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A metric graph model is suggested for the Stokes flow concentrated in the vicinity of a network embedded in R3. As a basic problem, we

consider the case corresponding to strong variation of the viscosity and density in a cylinder of small radius. An equation for the main term of

the asymptotics is obtained. As for a graph structure, coupling conditions are assumed at the graph vertices.
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1. Introduction

Many physical systems demonstrate flows concentrated near a network, e.g., flows through nanotubes [1–3] or
biophysical flows [4–6]. Mentioned flow concentration near lines or surfaces may be caused by specific variation
of viscosity. It is typical, for instance, for geophysical flows [7–10]. Narrowness of the domain means small ratio
of width and length. It is worth noting that works concerning to viscous wires with free surface [11,12] are related
to glass and fiber technologies. The problems are complicated and it is of great relevance to construct models
which allow simplification.

Concentration of a solution near lines or networks appears not only in fluid mechanics but also in other
fields, e.g., in quantum theory. There is an effective and simple method for investigating such systems in quantum
mechanics – the quantum graph model. This method was developed in the 1980’s ( [13, 14]) and now is a widely
used approach (see, e.g., [15]). The model has some relevant features. On the one hand, it allows one to obtain
explicit solutions of the model problem; in addition, it permits good approximation in many particular physical
problems (see, e.g., [16–18]). This is one reason for seeking of a new field of application for such an effective
instrument. In this paper, we make steps to the development of a model analogs to the quantum graph for fluid
mechanics.

There are several ways to consider the hydrodynamic equations on a network (metric graph). One can deal
with the 1D Navier–Stokes equation. For example, for compressible fluid of constant viscosity η̃ it takes the form:

∂v

∂t
+ v

∂v

∂x
− η̃ ∂

2vx
∂x2

= 0.

This is a nonlinear equation. To get the corresponding linear one we can linearize it in the vicinity of some
solution or simply neglect the nonlinear inertial terms. It is possible to obtain the 1D Navier–Stokes equation by
the asymptotic procedure for 3D or 2D Navier–Stokes equations in thin tubes (see, e.g., [19–22]). It is also possible
to study linear 2D or 3D Stokes equations in a system of narrow tubes and to consider the limiting procedure
for tubes having widths tending to zero. One observes an analogous situation for waveguides and thick quantum
graphs (see, e.g., [23–25]). In the most popular model for the Stokes flow in a network one assumes that there is
the Poiseuille flow in the tubes [26]). In our case the situation is more complicated (the flow is not localized inside
tubes, the viscosity and the density varies essentially), and this model is not appropriate. We use the asymptotic
approach. The first step was made in [27], where a metric graph model was constructed for 2D case. As a result,
we obtain 1D problem on a metric graph for the main term of the asymptotic expansion. We called it the Stokes
graph. In the present paper, we construct the model for 3D case.
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2. Preliminaries

3D Stokes and continuity equation for the case of variable viscosity and density in cylindrical coordinates
(r, ϕ, z)are as follows:

(∇ · σ)r = −ρGr,
(∇ · σ)φ = −ρGφ,
(∇ · σ)z = −ρGz,

(1)

∇(ρv) = 0. (2)

Here σ is the stress tensor, ρ is the density, G is the external force, v is the flow velocity. In cylindrical
coordinates the continuity equation (2) takes the form:

ρvr
r

+
∂(ρvr)

∂r
+

1

r

∂(ρvφ)

∂φ
+
∂(ρvz)

∂z
= 0 (3)

The divergence of a total stress tensor in cylindrical coordinates have the form:

(∇ · σ)r =
∂σrr
∂r

+
σrr − σφφ

r
+

1

r

∂σφr
∂φ

+
∂σzr
∂z

,

(∇ · σ)φ =
∂σrφ
∂r

+
2σrφ
r

+
1

r

∂σφφ
∂φ

+
∂σzφ
∂z

,

(∇ · σ)z =
∂σrz
∂r

+
σrz
r

+
1

r

∂σφz
∂φ

+
∂σzz
∂z

.

