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On the metric graph model for flows in tubular nanostructures
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A metric graph model is suggested for the Stokes flow concentrated in the vicinity of a network embedded in R3. As a basic problem, we

consider the case corresponding to strong variation of the viscosity and density in a cylinder of small radius. An equation for the main term of
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1. Introduction

Many physical systems demonstrate flows concentrated near a network, e.g., flows through nanotubes [1–3] or
biophysical flows [4–6]. Mentioned flow concentration near lines or surfaces may be caused by specific variation
of viscosity. It is typical, for instance, for geophysical flows [7–10]. Narrowness of the domain means small ratio
of width and length. It is worth noting that works concerning to viscous wires with free surface [11,12] are related
to glass and fiber technologies. The problems are complicated and it is of great relevance to construct models
which allow simplification.

Concentration of a solution near lines or networks appears not only in fluid mechanics but also in other
fields, e.g., in quantum theory. There is an effective and simple method for investigating such systems in quantum
mechanics – the quantum graph model. This method was developed in the 1980’s ( [13, 14]) and now is a widely
used approach (see, e.g., [15]). The model has some relevant features. On the one hand, it allows one to obtain
explicit solutions of the model problem; in addition, it permits good approximation in many particular physical
problems (see, e.g., [16–18]). This is one reason for seeking of a new field of application for such an effective
instrument. In this paper, we make steps to the development of a model analogs to the quantum graph for fluid
mechanics.

There are several ways to consider the hydrodynamic equations on a network (metric graph). One can deal
with the 1D Navier–Stokes equation. For example, for compressible fluid of constant viscosity η̃ it takes the form:

∂v

∂t
+ v

∂v

∂x
− η̃ ∂

2vx
∂x2

= 0.

This is a nonlinear equation. To get the corresponding linear one we can linearize it in the vicinity of some
solution or simply neglect the nonlinear inertial terms. It is possible to obtain the 1D Navier–Stokes equation by
the asymptotic procedure for 3D or 2D Navier–Stokes equations in thin tubes (see, e.g., [19–22]). It is also possible
to study linear 2D or 3D Stokes equations in a system of narrow tubes and to consider the limiting procedure
for tubes having widths tending to zero. One observes an analogous situation for waveguides and thick quantum
graphs (see, e.g., [23–25]). In the most popular model for the Stokes flow in a network one assumes that there is
the Poiseuille flow in the tubes [26]). In our case the situation is more complicated (the flow is not localized inside
tubes, the viscosity and the density varies essentially), and this model is not appropriate. We use the asymptotic
approach. The first step was made in [27], where a metric graph model was constructed for 2D case. As a result,
we obtain 1D problem on a metric graph for the main term of the asymptotic expansion. We called it the Stokes
graph. In the present paper, we construct the model for 3D case.
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2. Preliminaries

3D Stokes and continuity equation for the case of variable viscosity and density in cylindrical coordinates
(r, ϕ, z)are as follows:

(∇ · σ)r = −ρGr,
(∇ · σ)φ = −ρGφ,
(∇ · σ)z = −ρGz,

(1)

∇(ρv) = 0. (2)

Here σ is the stress tensor, ρ is the density, G is the external force, v is the flow velocity. In cylindrical
coordinates the continuity equation (2) takes the form:

ρvr
r

+
∂(ρvr)

∂r
+

1

r

∂(ρvφ)

∂φ
+
∂(ρvz)

∂z
= 0 (3)

The divergence of a total stress tensor in cylindrical coordinates have the form:

(∇ · σ)r =
∂σrr
∂r

+
σrr − σφφ

r
+

1

r

∂σφr
∂φ

+
∂σzr
∂z

,

(∇ · σ)φ =
∂σrφ
∂r

+
2σrφ
r

+
1

r

∂σφφ
∂φ

+
∂σzφ
∂z

,

(∇ · σ)z =
∂σrz
∂r

+
σrz
r

+
1

r

∂σφz
∂φ

+
∂σzz
∂z

.

