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X-ray structural studies of the Pd–In–Ru system using synchrotron radiation
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The paper presents X-ray diffraction studies of diffusion filters-membranes based on palladium. Information on the structural state of membranes

was obtained using synchrotron radiation (SR) of Kurchatov Synchrotron Radiation Source. A comparison was made between states of the

prolonged membrane relaxation after hydrogenation and that exposed to additional applied load by the method of electrolytic hydrogenation

(EH). In addition to the structural maxima determining the face-centered lattice of the alloy matrix, reflections were revealed on the diffraction

patterns, indicating the presence of long-range ordering in the structure.
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1. Introduction

When metal filters are used in the diffusion of high purity hydrogen production [1–4], the problems of
reliability and duration of the membrane operation arise during interaction with hydrogen [4, 5]. These issues
are related to changes in the structure of metals and alloys as a result of their hydrogenation [5–8]. Therefore,
X-ray structural studies for analysis of the kinetics of structural defects in diffusion filters after hydrogenation are
needed for the development of safe industrial technologies for production [1,4], storage and transfer of high-purity
hydrogen [2, 3].

Atoms of alloying elements added to palladium in order to improve the mechanical characteristics and reliability
of membrane operation in an aggressive gaseous medium [4]. The additives usually form point defects in the lattice
of the metal-solvent that can be ordered to some degree. As a rule, hydrogenation is associated with strong plastic
deformation for membranes, which is accompanied by the appearance and development of order-disorder processes
in the distribution of metal atoms [9, 10]. Hydrogenation enhances diffusion processes [8, 11] and initiates phase
transformations [12–14], generating a high concentration of vacancies, especially for various chemical interactions
or affinity of elements with hydrogen [8, 15, 16]. Phase transformations in hydrogenated systems occur over a
period of time [13] and affect on many of the structure-sensitive properties of membranes [1, 4, 5].

There are several advantages for synchrotron radiation (SR) in comparison with X-ray tube radiation, including:
brightness, high photon flux, level of monochromatization, easily adjusted X-ray wavelength, a high degree
of polarization and collimation provide a new level of X-ray analysis as well as the quality of information
acquisition [17–19]. Therefore, the aim of this study was to perform an X-ray diffraction study of membranes
using SR with special attention to the region of small angles where order-disorder phase transitions occur in the
Pd–In–Ru system after hydrogenation can be observed.

The X-ray experiment was carried out using the equipment of the “Structural Material Science” station of
Kurchatov Synchrotron Radiation Source [20].

2. Experimental and calculation details

2.1. The object of research

Foils Pd-6 wt.% In-0.5 wt.% Ru were developed and prepared by the research group of the Institute of
Metallurgy and Material Science of the Russian Academy of Sciences (IMET RAN) [4]. The membranes of given
composition possess high hydrogen permeability, good corrosion resistance, high plasticity and strength during
maintenance in hydrogen containing gas mixtures. Nevertheless, there are some problems with their reliability that
can be related with structural changes in membranes occurring during their operation in hydrogen.

Foils of 50 µm thickness were fabricated from high purity materials (≈99.9 %) by electric arc melting and
cold rolling of blanks on a four-roll rolling mill with intermediate vacuum annealing at a temperature of 900 ◦C for
1 hour [4]. Further, the foils were used as a filter in the plant for the determination of hydrogen permeability [19].
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Then, the membranes, denoted as foil 1 and foil 2, were cooled slowly to the room temperature and stored under
normal conditions (room temperature and pressure) for a year.

Further, foil 2 was electrolytically saturated by hydrogen (electrolyte-4% aqueous solution Na–F) during
0.5 hour at a current density of 10 mA/cm2. X-ray diffraction (XRD) patterns were obtained using Cu-Kα1

radiation upon the Bragg–Brentano geometry [13, 14]. X-ray diffractograms were measured over a narrow angular
range near the structural maxima corresponding to the “main” phase of the foil. Only the upper 6 µm-thick layer
of the foil contributed to the diffraction maxima.

2.2. X-ray experiment using synchrotron radiation (SR)

The X-ray diffraction with synchrotron radiation source was carried out in the Debye transmission geometry.
A beam of SR was monochromatized using a silicon 111 channel-cut monochromator with energy resolution
of 2×10−4 keV. The beam size was determined using motorized slits and was equal to (250×250) µm2. The
diffraction patterns of the samples were obtained at 0.6199 Å and 0.4573 Å, corresponding to the energies 20 keV
and 24 keV. The samples were oriented perpendicularly to the beam. The scattering radiation was recorded
by a two-coordinate detector Mar CCd165. During measurement, the samples performed an oscillatory motion
perpendicular to the beam SR in two directions: within a range of 4 mm in the horizontal direction and 1 mm
in the vertical direction, thus improving the averaging over crystallites orientations. To determine the distance
and non-orthogonality of the detector to the beam, a standard sample of CeO2 was used. Two dimensional X-ray
diffraction patterns were integrated to one-dimensional I(2θ) curves by Fit2D software [21]. Analysis of diffraction
profiles was carried out using the software package “Fityk” [22].

The phase diagram of the Pd-In-Ru system is not available in the literature. Since the concentration of Ru in
the samples is small, and the difference between the atomic radii of Pd and Ru is about 2% (1.37 Å and 1.34 Å
respectively) the system was considered binary. The Pd–In phase diagram [23] shows that solid solution Pd-6 wt.%
In at room temperature is in single-phase region (Fig. 1). Indium concentration in observed phases was determined
from lattice parameters according to Vegard law.