Then equations (1) transform to the form:

∂τrr
∂r

+
τrr − τφφ

r
+

1

r

∂τrφ
∂φ

+
∂τrz
∂z
− ∂P

∂r
= −ρGr, (4)

∂τrφ
∂r

+
2τrφ
r

+
1

r

∂τφφ
∂φ

+
∂τφz
∂z
− 1

r

∂P

∂φ
= −ρGφ, (5)

∂τrz
∂r

+
τrz
r

+
1

r

∂τφz
∂φ

+
∂τzz
∂z
− ∂P

∂z
= −ρGz. (6)

In cylindrical coordinates, the deviatoric stress tensor has the following components:

τrr = 2η
∂vr
∂r

, τφφ = 2η

(
1

r

∂vφ
∂φ

+
vr
r

)
, τzz = 2η

∂vz
∂z

,

τrφ = η

(
1

r

∂vr
∂φ

+
∂vφ
∂r
− vφ

r

)
, τrz = η

(
∂vz
∂r

+
∂vr
∂z

)
,

τφz = η

(
∂vφ
∂z

+
1

r

∂vz
∂φ

)
.

In more detail, equations (4), (5), (6) take the form:

2
∂η

∂r

∂vr
∂r

+ 2η
∂2vr
∂r2

+ 2η
1

r

∂vr
∂r
− 3η

1

r2

∂vφ
∂φ
− 2η

vr
r2

+
1

r2

∂η

∂φ

∂vr
∂φ

+

1

r

∂η

∂φ

∂vφ
∂r
− ∂η

∂φ

vφ
r2

+ η
1

r2

∂2vr
∂φ2

+
1

r
η
∂2vφ
∂φ∂r

+

+
∂η

∂z

∂vz
∂r

+
∂η

∂z

∂vr
∂z

+ η
∂2vz
∂z∂r

+ η
∂2vr
∂z2

− ∂P

∂r
= −ρGr,

(7)

1

r

∂η

∂r

∂vr
∂φ

+
∂η

∂r

∂vφ
∂r
− 1

r

∂η

∂r
vφ + η

1

r

∂2vr
∂r∂φ

+ η
∂2vφ
∂r2

+

3η
1

r2

∂vr
∂φ

+ η
1

r

∂vφ
∂r
− η vφ

r2
+ 2

1

r2

∂η

∂φ

∂vφ
∂φ

+ 2
1

r2

∂η

∂φ
vr+

2η
1

r2

∂2vφ
∂φ2

+
∂η

∂z

∂vφ
∂z

+
1

r

∂η

∂z

∂vz
∂φ

+ η
∂2vφ
∂z2

+ η
1

r

∂2vz
∂z∂φ

− 1

r

∂P

∂φ
= −ρGφ,

(8)

∂η

∂r

∂vz
∂r

+
∂η

∂r

∂vr
∂z

+ η
∂2vz
∂r2

+ η
∂2vr
∂r∂z

+ η
1

r

∂vz
∂r

+ η
1

r

∂vr
∂z

+
1

r

∂η

∂φ

∂vφ
∂z

+
1

r2

∂η

∂φ

∂vz
∂φ

+ η
1

r

∂2vφ
∂φ∂z

+ η
1

r2

∂2vz
∂φ2

+ 2η
∂2vz
∂z2

+ 2
∂η

∂z

∂vz
∂z
− ∂P

∂z
= −ρGz.

(9)
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3. Stokes graph model

We will consider the flow under some axisymmetric conditions. Keeping in mind future replacement of
variables, we change notations. Namely, we equip all variables and parameters in equations (3), (7), (8), (9) by
:̃ r̃, ϕ̃, z̃, η̃, ρ̃. We will deal with the case when the values of the viscosity η̃ and the density ρ̃ are smooth and
outside the cylinder {(r̃, ϕ̃, z̃) : z̃ ∈ (−∞,∞), r̃ ∈ (0, ε)} are essentially greater than inside it ((r̃, ϕ̃, z̃) are the
cylindrical coordinates):

η̃(r̃, ϕ̃, z̃) = η(z̃)η2(r̃), ρ̃(r̃, ϕ̃, z̃) = ρ(z̃)ρ2(r̃),

η2(r̃) =

{
1, 0 ≤ r̃ ≤ ε,
ηw, r̃ > 2ε,

ηw � 1,

ρ2(r̃) =

{
1, 0 ≤ r̃ ≤ ε,
ρw, r̃ > 2ε,

ρw � 1.

