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The persistent current in a chain of two quantum rings threaded by an Aharonov–Bohm flux is studied in the presence of electron-phonon

interactions and Rashba spin-orbit coupling. The chain is modeled by the Holstein–Hubbard–Rashba Hamiltonian, the phonon’s degrees of

freedom were eliminated by the conventional Lang–Firsov transformation, the effective electronic Hamiltonian was diagonalized by using the

Hartree–Fock approximation. The equations for ground state energy, persistent current and Drude weight were also obtained. The persistent

current was calculated by differentiating the GS energy. The dependence of ground state energy, persistent current and Drude weight as a

functions of flux for different values of Rashba spin-orbit interaction was numerically shown. The effects of Aharonov–Bohm flux, temperature,

chemical potential spin-orbit interaction and electron-phonon interaction on the persistent current were also investigated.
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1. Introduction

A normal metal ring threaded by a magnetic flux can sustain a loss-less current, commonly referred to as
the persistent current, because of the quantum mechanical phase coherence effect. This novel effect was first
predicted by Buttiker, Imry and Landauer [1] and later quite a few other aspects of this problem were reported by
several other investigators [2]. For example, it was proposed that the persistent current would be periodic in flux.
Several experiments [3] have established quite unequivocally that persistent current can exist in a semiconductor
quantum ring and it is indeed periodic in nature. The Hubbard model turns out to be a suitable model to investigate
the persistent current in a quantum ring consisting of discrete sites [4]. The effects of spin-orbit interactions [5]
are also found to be pronounced in quantum rings. Recently the effect of electron-phonon interaction on the
persistent current in a correlated quantum ring in the presence of Rashba spin-orbit interaction has been studied by
Monisha et al. [6] using the one-dimensional Holstein–Hubbard model. Using of quantum rings is rather popular
in nanoscience (see, e.g., [7, 8]. The advantage with the Rashba interaction is that it can be manipulated by tuning
the external magnetic field and concomitantly the persistent current can be controlled. This is one of the main
principles on which spintronics is based.

In the present work, we study the effect of Rashba spin-orbit interaction on persistent current in a chain of two
Holstein–Hubbard rings threaded by an Aharonov–Bohm flux. We consider the magnetic flux going through the
quantum rings in such a way that the magnetic field is zero at the radii of the rings. It is a quantum mechanical
phenomenon which can be observed in small metallic rings whose size is comparable to the electron coherence
length. The energy spectrum is periodic in flux and consequently, the persistent current which is the change in
ground state energy with respect to the magnetic flux is also periodic in flux.

2. Model of two Holstein–Hubbard rings in the presence of Rashba spin-orbit interaction

The chain of two Holstein–Hubbard rings considered in this work is shown in Fig. 1. Both of the rings consist
of discrete lattice sites and the electrons can hop from one site to another.

The Hamiltonian for a chain of two Holstein–Hubbard rings threaded by a magnetic flux is written in the
presence of Rashba spin-orbit interaction as:

H = Hel +Hp +Hep +Hso (1)

with

Hel = ε0

∑
i

c+i ci+ε0

∑
k

c+k ck−te
γθ
∑
〈i,j〉

(c+i cj+h.c)− t
2
eγθ

∑
〈k,l〉

(c+k cl+h.c)+U
∑
i

ni↑ni↓+U
∑
k

nk↑nk↓, (2)
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FIG. 1. Chain of two Holstein–Hubbard rings. The intersection point is 0, points 11, N1, 12, N2

are its nearest neighbors

Hp = ~ω0

∑
i

(
b+i bi +

1

2

)
+ ~ω0

∑
k

(
b+k bk +

1

2

)
, (3)

Hep = g1

∑
i

ni
(
bi + b+i

)
+ g1

∑
k

nk
(
bk + b+k

)
+ g2

∑
〈i,j〉

ni
(
bj + b+j

)
+
g2

2

∑
〈k,l〉

nk
(
bl + b+l

)
, (4)