Then equations (1) transform to the form:

∂τrr
∂r

+
τrr − τφφ

r
+

1

r

∂τrφ
∂φ

+
∂τrz
∂z
− ∂P

∂r
= −ρGr, (4)

∂τrφ
∂r

+
2τrφ
r

+
1

r

∂τφφ
∂φ

+
∂τφz
∂z
− 1

r

∂P

∂φ
= −ρGφ, (5)

∂τrz
∂r

+
τrz
r

+
1

r

∂τφz
∂φ

+
∂τzz
∂z
− ∂P

∂z
= −ρGz. (6)

In cylindrical coordinates, the deviatoric stress tensor has the following components:

τrr = 2η
∂vr
∂r

, τφφ = 2η

(
1

r

∂vφ
∂φ

+
vr
r

)
, τzz = 2η

∂vz
∂z

,

τrφ = η

(
1

r

∂vr
∂φ

+
∂vφ
∂r
− vφ

r

)
, τrz = η

(
∂vz
∂r

+
∂vr
∂z

)
,

τφz = η

(
∂vφ
∂z

+
1

r

∂vz
∂φ

)
.

In more detail, equations (4), (5), (6) take the form:

2
∂η

∂r

∂vr
∂r

+ 2η
∂2vr
∂r2

+ 2η
1

r

∂vr
∂r
− 3η

1

r2

∂vφ
∂φ
− 2η

vr
r2

+
1

r2

∂η

∂φ

∂vr
∂φ

+

1

r

∂η

∂φ

∂vφ
∂r
− ∂η

∂φ

vφ
r2

+ η
1

r2

∂2vr
∂φ2

+
1

r
η
∂2vφ
∂φ∂r

+

+
∂η

∂z

∂vz
∂r

+
∂η

∂z

∂vr
∂z

+ η
∂2vz
∂z∂r

+ η
∂2vr
∂z2

− ∂P

∂r
= −ρGr,

(7)

1

r

∂η

∂r

∂vr
∂φ

+
∂η

∂r

∂vφ
∂r
− 1

r

∂η

∂r
vφ + η

1

r

∂2vr
∂r∂φ

+ η
∂2vφ
∂r2

+

3η
1

r2

∂vr
∂φ

+ η
1

r

∂vφ
∂r
− η vφ

r2
+ 2

1

r2

∂η

∂φ

∂vφ
∂φ

+ 2
1

r2

∂η

∂φ
vr+

2η
1

r2

∂2vφ
∂φ2

+
∂η

∂z

∂vφ
∂z

+
1

r

∂η

∂z

∂vz
∂φ

+ η
∂2vφ
∂z2

+ η
1

r

∂2vz
∂z∂φ

− 1

r

∂P

∂φ
= −ρGφ,

(8)

∂η

∂r

∂vz
∂r

+
∂η

∂r

∂vr
∂z

+ η
∂2vz
∂r2

+ η
∂2vr
∂r∂z

+ η
1

r

∂vz
∂r

+ η
1

r

∂vr
∂z

+
1

r

∂η

∂φ

∂vφ
∂z

+
1

r2

∂η

∂φ

∂vz
∂φ

+ η
1

r

∂2vφ
∂φ∂z

+ η
1

r2

∂2vz
∂φ2

+ 2η
∂2vz
∂z2

+ 2
∂η

∂z

∂vz
∂z
− ∂P

∂z
= −ρGz.

(9)
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3. Stokes graph model

We will consider the flow under some axisymmetric conditions. Keeping in mind future replacement of
variables, we change notations. Namely, we equip all variables and parameters in equations (3), (7), (8), (9) by
:̃ r̃, ϕ̃, z̃, η̃, ρ̃. We will deal with the case when the values of the viscosity η̃ and the density ρ̃ are smooth and
outside the cylinder {(r̃, ϕ̃, z̃) : z̃ ∈ (−∞,∞), r̃ ∈ (0, ε)} are essentially greater than inside it ((r̃, ϕ̃, z̃) are the
cylindrical coordinates):

η̃(r̃, ϕ̃, z̃) = η(z̃)η2(r̃), ρ̃(r̃, ϕ̃, z̃) = ρ(z̃)ρ2(r̃),

η2(r̃) =

{
1, 0 ≤ r̃ ≤ ε,
ηw, r̃ > 2ε,

ηw � 1,

ρ2(r̃) =

{
1, 0 ≤ r̃ ≤ ε,
ρw, r̃ > 2ε,

ρw � 1.