Here, ε is a small parameter. It means that the flow is essentially inside the cylinder. We will consider the
flow inside the cylinder only. Let us introduce new coordinates: z = z̃, r = r̃/ε, ϕ = ϕ̃. We will consider an
axisymmetric solution. Correspondingly, the flow velocity and the pressure do not depend on ϕ. Correspondingly,
equation (8) becomes the identity. Equations (7), (9), (3) take the following form after the coordinate replacement:

2ε−2 ∂η

∂r

∂vr
∂r

+ 2ε−2η
∂2vr
∂r2

+ 2ε−2η
1

r

∂vr
∂r
− 2ε−2η

vr
r2

+ ε−1 ∂η

∂z

∂vz
∂r

+

ε−1 ∂η

∂z

∂vr
∂z

+ ε−1η
∂2vz
∂r∂z

+ η
∂2vr
∂z2

− ε−1 ∂P

∂r
= −ρGr, (10)

ε−2 ∂η

∂r

∂vz
∂r

+ ε−1 ∂η

∂r

∂vr
∂z

+ ε−2η
∂2vz
∂r2

+ ε−1η
∂2vr
∂z∂r

+ ε−2η
1

r

∂vz
∂r

+

ε−1η
1

r

∂vr
∂z

+ 2η
∂2vz
∂2z

+ 2
∂η

∂z

∂vz
∂z
− ∂P

∂z
= −ρGz, (11)

ε−1 ρ

r
vr + ε−1 ∂ρ

∂r
vr + ε−1ρ

∂vr
∂r

+
∂(ρvz)

∂z
= 0. (12)

We will seek the solutions in the form of series in ε:

vr = v0
r + v1

rε+ ..., vz = v0
z + v1

zε+ ..., P = P 0 + P 1ε+ ....

Let us insert the series (3) into equations (10), (11), (12) and collect terms of the same powers of ε . We obtain
the chain of equations for the series coefficients. Terms of order ε−2 are in the Stokes equations (in new variables)
only:

η
∂2v0

r

∂r2
+

1

r

∂(rη)

∂r

∂v0
r

∂r
− η

r2
v0
r = 0, (13)

η
∂2v0

z

∂r2
+

1

r

∂(rη)

∂r

∂v0
z

∂r
= 0. (14)

Equation (14) gives us:

v0
z(r, z) =

f(z)

η(z)

∫
dr

rη2(r)
= u(z)

∫
dr

rη2(r)
. (15)

Here u(z), f(z) are some functions of one variable. They should be determined later. Terms of order ε−1 are in
three equations. The continuity equation gives us: v0

r = g(z)/(rρ). To avoid contradiction with (13), we conclude
that v0

r = 0, i.e. the series for vr starts from another power than for vz . It is a conventional situation when one
has different scales for different directions (see, e.g., [31]). The Stokes equations (10), (11) give us the following
relations for the terms of this order:

η
∂2v1

r

∂r2
+

1

r

∂

∂r
(rη)

∂v1
r

∂r
− η

r2
v1
r = −∂η

∂z

∂v0
z

∂r
− η ∂

2v0
z

∂r∂z
+
∂P 0

∂r
,

η

∂r

∂v1
z

∂r
+ η

∂2v1
z

∂2r
+

1

r

∂v1
z

∂r
= 0.

These equations are solvable with respect to v1
r , v

1
yz. The pressure term P 0 should be determined later.