Hso = −t
∑
〈i,j〉

(c+i tsoe
γθcj + h.c)− t

2

∑
〈k,l〉

(c+k tsoe
γθcl + h.c), (5)

where 〈i, j〉 is any pair of two nearest neighbors on the ring, except at the point of intersection and its nearest
neighbors. Pairs 〈k, l〉 include the point of intersection and its nearest neighbors. Hel, given by Eq. (2), is the
electronic Hamiltonian which consists of six terms. The first two terms stand for the site energies of the two rings,

ε0 referring to the on-site energy, ci =

(
ci↑
ci↓

)
, c†iσ(ciσ) denoting the creation (annihilation) operator for an

electron at site i with spin σ, i taking values 1, 2, 3, 4, . . . N , where N is the total number of sites in each ring
except the point of intersection and its nearest neighbors, k is the number of point of intersection and its nearest
neighbors (points 0, 11, 12, N1, N2 on Fig. 1). Next two terms describe the kinetic energies, t being the hopping
integral and θ = (2πΦ/n) the Aharonov–Bohm phase arising from the quantized magnetic flux Φ = mΦ0 where
m is an integer and Φ0 = hc/e is the elementary flux quantum. The last two terms represent the onsite Coulomb
repulsion with U measuring the strength of the repulsion and niσ = c†iσciσ refers to the operator corresponding to
the electron number at site i with spin σ. Hp, given by Eq. (3), is the sum of the Hamiltonians for non-interacting
phonons in the two rings, b†i (bi) being the phonon creation (annihilation) operator at site i and ω0 the phonon
frequency which is assumed to be dispersionless. Hep, given by Eq. (4), describes the on-site and nearest-neighbor
electron-phonon interactions with g1, g2 denoting the corresponding coupling strengths. We assume that g2 is
smaller than g1 by an order of magnitude or so. Finally, Eq. (5) represents the Rashba spin-orbit interaction with
tso as the spin-orbit coupling constant given by: tso = iα(σx cosϕij+σy sinϕij) where σm is the m-th component
of the Pauli matrix σ, ϕij = (ϕi + ϕj)/2 with ϕi = 2π(i − 1)/N , i being the site index along the azimuthal
direction of the ring.

3. Analytical results

To eliminate the phonons we carry out the celebrated Lang–Firsov transformation [7,9] on the Hamiltonian (1)
with the generator:

R =
1

~ω0
(g1

∑
iσ

niσ
(
b+i − bi

)
+ g1

∑
kσ

nkσ
(
b+k − bk

)
+ g2

∑
〈i,j〉σ

niσ
(
b+j − bj

)
+
g2

2

∑
〈k,l〉σ

nkσ
(
b+l − bl

)
). (6)
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The transformed Hamiltonian is given by:

∼
H = eRHe−R = H + [R,H] +

1

2!
[R, [R,H]] + ... =

− 1

~ω0
(g2

1 + zg2
2)
∑
iσ

niσ − teιθ
∑
〈i,j〉σ

e(Yi−Yj)c+iσcjσ − ιe
ιθ
∑
〈i,j〉σ

[
0 P

Q 0

]
e(Yi−Yj)c+iσcjσ+

+(U − 2

~ω0
(g2

1 + zg2
2))
∑
i

ni↑ni↓ −
g2

2

~ω0

∑
i∆σσ′

niσni+∆σ′ − 2

~ω0
g2g1)

∑
〈i,j〉σσ′

niσnjσ′ + ~ω0

∑
i

(
b+i bi +

1

2

)
−

− 1

~ω0

∑
kσ

(g2
1 +

zkσ
4
g2

2)nkσ −
t

2
eιθ

∑
〈k,l〉σ

e(Yk−Yl)c+kσclσ −
ι

2
eιθ
∑
〈k,l〉

[
0 P

Q 0

]
e(Yk−Yl)c+k cl+

+
∑
k

(U − 2

~ω0
(g2

1 +
z1

4
g2

2))nk↑nk↓ −
g2

2

2~ω0

∑
〈k,l〉σσ′,k,l 6=0

nkσnlσ′ +
1

~ω0
g2g1

∑
〈k,l〉σσ′

nkσnlσ′+

+~ω0

∑
k

(
b+k bk +

1

2

)
.