Here, ε is a small parameter. It means that the flow is essentially inside the cylinder. We will consider the
flow inside the cylinder only. Let us introduce new coordinates: z = z̃, r = r̃/ε, ϕ = ϕ̃. We will consider an
axisymmetric solution. Correspondingly, the flow velocity and the pressure do not depend on ϕ. Correspondingly,
equation (8) becomes the identity. Equations (7), (9), (3) take the following form after the coordinate replacement:

2ε−2 ∂η

∂r

∂vr
∂r

+ 2ε−2η
∂2vr
∂r2

+ 2ε−2η
1

r

∂vr
∂r
− 2ε−2η

vr
r2

+ ε−1 ∂η

∂z

∂vz
∂r

+

ε−1 ∂η

∂z

∂vr
∂z

+ ε−1η
∂2vz
∂r∂z

+ η
∂2vr
∂z2

− ε−1 ∂P

∂r
= −ρGr, (10)

ε−2 ∂η

∂r

∂vz
∂r

+ ε−1 ∂η

∂r

∂vr
∂z

+ ε−2η
∂2vz
∂r2

+ ε−1η
∂2vr
∂z∂r

+ ε−2η
1

r

∂vz
∂r

+

ε−1η
1

r

∂vr
∂z

+ 2η
∂2vz
∂2z

+ 2
∂η

∂z

∂vz
∂z
− ∂P

∂z
= −ρGz, (11)

ε−1 ρ

r
vr + ε−1 ∂ρ

∂r
vr + ε−1ρ

∂vr
∂r

+
∂(ρvz)

∂z
= 0. (12)

We will seek the solutions in the form of series in ε:

vr = v0
r + v1

rε+ ..., vz = v0
z + v1

zε+ ..., P = P 0 + P 1ε+ ....

Let us insert the series (3) into equations (10), (11), (12) and collect terms of the same powers of ε . We obtain
the chain of equations for the series coefficients. Terms of order ε−2 are in the Stokes equations (in new variables)
only:

η
∂2v0

r

∂r2
+

1

r

∂(rη)

∂r

∂v0
r

∂r
− η

r2
v0
r = 0, (13)

η
∂2v0

z

∂r2
+

1

r

∂(rη)

∂r

∂v0
z

∂r
= 0. (14)

Equation (14) gives us:

v0
z(r, z) =

f(z)

η(z)

∫
dr

rη2(r)
= u(z)

∫
dr

rη2(r)
. (15)

Here u(z), f(z) are some functions of one variable. They should be determined later. Terms of order ε−1 are in
three equations. The continuity equation gives us: v0

r = g(z)/(rρ). To avoid contradiction with (13), we conclude
that v0

r = 0, i.e. the series for vr starts from another power than for vz . It is a conventional situation when one
has different scales for different directions (see, e.g., [31]). The Stokes equations (10), (11) give us the following
relations for the terms of this order:

η
∂2v1

r

∂r2
+

1

r

∂

∂r
(rη)

∂v1
r

∂r
− η

r2
v1
r = −∂η

∂z

∂v0
z

∂r
− η ∂

2v0
z

∂r∂z
+
∂P 0

∂r
,

η

∂r

∂v1
z

∂r
+ η

∂2v1
z

∂2r
+

1

r

∂v1
z

∂r
= 0.

These equations are solvable with respect to v1
r , v

1
yz. The pressure term P 0 should be determined later.

Consider the terms of order ε0. The continuity equation (12) leads to the following equation for v1
r :

∂ρ

∂r
v1
r +

ρ

r
v1
r + ρ

∂v1
r

∂r
= −∂ρ

∂z
v0
z − ρ

∂v0
z

∂z
, (16)
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Equation (10) gives the relation:

2η
∂2v2

r

∂r2
+ 2

∂η

∂r

∂v2
r

∂r
+ 2

η

r

∂v2
r

∂r
− 2η

v2
r

r2
=

−∂η
∂z

∂v1
z

∂r
− ∂η

∂z

∂v1
r

∂z
− η ∂

2v1
z

∂z∂r
+
∂P 1

∂r
− ρGr, (17)

Equation (11) produces the relation:

η
∂2v2

z

∂r2
+
∂η

∂r

∂v2
z

∂r
+
η

r

∂v2
z

∂r
=

−∂η
∂r

∂v1
r

∂z
− ∂η

∂z

∂v0
z

∂z
− η ∂

2v1
r

∂z∂r
− η

r

∂v1
z

∂z
− 2η

∂2v0
z

∂z2
+
∂P 0

∂rz
− ρGz. (18)