Consider the terms of order ε0. The continuity equation (12) leads to the following equation for v1
r :

∂ρ

∂r
v1
r +

ρ

r
v1
r + ρ

∂v1
r

∂r
= −∂ρ

∂z
v0
z − ρ

∂v0
z

∂z
, (16)
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Equation (10) gives the relation:

2η
∂2v2

r

∂r2
+ 2

∂η

∂r

∂v2
r

∂r
+ 2

η

r

∂v2
r

∂r
− 2η

v2
r

r2
=

−∂η
∂z

∂v1
z

∂r
− ∂η

∂z

∂v1
r

∂z
− η ∂

2v1
z

∂z∂r
+
∂P 1

∂r
− ρGr, (17)

Equation (11) produces the relation:

η
∂2v2

z

∂r2
+
∂η

∂r

∂v2
z

∂r
+
η

r

∂v2
z

∂r
=

−∂η
∂r

∂v1
r

∂z
− ∂η

∂z

∂v0
z

∂z
− η ∂

2v1
r

∂z∂r
− η

r

∂v1
z

∂z
− 2η

∂2v0
z

∂z2
+
∂P 0

∂rz
− ρGz. (18)

The pressure is determined at the next stage (by taking into account the solvability condition

(
∂2P 0

∂r∂z
=

∂P 0

∂z∂r

)
where the right hand side is obtained as a derivative with respect to r of the expression obtained from (18) and the
left hand side – as a derivative in respect to z of the expression obtained from (17)). If we consider the first term
of the asymptotic series for the velocity only, we obtain an interesting equation for v0

z from (18) and (16):

∂2v0
z

∂z2
− ∂η

∂z

1

η

∂ρ

∂z

1

ρ
v0
z = −ρ

η
Gz +

1

η

∂P 0

∂z
. (19)

Taking into account the expressions for η, ρ, v0
z , one can see that it leads to the following equation for the function

u(z) in the homogeneous case

(
Gx = 0,

∂P 0

∂z
= 0

)
:

u”− η′

η

ρ′

ρ
u = 0. (20)

One can see that we have the 1D Schrödinger equation with a specific potential for the function u(x) corresponding
to zero energy (the similar problem for the quantum graph is known as the threshold resonance, see, e.g., [28]).

Thus, for the flow concentrated near a line (a thin cylinder) we have one-dimensional model. Correspondingly,
more complicated case of flow concentrated near a network (system of coupled segments) can be reduced to the
corresponding metric graph with the Schrödinger operator:

H = − d2

dx2
+
η′

η

ρ′

ρ

on the edges as the first approximation for the description of the flow. We call it the Stokes graph (Γ). It is
necessary to determine boundary conditions at the graph vertices. Consider a vertex (let it be zero point) with n
output edges. From physical conditions, one has:

ρ1 (0) = ρ2 (0) = · · · ρn (0) = ρ (0)

and
u1
′ (+0) = u2

′ (+0) = · · ·un′ (+0) = u′ (0) .

Here indices mark the edges (uj is the value of u at j-th edge). The last condition is related to the pressure
continuity (see, e.g., [26, 29, 30]). Here, uj

′ (+0) is the derivative in the outgoing direction at the vertex 0. The
continuity equation gives us for this vertex:

n∑
j=1

uj = −

(
ρ (0)∑n

j=1ρ
′
j (+0)

)
u′ (0) . (21)

It is similar to well-known δ′-coupling condition for the quantum graph [15]. The coupling constant is related to
the density derivative.

We will consider the following case: q =
η′

η

ρ′

ρ
is uniformly continuous on every edge of the graph Γ (we

mark the set of its edges as E and the set of its vertices as V ),

θ =
ρ (0)∑n

j=1ρ
′
j (+0)

is positive. We will deal with the following homogeneous equation:

(Hu) (x) = 0. (22)
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Here, operator H is defined as follows. At each edge it acts as:

(Hu) (x) = − d2

dx2
u (x) + q (x)u (x) , x ∈ E (Γ) . (23)

Elements from its domain belong to the Sobolev space H2 at each edge. As for vertices, the following condition
takes place (for a vertex x having n output edges):

u1
′ (+x) = u2

′ (+x) = · · ·un′ (+x) = u′ (x) , x ∈ V (Γ) , (24)
n∑
j=1

uj (x) + θu′ (x) = 0, x ∈ V (Γ) , θ > 0. (25)

u (a) = 0, a ∈ ∂Γ. (26)

One can see that we have constructed a metric graph model which coincides with that of the two-dimensional
case [27]. Of course, the definition of the function u differs from that of the 2D case but the model operator is
the same. Correspondingly, one can obtain the same result for “cylindrical” case. Namely, we obtain the following
statement.

