employed in x and y directions, while in z direction the electric walls were
placed at the distance ≈ λ/2 from the array. Although, the system is not open in z direction, this almost does not
affect the modes that are localized near the array, due to exponential decay of the fields along z. Wavenumber in x
direction is fixed as βx = π. In Fig. 4 we plot the eigenfrequency as a function of the wavenumber in y direction
βy . These calculations qualitatively agree with those predicted in the next-to-nearest neighbors approximation:



Edge states in coupled periodic dielectric waveguides 721

FIG. 4. Spectrum of the numerically calculated eigenmodes of an array of cylinders infinite in
both x and y directions (solid blue curves) and infinite in x direction and finite (12 periods) in y
direction (black and red dots). Wavenumber in x direction is fixed as βx = π. Red dots indicate
the edge modes that fall in the gap region between the two bands (shaded gray areas)

there is a gap between two branches, and the difference between the frequencies of upper and lower branches is
increasing when βy changes from 0 to π. We conclude that such system indeed can be described by taking into
account at least next-to-nearest neighbor interaction, and therefore the finite size array should possess localized
edge states.

To verify the existence of the edge states, we calculate the eigenmodes of the system in the strip geometry.
More precisely, the system is infinite in x direction with fixed βx = π and has N periods in y direction (see
Fig. 1). Eigenfrequencies of the system with N = 12 are shown in Fig. 5 with black and red dots. Black dots
indicate the volume modes and are contained within the bands of the infinite structure, while red dots indicate the
edge modes that fall within the gap. Note that the edge mode with higher frequency lies very close to the allowed
band. This indicates that one of the interaction constants JX or JY (in this case it is JX ) is in fact close to zero.

The magnetic field distribution of the edge modes within one unit cell in x direction are shown in Figs. 5(a,b).
The x component of magnetic field at the centers of X cylinders and y component of magnetic field at the centers
of Y cylinders are shown in Fig. 5(c) with blue, magenta and black, red curves, respectively. We observe, that the
localization strength and the ratio of the amplitudes in two sublattices is in well agreement with the predictions
made in the previous section. Note that since the polarization of both sublattices is parallel to the plane of the
array, the potential substrate inevitable in experiments would affect the properties of each chain in approximately
the same way. Therefore, only slight adjustment of the geometrical parameters of the system would be necessary
in the case when a substrate is present.

5. Summary

In summary, we have studied the properties of an array of coupled nanoparticle waveguides. We have shown
that such structures may possess a spectral gap, the presence of which can be explained only by taking into account
long range interaction between the waveguides. The appearance of the gap is accompanied by the formation of the
defect-free edge modes in the finite size array. Our findings reveal the rich potential of the arrays of nanoparticle
waveguides in realization of optical metasurfaces for guiding surface waves with complex functionalities and
studying discrete systems beyond the tight-binding approximation.



722 R. S. Savelev

FIG. 5. (a,b) Magnetic field distribution |H| of the two modes marked with red circles in Fig. 4
in the plane z = 0 in logarithmic scale. The structure is periodic in x direction; one unit cell
is shown. (c) Amplitude of the y component (black and red curves) and x component (blue
and magenta curves) of the magnetic field in the center of each cylinder; black and blue dots
correspond to the edge mode in (a), red and magenta – in (b).

Acknowledgements

This work was supported by the Russian Foundation for Basic Research, according to the research project
No. 16-37-60092 mol a dk, and the Grant from the President of the Russian Federation (MK-381.2017.2).

References

[1] Christodoulides D., Lederer F., Silberberg Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature, 2003, 424,
P. 817–823.

[2] Malkova N., Hromada I., Wang X., Bryant G., Chen Z. Transition between Tamm-like and Shockleylike surface states in optically induced
photonic superlattices. Phys. Rev. A., 2009, 80, P. 043806.

[3] Blanco-Redondo A., Andonegui I., Collins M.J., Harari G., Lumer Y., Rechtsman M.C., Eggleton B.J., Segev M. Topological Optical
Waveguiding in Silicon and the Transition between Topological and Trivial Defect States. Phys. Rev. Lett. 2016, 116, P. 163901.

[4] Kraus Y.E., Lahini Y., Ringel Z., Verbin M., Zilberberg O. Topological States and Adiabatic Pumping in Quasicrystals. Phys. Rev. Lett.,
2012, 109, P. 106402.

[5] Sukhorukov A.A., Kivshar Y.S., Eisenberg H.S., Silberberg Y. Spatial optical solitons in waveguide arrays. IEEE Journal of Quantum
Electronics, 2003, 39, P. 31–50.

[6] Fleischer J.W., Bartal G., Cohen O., Schwartz T., Manela O., Freedman B., Segev M., Buljan H., Efremidis N.K. Spatial photonics in
nonlinear waveguide arrays. Opt. Express, 2005, 13, P. 1780–1796.

[7] Peschel U., Pertsch T., Lederer F. Optical Bloch oscillations in waveguide arrays. Opt. Lett., 1998, 23, P. 1701–1703.
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