(7)
The effective electronic Hamiltonian can be obtained by taking the zero-phonon averaging:

Heff =
〈
0
∣∣eRHe−R ∣∣ 0〉 =

〈
0
∣∣∣∼H ∣∣∣ 0〉 . (8)

It is easy to see that [Yi, Yj ] = 0, [Yk, Yl] = 0 and〈
0
∣∣eYi−Yj ∣∣ 0〉 = e−( 1

~ω0
)2[(g1−g2)2+(z−1)g22 ],

〈
0
∣∣eYk−Yl ∣∣ 0〉 = e−( 1

~ω0
)2[(g1−g2)2+(zk−1)g22 ].

Using these results, we can write the effective electronic Hamiltonian in a simplified form as:

Heff = εe0
∑
iσ

niσ − teeιθ
∑
〈i,j〉σ

c+iσcjσ − t
ij
SO−ee

ιθ
∑
〈i,j〉σ

c+iσcjσ + Ue
∑
i

ni↑ni↓+

+
∑
kσ

εe0knkσ −
eιθ

2

∑
〈k,l〉σ

tekc
+
kσclσ −

eιθ

2

∑
〈k,l〉σ

tklSO−ekc
+
kσclσ +

∑
k

Ueknk↑nk↓,

where εe0 = − (g2
1 + zg2

2)

~ω0
, z is the number of nearest neighbors (for all the sites except the point of intersection

and its nearest neighbors), εe0k = −
(g2

1 + zk
4 g

2
2)

~ω0
, zk – number of nearest neighbors (for the point of intersection

and its nearest neighbors),

te = te
−
(

1
~ω0

)2

[(g1−g2)2+(z−1)g22] , tek = te
−
(

1
~ω0

)2

[(g1−g2)2+(zk−1)g22],

tijSO−e = ιAe
−
(

1
~ω0

)2

[(g1−g2)2+(z−1)g22], tijSO−ek = ιAke
−
(

1
~ω0

)2

[(g1−g2)2+(zk−1)g22],

A =

[
0 P

Q 0

]
=

[
0 αe−ιφij

αeιφij 0

]
, Ak =

[
0 P

Q 0

]
=

[
0 αe−ιφkl

αeιφkl 0

]
,

Ue = U − 2

~ω0

(
g2

1 + zg2
2

)
, Uek = U − 2

~ω0

(
g2

1 +
zk
4
g2

2

)
.

Next, we perform the unitary transformation on the effective Hamiltonian Heff with the matrix:

Um =
1√
2

[
1 −1

e
2πι
N (m− 1

2 ) e
2πι
N (m− 1

2 )

]
.

This transformation helps us to eliminate the index dependence of the spin-orbit interaction coefficients tijSO−e,

tijSO−ek and transforms the old operators ci, ck to a new set of operators
∼
c
i

= U+
i ci,

∼
c
k

= U+
k ck. The transformed

effective Hamiltonian is given by:
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He = εe0
∑
iσ

∼
n
iσ
− 1

2
eιθ

∑
〈i,j〉σ

c+iσ[te + ιαe]Bcjσ + Ue
∑
i

∼
n
i↑

∼
n
i↓

+
∑
kσ

εe0k
∼
n
kσ
− 1

4
eιθ

∑
〈k,l〉σ

c+kσ[tek + ιαek]Bclσ+

+
∑
k

Uek
∼
n
k↑

∼
n
k↓

+

∼
n
i

[ ∼
c†i↑
∼
c
i↓

+
∼
c†i↓
∼
c
i↑

]
4

−

[ ∼
c†i↑
∼
c
i↓

+
∼
c†i↓
∼
c
i↑

]
∼
n
i

4
+

∼
n
k

[ ∼
c†k↑

∼
c
k↓

+
∼
c†k↓

∼
c
k↑

]
4

−

[ ∼
c†k↑

∼
c
k↓

+
∼
c†k↓

∼
c
k↑

]
∼
n
k

4
,

where

αe = αe
−
(

1
~ω0

)2

[(g1−g2)2+(z−1)g22], αek = αe
−
(

1
~ω0

)2

[(g1−g2)2+(zk−1)g22],

B =

[
1 + e

2πι
N −1 + e

2πι
N

−1 + e
2πι
N 1 + e

2πι
N

]
.