Definition. Operator H is denoted as sign preserving on the graph Γ if the inequality u (x)u (x′) > 0 takes
place for any nontrivial solution of equation (22). Here x, x′ are arbitrary points of Γ \ ∂Γ.

The main result of the paper is the following inequality (27) that is analogous to the Harnack’s inequality for
an elliptic operator on a manifold.

Main Theorem. Let H be sign preserving on graph Γ. Then there exists a constant γ, determined by the
operator H and the structure of the graph Γ only, such that each non-negative on Γ solution u (x) of inequality
Hu ≥ 0 satisfies the following inequality:

max
x∈Γ0

u (x) ≤ γ min
x∈Γ0

u (x) , (27)

on any locally compact (in respect to Γ) subgraph Γ0, Γ0 ⊂ Γ.
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The photo- and cathodoluminescence spectra (PL, CL) of diamond single crystals synthesized under high-pressure and at high-temperature

(HPHT sintering) from detonation nanodiamonds (DND) particles with Gd and Eu ion-functionalized surfaces have been studied. The HPHT

sintering was made under pressures (P ∼= 7 GPa) and temperature (T = 1300 – 1500 ◦C). The DND particles have sizes of 4 – 5 nm,

hydrocarbons and/or alcohols were used at the HPHT synthesis instead of traditional metal catalysts. The initial and synthesized crystals were

characterized by X-ray microanalysis, mass-spectroscopy, scanning electron microscopy (SEM), PL and CL. Mass spectra confirmed that Gd

and Eu atoms were inserted into the volume of diamond single crystals in the HPHT sintering. A significant conversion of the PL and CL

spectra of synthesized diamond single crystals compared with HPHT diamond crystals were observed. Transformation of the point defect

assemblies inherent to the diamond crystal can explain the observed spectra.
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1. Introduction

The recent increase of interest in nanodiamonds is related to their potential utility as nanoparticles in bio-
imaging systems [1–3]. The idea is related to the usage of light emission from luminescent centers in diamond
lattice. Currently-known centers are nitrogen-vacancy, silicon-vacancy color centers [4, 5] and impurity of Eu ions
in diamond lattice [6, 7]. Gadolinium atoms are particularly attractive as a dopant in diamond lattice due to their
potential use in nuclear magnetic resonance tomography [8].

Recently, we developed a method for producing of detonation nanodiamonds (DND) hydrosol with mean size
of particles 4 – 5 nm [9, 10] and submitted technological protocol for surface modification of DND particles by
metal ions [11]. We also demonstrated an interesting effect of single diamond crystal formation from DND particles
at high-pressure and high-temperature (HPHT) sintering [12].

It is readily obvious that it would be very attractive to study the possibility of metal ion encapsulation in
diamond crystalline structure using DND surface modified particles as starting materials for HPHT sintering. This
paper submits the first results from these studies.

2. Experimental

2.1. Samples

We studied following three types of samples. The first one was diamond single crystals (DSC) produced by
sintering of DND powder at HPHT conditions in the presence of alcohols and/or hydrocarbons in a high-pressure
chamber. The procedure of DND sintering is described in detail in [11, 12]. The second type was DSC sintered at
the same conditions from DND with surface modified with europium (Eu). The third type was DSC sintered at the
same conditions from DND with surface modified with gadolinium (Gd).

The initial DND, with size of 4 – 5 nm, were purified and de-agglomerated in accordance with a procedure
described in [9, 10]. Surface modification of DND with 3d–4f elements (Eu, Gd) was carried out using ionic
exchange in accordance to the procedure described in [13, 14].

The synthesized DSC samples represent a powder of diamond single crystals raging of up to 5 µm (see
Fig. 1).
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FIG. 1. SEM image of DSC obtained by HPHT sintering of DND modified with 3d–4f elements.
Scale bar is 5 micron

2.2. Methods

The composition of the diamonds studied by energy-dispersive X-ray spectroscopy (EDX) using X-ray micro-
analyzer CAMEBAX-MICROBEAM from CAMECA, equipped with four X-ray spectrometers with a set of crystal
analyzers. Quantitative X-ray spectral microanalysis was carried out under the following conditions: accelerating
voltage – 20 KV (electron energy 20 KeV), angle of X-ray selection – 40 ◦, current of absorbed electrons – 10 –
50 nA. The detection limit of the rare-earth elements in the carbon matrix was under optimal conditions in the
range 0.02 – 0.05 wt.%. As the concentration approaches this value, the microanalysis became semiquantitative,
the relative error could reach 50 – 100 %. To obtain the average content of 3d–4f elements, the analysis have
been performed with a defocused electron probe 50 µm in diameter.