FIG. 1. Phase diagram of Pd–In system [23]

3. Results and discussion

Diffraction patterns of foil 1 and foil 2 obtained at the radiation energy 20 keV are shown onto Fig. 2. The
angular positions of intense diffraction maxima corresponding to the main phase of foil 1 have determined a face-
centered cubic lattice with a period a0= 3.9031±0.0019 Å. The concentration of In was estimated to be 4.87±0.04
at. %. For foil 2, a face-centered cubic lattice with a period a0= 3.9043 ± 0.0012 at. % has determined similarly,
which corresponds to the In concentration of about 5.32±0.02 at.%.

Differences in the intensity of near orders reflections of coherent scattering regions (CSR) with Miller indices
111 and 100, in further CSR (111) and CSR (100), at identical relation of intensities for the far order reflections
both foils may be showing the increasing effect of extinction upon the crystallographic direction [111].
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In addition to the maxima corresponding to the main phase of the membranes, diffraction peaks of low
intensity were found. The phenomenon of such reflections on diffraction patterns indicated in the membranes the
presence of areas with concentrations of In significantly different from the alloy matrix. As one can see from the
diffractograms in Fig. 2, the diffraction maxima of such phases were found in diffractograms of both foils and had
a similar shape.

For foil 1, the diffraction peak isolated near the main maximum for CSR (110) (Fig. 2(a)) has corresponded
to the phase with the lattice parameter 4.0868±0.0012 Å. Near it there is maximum that has corresponded for the
basis phase with the lattice parameter 3.9059±0.0004 Å. That result corresponded to a concentration 5.9±0.1 at.
% In.

For foil 2, a similar diffraction peak near the main maximum for CSR (110) (Fig. 2(b)) has allowed to identify
three phases with lattice parameters 4.0731±0.0008 Å, 4.0826±0.0011 Å, 4.0912±0.0009 Å. Also for foil 2, a
small fraction phase with lattice parameter 3.9577±0.0004 Å, the In content is 25.3±0.1 at. %, was determined
for CSR (111).

FIG. 2. Diffraction patterns foils at a beam energy of SR 20 keV: (a) – for foil 1; (b) – for foil 2

In order to investigate the possible superstructure nature of these phases, the diffraction spectra of foils were
obtained at a beam energy of SR 24 keV (Fig. 3).

Structural reflections for the base (main) phase have revealed a cubic face-centered lattice for both foils with
the same parameters as specified above.

FIG. 3. Diffraction patterns foils at a beam energy of SR 24 keV, the definition superstructure
regions: (a) – for foil 1; (b) – for foil 2
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Finding reflections with prohibited interference indices for a face-centered cubic cell have indicated the
presence of long-range ordering regions in both foils [24, 25]. Marked on Fig. 3, the diffraction peaks of low
intensity correspond to the first order reflections for CSR (100), CSR (111) and CSR (110).

The results of the research show that the beginning of the process of regularization is likely upon the first
hydrogenation of foils in IMET [4]. Differences in the shape of profiles similar superstructural maxima indicate that
electrolytic hydrogenation can make some adjustments into the distribution of the components of the superstructural
inclusions.

The angular positions of the superstructural peaks show phases corresponding to two groups with the formulas
Pd3In and PdIn. The results obtained are in agreement with the phase diagram data (Fig. 1).

The analysis of the angular positions of diffraction maxima corresponding to the phase Pd3In revealed that the
phase has a face-centered lattice. That is, the ordering process in the arrangement of atoms has passed with the
preservation the structure of the metal-solvent lattice.

According to [25], the physical reason for the formation of such ordered regions is a decrease in the free
energy of the system in the formation of segments with an increased concentration of atoms of one class. Such
areas can increase as a result of ascending diffusion [25, 26]. As is shown by the description of alloys near the
stoichiometric composition corresponding to the formula AB3 [25], the most fully investigated in this area are
alloys of the AuCu system near the composition of AuCu3. The ordered phase in such systems exists in the range
of concentrations from 17 at. % up to 37 at. %, which was also revealed for both Pd–In–Ru foils. In atoms in such
ordered regions, occupying three times fewer positions, can be located at the vertices of cubic cells, and palladium
atoms in the centers of faces.

It should be noted that alloys having a face-centered cubic lattice in an unordered state, upon formation of
areas with content of components approaching 50% composition, can have an ordered state structure of the type
AuCu [25]. Atoms of each kind in this type of ordering are arranged in alternating atomic planes and the crystal
lattice becomes tetragonal during the ordering. In the experiment, this type of ordering corresponds superstructural
phase PdIn.

Exceptional characteristics of SR [17–19] allowed us to identify fluctuations in the arrangement of atoms in
superstructural phases. The presence of domains of different degree ordering in the alloy matrix has led to a
nontrivial form of diffraction profiles.

4. Conclusions

X-ray structural studies of diffusion filters using SR revealed the existence of long-range ordering regions in
both foils.

The facts presented in this paper show the quasistability of superstructural inclusions in membranes in the
hydrogenation process.

Analysis of angular positions of the diffraction peaks corresponding to superstructural phases showed that the
phases they determine fell into two large structural groups. One of them, the Pd3In composition, has a face-centered
lattice in both foils, similar to the structure of AuCu3. Another group is the regions of the PdIn composition with
an AuCu type structure.

The exceptional characteristics of the SR made it possible to obtain for the first time in the experimental work
the results reflecting the continuum of domains of transition concentrations and fluctuations in the distribution of
metal atoms by concentration in the ordering regions.

The work was presented as a plenary (oral) speech at the International Conference “Solid State Chemistry
and Functional Materials” (12th International Symposium “Thermodynamics and Materials Science”), held at
Ioffe Institute (May 21–27, 2018).
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