Next, we use the mean-field approximation to linearize the quadratic terms in He (see equation (9). In 1D
systems, for a half filled band the electron-phonon interaction can cause the distortion of the lattice leading to
dimerization with the unit cell getting doubled.

To proceed further, we divide the lattice into two sublattices: even numbered sites-A,and odd numbered sites-B.
Using some algebraic simplifications following Cabib and Callen [10] we obtain:

Hm
e =

N∑
i=1

c̃+i [C + (−1)iD]c̃i − eι(θ+
π
N )

N∑
<ij>σ,i,j 6=0

c̃+iσ[teE + ιαeF ]c̃jσ +K1+

N∑
k=0

c̃+k [Ck + (−1)kDk]c̃k − eι(θ+
π
N )

N∑
<kl>σ

c̃+kσ[tekE + ιαekF ]c̃lσ +K2.

where

C =

[
ε+
AB↑ 0

0 ε+
AB↓

]
, Ck =

[
ε+
AB↑k 0

0 ε+
AB↓k

]
,

ε+
AB↑ =

εA↑ + εB↑
2

, ε+
AB↓ =

εA↓ + εB↓
2

, ε+
AB↑k =

εA↑k + εB↑k
2

, ε+
AB↓k =

εA↓k + εB↓k
2

,

D =

[
ε−AB↑ 0

0 ε−AB↓

]
, Dk =

[
ε−AB↑k 0

0 ε−AB↓k

]
,

ε−AB↑ =
εA↑ − εB↑

2
, ε−AB↓ =

εA↓ − εB↓
2

, ε−AB↑k =
εA↑k − εB↑k

2
, ε−AB↓k =

εA↓k − εB↓k
2

,

εA↑ = εe0 +
Ue(c− s)

2
, εB↑ = εe0 −

Ue(c− s)
2

, εA↓ = εe0 +
Ue(c+ s)

2
, εB↓ = εe0 −

Ue(c+ s)

2
,

εA↑k = εe0k +
Uek(c− s)

2
, εB↑k = εe0k −

Uek(c− s)
2

, εA↓k = εe0k +
Uek(c+ s)

2
, εB↓k = εe0k −

Uek(c+ s)

2
,

E =

 cos(
π

N
) ι sin(

π

N
)

ι sin(
π

N
) cos(

π

N
)

 , F =

 cos(
π

N
) ι sin(

π

N
)

−ι sin(
π

N
) − cos(

π

N
)


K1 =

NUe(n
2 − c2 + s2)

4
, K2 =

NUek(n2 − c2 + s2)

4
,

n =
[(nA↑ + nA↓) + (nB↑ + nB↓)]

2
,

c =
[(nA↑ + nA↓)− (nB↑ + nB↓)]

2
,

s =
[(nA↑ − nA↓)− (nB↑ − nB↓)]

2
,

where n is the electron concentration, c is the charge density wave order parameter, and s is the spin density wave
order parameter. Performing the Fourier transformation:

c̃mσ =
1√
N

∑
ξ

eιξmac̃ξσ,

where a is the lattice spacing and making the redefinitions: c̃iσ(c̃+iσ) as ciσ(c+iσ) and c̃kσ(c̃+kσ) as ckσ(c+kσ) and
using the following identities:
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N
2∑

m=1

c+2mc2m =
1

2

∑
ξ

c+ξ cξ +
1

2

∑
ξ

c+ξ cξ+π
a
, for even sites,

N
2∑

m=1

c+2m−1c2m−1 =
1

2

∑
ξ

c+ξ cξ −
1

2

∑
ξ

c+ξ cξ+π
a
, for odd sites, we can separate the Hamiltonian into even and

odd sited terms to get the effective mean-field Hamiltonian as:

HM
e = 2

π/a∑
ξ=−π/a,ξ 6=0

c+ξ Gcξ + 2

π/a∑
ξ=−π/a,ξ 6=0,ξ+(π/a)6=0

c+ξ Dcξ+(π/a) + c+0 G0c0 + c+0 D0cπ/a + 2K1 +K0, (9)

where

G =

[
ε+
AB↑ + α11 α12

α21 ε+
AB↓ + α22

]
, D =

[
ε−AB↑ 0

0 ε−AB↓

]
,

G0 =

 ε−AB↑ − ε
+
AB↑ +

1

2
[ε+
AB↑0 − ε

−
AB↑0] + α11,0 α12,0

α21,0 ε−AB↓ − ε
+
AB↓ +

1

2
[ε+
AB↓0 − ε

−
AB↓0] + α22,0

 ,

D0 =

 ε+
AB↑ − ε

−
AB↑ −

1

2
[ε+
AB↑0 − ε

−
AB↑0] 0

0 ε+
AB↓ − ε

−
AB↓ −

1

2
[ε+
AB↓0 − ε

−
AB↓0]

 ,

α11 = −2te cos(π/N) cos(ξa+ θ + π/N) + 2αe cos(π/N) sin(ξa+ θ + π/N),

α12 = 2te sin(π/N) sin(ξa+ θ + π/N) + 2αe sin(π/N) cos(ξa+ θ + π/N),

α21 = 2te sin(π/N) sin(ξa+ θ + π/N)− 2αe sin(π/N) cos(ξa+ θ + π/N),

α22 = −2te cos(π/N) cos(ξa+ θ + π/N)− 2αe cos(π/N) sin(ξa+ θ + π/N),

α11,0 = 2[2te − te0] cos(π/N) cos(θ + π/N)− 2[2αe + αe0] cos(π/N) sin(θ + π/N),

α12,0 = 2[−2te + te0] sin(π/N) sin(θ + π/N)− 2[2αe − αe0] sin(π/N) cos(θ + π/N),

α21,0 = 2[−2te + te0] sin(π/N) sin(θ + π/N)− 2[−2αe + αe0] sin(π/N) cos(θ + π/N),

α22,0 = 2[2te − te0] cos(π/N) cos(θ + π/N) + 2[+2αe + αe0] cos(π/N) sin(θ + π/N).

It is convenient to work in the reduced zone scheme and so we choose the domain of ξ as: −π/2a. The
matrix elements then satisfy the equation: αij(ξ + π/a) = −αij(ξ). The effective Hamiltonian is finally given in
the mean-field approximation by:

HM
e = 2

π∑
ξ=0

(c+k↑c
+
k↓c

+
k+π,↑c

+
k+π,↓)W


ck↑
ck↓
ck+π,↑

ck+π,↓

+ (c+0↑c
+
0↓c

+
π,↑c

+
π,↓)W0


c0↑
c0↓
cπ,↑
cπ,↓

 , (10)

where

W =


ε+
AB↑ + α11 α12 ε−AB↑ 0

α21 ε+
AB↓ + α22 0 ε−AB↓

ε−AB↑ 0 ε+
AB↑ − α11 −α12

0 ε−AB↓ −α21 ε+
AB↓ − α22

 ,
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W0 =



ε−AB↑ − ε
+
AB↑+

1

2
[ε+
AB↑0 − ε

−
AB↑0]+

+α11,0

α12,0

ε+
AB↑ − ε

−
AB↑−

1

2
[ε+
AB↑0 − ε

−
AB↑0]

0

α21,0

ε−AB↓ − ε
+
AB↓+

1

2
[ε+
AB↓0 − ε

−
AB↓0]+

+α22,0

0
ε+
AB↓ − ε

−
AB↓−

1

2
[ε+
AB↓0 − ε

−
AB↓0]

ε+
AB↑ − ε

−
AB↑−

1

2
[ε+
AB↑0 − ε

−
AB↑0]

0

ε−AB↑ − ε
+
AB↑+

1

2
[ε+
AB↑0 − ε

−
AB↑0]−

−α11,0

−α12,0

0
ε+
AB↓ − ε

−
AB↓−

1

2
[ε+
AB↓0 − ε

−
AB↓0]

−α21,0

ε−AB↓ − ε
+
AB↓+

1

2
[ε+
AB↓0 − ε

−
AB↓0]−

−α22,0



.