Preparation of samples for mass-spectroscopy with laser evaporation consisted in gluing a portion of diamond
powder to the target using a double-sided adhesive tape. Measurements performed using mass spectrometer with ion
cyclotron resonance and Fourier transform (Model 902-MS MALDI Mass Spectrometer, Varian). The spectrometer
was equipped with a superconducting magnet of 9.4 Tesla. Measurements were performed in the positive ion mode.

The laser evaporation of the samples performed using third harmonic of the Nd: YAG laser (355 nm), whose
power can be widely changed. We used DPSS (Diode-pumped solid-state) Nd:YAG laser with titanyl potassium
phosphate crystal (KTiOPO4, KTP) for frequency doubling. The accuracy of the measured monoisotopic mass
after calibration was better than 5 ppm.

The PL study was carried out on spectrometer Ocean Optics Maya 2000 Pro in spectral range 200 – 1100 nm,
using 532 nm laser for excitation. The resolution of the spectrometer was 0.45 nm.

Cathodoluminescence (CL) spectra were measured on samples of diamond powder pressed into indium and
carbon film with a thickness of 100 nm deposited on diamonds. The spectra obtained at room temperature. Energy
of incident electron beam was 15 KeV [15].

3. Results and discussion

According to EDX measurements, the europium and gadolinium content in DSC samples obtained by HPHT
sintering of DND with modified surface was 0.01 – 0.02 at.% for both Gd and Eu samples.

Unfortunately, EDX technique is unable to distinguish 3d–4f atoms incorporated into crystal structure and
deposited on the surface of diamond crystal. Thus, it is insufficient to give comprehensive evidence for presence
of Gd or Eu inside DSC obtained by sintering of DND particles with modified surface.

3.1. Mass spectroscopy

Figure 2(a) presents mass spectrum of DSC obtained by sintering from initial DND without surface modifica-
tion.
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FIG. 2. Mass spectra of DSC samples obtained with use of laser evaporation: (a) from sample
obtained by HPHT sintering of pure DND; (b) from sample obtained by HPHT sintering of DND
with surface modified by Eu; (c) from sample obtained by HPHT sintering of DND with surface
modified by Gd
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The spectrum is measured using laser evaporation of diamond crystals. In the range of 150 – 175 AMU, it
demonstrates a number of peaks corresponding to pure carbon atomic clusters (at 156.0027, 168.0002) and clusters
containing nitrogen (158.0157, 170.0160), or both oxygen and nitrogen (150.0025, 162.0029, 174.046, 154.0261).
The presence of oxygen and nitrogen is typical for surface of diamond crystals obtained by HPHT sintering. The
same spectra demonstrate DSC samples prepared by sintering of DND modified by Eu as well as by Gd ions. At
that, observed no lines that could attributed to Gd and Eu.

Figure 2(b) demonstrates mass spectrum at same band of masses of DSC sample produced by sintering DND
modified by Eu. The spectrum measured at an order of magnitude increased compared to spectra in Fig. 2(a)
power of evaporating laser. Along with prominent line of carbon clusters at mass 168.000, it demonstrates a
series of intensive lines corresponding to europium isotopes (150.9198, 152.9212) and europium hydroxide EuOH
(167.9226, 169.9240).

In Fig. 2(c), a mass spectrum of DSC sample produced by sintering DND modified by Gd is presented.
In the band of masses 169.5 – 178.5, we observed noticeable line related to nitrogen-containing carbon clusters
(170.0153). The observed series of intensive lines correspond to gadolinium oxide GdO (170.9175, 171.9170,
172.9189, 173.9190 and 175.9220). The fact that signals related to Eu and Gd appear only at increased intensity
of evaporating laser irradiation suggests that corresponding atoms are situated not at the surface but inside the bulk
of micron sized diamond particles.