The pressure is determined at the next stage (by taking into account the solvability condition

(
∂2P 0

∂r∂z
=

∂P 0

∂z∂r

)
where the right hand side is obtained as a derivative with respect to r of the expression obtained from (18) and the
left hand side – as a derivative in respect to z of the expression obtained from (17)). If we consider the first term
of the asymptotic series for the velocity only, we obtain an interesting equation for v0

z from (18) and (16):

∂2v0
z

∂z2
− ∂η

∂z

1

η

∂ρ

∂z

1

ρ
v0
z = −ρ

η
Gz +

1

η

∂P 0

∂z
. (19)

Taking into account the expressions for η, ρ, v0
z , one can see that it leads to the following equation for the function

u(z) in the homogeneous case

(
Gx = 0,

∂P 0

∂z
= 0

)
:

u”− η′

η

ρ′

ρ
u = 0. (20)

One can see that we have the 1D Schrödinger equation with a specific potential for the function u(x) corresponding
to zero energy (the similar problem for the quantum graph is known as the threshold resonance, see, e.g., [28]).

Thus, for the flow concentrated near a line (a thin cylinder) we have one-dimensional model. Correspondingly,
more complicated case of flow concentrated near a network (system of coupled segments) can be reduced to the
corresponding metric graph with the Schrödinger operator:

H = − d2

dx2
+
η′

η

ρ′

ρ

on the edges as the first approximation for the description of the flow. We call it the Stokes graph (Γ). It is
necessary to determine boundary conditions at the graph vertices. Consider a vertex (let it be zero point) with n
output edges. From physical conditions, one has:

ρ1 (0) = ρ2 (0) = · · · ρn (0) = ρ (0)

and
u1
′ (+0) = u2

′ (+0) = · · ·un′ (+0) = u′ (0) .

Here indices mark the edges (uj is the value of u at j-th edge). The last condition is related to the pressure
continuity (see, e.g., [26, 29, 30]). Here, uj

′ (+0) is the derivative in the outgoing direction at the vertex 0. The
continuity equation gives us for this vertex:

n∑
j=1

uj = −

(
ρ (0)∑n

j=1ρ
′
j (+0)

)
u′ (0) . (21)

It is similar to well-known δ′-coupling condition for the quantum graph [15]. The coupling constant is related to
the density derivative.

We will consider the following case: q =
η′

η

ρ′

ρ
is uniformly continuous on every edge of the graph Γ (we

mark the set of its edges as E and the set of its vertices as V ),

θ =
ρ (0)∑n

j=1ρ
′
j (+0)

is positive. We will deal with the following homogeneous equation:

(Hu) (x) = 0. (22)
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Here, operator H is defined as follows. At each edge it acts as:

(Hu) (x) = − d2

dx2
u (x) + q (x)u (x) , x ∈ E (Γ) . (23)

Elements from its domain belong to the Sobolev space H2 at each edge. As for vertices, the following condition
takes place (for a vertex x having n output edges):

u1
′ (+x) = u2

′ (+x) = · · ·un′ (+x) = u′ (x) , x ∈ V (Γ) , (24)
n∑
j=1

uj (x) + θu′ (x) = 0, x ∈ V (Γ) , θ > 0. (25)

u (a) = 0, a ∈ ∂Γ. (26)

One can see that we have constructed a metric graph model which coincides with that of the two-dimensional
case [27]. Of course, the definition of the function u differs from that of the 2D case but the model operator is
the same. Correspondingly, one can obtain the same result for “cylindrical” case. Namely, we obtain the following
statement.

Definition. Operator H is denoted as sign preserving on the graph Γ if the inequality u (x)u (x′) > 0 takes
place for any nontrivial solution of equation (22). Here x, x′ are arbitrary points of Γ \ ∂Γ.

The main result of the paper is the following inequality (27) that is analogous to the Harnack’s inequality for
an elliptic operator on a manifold.

Main Theorem. Let H be sign preserving on graph Γ. Then there exists a constant γ, determined by the
operator H and the structure of the graph Γ only, such that each non-negative on Γ solution u (x) of inequality
Hu ≥ 0 satisfies the following inequality:

max
x∈Γ0

u (x) ≤ γ min
x∈Γ0

u (x) , (27)

on any locally compact (in respect to Γ) subgraph Γ0, Γ0 ⊂ Γ.
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