HM
e can be exactly diagonalized numerically to obtain the energies Ei and distribution functions f(Ei), where:

f(Ei) =
1

[eβ(Ei−µ)+1]
.

The ground state energy can be finally written as:

EGS =
∑
i

2N − 1

2N
Eif(Ei) +

∑
i

1

2N
Eif(Ei) + 2K1 +K0. (11)

The persistent current and the Drude weight can be evaluated from the following relations:

Ipc = − 1

2π

(
∂EGS
∂Φ

)
, (12)

DW =
N

4π2

∂2EGS
∂Φ2

, Φ = Φm, (13)

where Φm is the location minimum of EGS and can take values 0 or 1/2 depending on the parity of the number
of electrons.

4. Numerical results

We set t = 1, KBT = 0.1, U = 0, g1 = g2 = 0 and measure all energies in units ~ω0 (see Fig. 2), the
persistent current (see Fig. 3) and the Drude weight (see Fig. 5).

In Fig. 2 the dependence of the ground state energy EGS on the flux Φ is represented for different values
of Rashba spin-orbit constant α. One can see that the ground state energy is periodic with Φ and monotonically
changes with α.

In Fig. 3, we plot the persistent current Ipc for different values of α. The phase of the persistent current
changes when α exceeds a critical value αc.

The variation of persistent current Ipc as a function of α is represented on Fig. 4. When α > αc, Ipc with α
becomes monotonically increasing.

The dependence of the Drude weight as a function of flux Φ for different α is shown in Fig. 5.
The finite value of the DW indicates that the system is in the metallic phase. One can see that there is no

periodicity and when α increasing, the minimum value varies greatly.
To compare these results to a single ring [6], they are similar in cases for EGS and Ipc as a functions of the

flux Φ for different α and differ considerably for the Drude weight function. The Drude weight as a function of
flux Φ for different α in a single ring is a periodic function and the period changes with the change of α.

Then, to understand the effect of electron-electron interaction, we set t = 1, KBT = 0.1, α = 2, g1 = g2 = 0
and measure the persistent current for different values of U (U = 0, U = 1.4, U = 1.8, U = 2.2, U = 2.4). The
behavior of Ipc as a function of U with (when α = 2) and without (when α = 0) Rashba spin-orbit interaction is
shown in Fig. 6. The behavior of Ipc for such values of U has a small difference.

The variation of persistent current for different values of U with α = 0, 2 is shown of Fig. 7. In absence of
Rashba spin-orbit interaction when α = 2 there seem to exist a critical value Uc. When U > Uc the persistent
current decreases when U increases. The decrease is quite rapid. Such affect appears as when U increases the
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FIG. 2. The ground state energy EGS as a function of the flux Φ for different α

FIG. 3. The persistent current Ipc as a function of the flux Φ for different α

electrons experience a larger onsite repulsion and find it more difficult to hop from one site to another and this
reduces the persistent current.

Next, we explore the effects of on-site electron-phonon interaction. We set t = 1, KBT = 0.1, α = 0,
U = g2 = 0 and measure the persistent current (see Fig. 8) for different values of g1 (g1 = 0.1, g1 = 0.5,
g1 = 0.9). The function for g1 = 0 is similar to function g1 = 0.1 with the difference that could be neglected.
It is evident that persistent current decreases when g1 increases. The increase of g1 leads to deepening of the
self-trapping polarization potential causing localization which will inhibit conduction.

The variation of persistent current for different values of g1 with α = 0, α = 2 on Fig. 9 shows the effects
of g1 on persistent current with and without Rashba spin-orbit interaction. When there is no Rashba spin-orbit
interaction, the Ipc decreases as g1 increases. The gradient of the curve vanishes monotonically. When there is a
Rashba spin-orbit interaction (α = 2) there seem to exist a critical value g1c. The Ipc decreases when g1 > g1c

increases.
Next, to study the NN electron-phonon interaction, we set t = 1, KBT = 0.1, α = 0, U = g1 = 0 and

measure the persistent current (see Fig. 10) for different values of g2 (g2 = 0.1, g2 = 0.3, g2 = 0.6). The function
of Ipc for g2 = 0 is similar to function g2 = 0.1 with the difference that could be neglected. The behavior of g2 is
similar for that of g1 but the effect of g2 on persistent current is stronger. The periodicity of Ipc decreases when
g2 increases.
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FIG. 4. Variation of Ipc as a function of α

FIG. 5. The Drude weight as a function of flux Φ for different α
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FIG. 6. Persistent current Ipc for different values of U with α = 0, 2

FIG. 7. Variation of persistent current Ipc for different values of U with α = 0, 2

FIG. 8. Persistent current Ipc for different values of g1 with α = 0
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FIG. 9. Variation of persistent current Ipc for different values of g1 with α = 0, α = 2

FIG. 10. Persistent current Ipc for different values of g2 with α = 0

In Fig. 11 we show the dependence of persistent current Ipc on g2 with α = 2, g1 = 0.9 in the presence of
on-site electron-phonon interaction. The periodicity of Ipc also decreases.

The next important step is to study the effects of temperature on persistent current. We set t = 1, α = 0,
U = 0, g1 = g2 = 0 and measure the persistent current (see Fig. 12) for different values of KBT (KBT = 0.1,
KBT = 0.24, g2 = 0.46, KBT = 0.71) and for α = 2 (see Fig. 13).

Both Fig. 12,13 show that persistent current decreases as temperature increases. According the Fig. 14, there
appears to exist a critical value (kBT )c, and when kBT > (kBT )c, the persistent current decreases.

In the presence of Rasba spin-orbit interaction we plot the variation of persistent current Ipc for different
values of kBT with α = 2, g1 = 0.5 and compare it with the variation for α = 2, g1 = 0. The persistent current
also decreases when temperature increases (Fig. 15).

Finally, we will study the effect of chemical potential on persistent current. On Fig. 16 the dependence of
persistent current on Φ for different values of chemical potential µ is shown. We set t = 1, KBT = 0.1, α = 0,
U = 0, g1 = g2 = 0 and measure the persistent current for different values of µ (µ = 0, µ = 0.01, µ = 0.03,
µ = 0.05) and α = 2. One can see that the resulted figures are quite similar. So the changes of magnitude and
phase of persistent current with µ are small. This result is different from what is presented in [6] for similar
quantum ring.
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FIG. 11. Persistent current Ipc for different values of g2 with α = 2, g1 = 0.9

FIG. 12. Persistent current Ipc for different values of kBT with α = 0

FIG. 13. Persistent current Ipc for different values of kBT with α = 2
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FIG. 14. Variation of persistent current Ipc for different values of kBT with α = 0, 2

FIG. 15. Variation of persistent current Ipc for different values of kBT with α = 2, g1 = 0,
α = 2, g1 = 0.5

FIG. 16. Persistent current Ipc as a function of flux Φ for different values of µ, α = 0
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The variation of persistent current Ipc for different values of µ in the presence (α = 2) and absence (α = 0)
of Rasba spin-orbit interaction is shown in Fig. 17. In both cases there seem to exist a critical value µc such that
when µ > µc the persistent current decreases.

FIG. 17. Variation of persistent current Ipc for different values of µ, α = 0, 2

5. Conclusions

Thus during the work, the model of two chained Holstein–Hubbard rings in the presence of Rashba spin-orbit
interaction and the effect of Rashba spin-orbit interaction were obtained. First, the phonons degrees of freedom
were eliminated by the conventional Lang–Firsov transformation and then the spin-dependence was removed by
performing the unitary transformation, the effective electronic Hamiltonian was diagonalized by using the Hartree–
Fock approximation. The equations for ground state energy, persistent current and Drude weight were also obtained.
The persistent current was calculated by differentiating the GS energy. The dependence of ground state energy,
persistent current and Drude weight as a functions of flux for different values of Rashba spin-orbit interaction
was numerically shown. Next, the effects of Aharonov–Bohm flux, temperature, chemical potential spin-orbit
interaction and electron-phonon interaction on the persistent current were also investigated.
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