3.2. Cathodeluminescence spectra

Figure 3 demonstrates the comparison of CL spectra measured on three types of samples: initial DND (curve 1),
SDC sintered of initial DND (curve 2), SDC sintered of DND with surface modified by Eu ions (curve 3). Taking
into account that the shape of CL spectra of diamond determined mainly by system of structural defects inside
crystalline lattice of particles and contribution of surface [16], we can conclude that SDC conserve the system of
defects inherited from the same of parental DND. The moderate shift to shorter wavelength range can be attributed
to decrease of contribution of effective surface of diamond particles due to increase of crystalline size as a result
of sintering process.

FIG. 3. Comparison of CL spectra from initial DND, DSC obtained from initial DND and DSC
obtained from DND with surface modified by Eu ions

CL spectra of SDC obtained by sintering of DND with surface modified by Eu ions exhibit dramatic differences
compared to the same spectra measured of SDC having no Eu. The presence of two peaks reveals significant
transformation of bulk structure and increase of defects in crystalline structure of the SDC. The propagation of
luminescence to short wavelength region can manifest formation the structural defects of diamond lattice obviously
related to the difference between effective radius of carbon and europium atoms incorporated into diamond.
Forming the breakdown in the middle of spectral range and corresponding longwave apex may be concerned to
quenching the luminescence of nitrogen color centers at corresponding wavelengths due to distortion of diamond
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crystalline lattice by intrusion of 3d–4f atoms. The observed dramatic transformation of CL spectra related to Eu
atoms in structure of SDC samples under study suggests that structural modification of diamond lattice is most
likely due to the presence of incorporated atoms in position far from crystal surface.

3.3. Photoluminescence spectra

Figure 4 demonstrates photoluminescence (PL) spectra for the three types of samples. The first spectrum
measured on DSC sintered of initial DND containing no 3d–4f elements (curve 1). Second spectrum was measured
on DSC sintered of DND modified by Gd (curve 2). The third spectrum corresponds to DSC sintered of DND
modified by Eu (curve 3). The spectrum of DSC containing no 3d–4f elements is typical for diamond crystals
obtained by sintering of DND in the presence of hydrocarbons at high pressure and temperature [17].

FIG. 4. PL spectra of diamond single crystals produced by HPHT sintering of DND: curve 1 – PL
spectrum of diamond single crystals produced from pure DND curves 2 and 3 crystals produced
from DND with surface modified by 3d–4f ions (Gd – curve 2, Eu – curve 3)

The spectrum demonstrates clearly visible lines of nitrogen-vacancy color centers and detectable feature attrib-
uted to Raman scattering (curve 1 in Fig. 4). Photoluminescence of DSC containing Gd and Eu exhibits noticeably
smaller intensity and nearly complete absence of expressed lines from nitrogen centers. Most likely, it is related to
additional distortion of diamond lattice due to incorporation of large sized and heavy 3d–4f atoms. The additional
vacancies and distorted bond lengths promote quenching of luminescence of color centers in diamond lattice. Thus,
comparison of PL spectra from samples of DSC sintered of DND with 3d–4f atoms on surface to spectra from
DSC sintered of pure DND demonstrates successful incorporation of Eu and Gd into the lattice of diamond single
crystals.

4. Conclusions

The results of experiments support the possibility of obtaining diamond crystals containing incorporated 3d–4f
elements by sintering from DND particles with surface modified by corresponding ions.

We have successfully demonstrated incorporation of Eu and Gd atoms into structure of micron-sized diamond
single crystals during sintering from DND particles. Analysis of mass spectra measured with help of laser ablation
confirms the presence of Eu and Gd inside diamond crystals. The comparison of CL as well as PL spectra of
diamond crystals, sintered from DND with and without surface modification by Eu or Gd reveals transformation
of system of defects due to the insertion of large sized 3d–4f atoms inside diamond lattice.
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1. Introduction

A quantum theory of a multielectron system bases on joint symmetry group of permutations and space sym-
metry. In the pioneer paper of Heisenberg [1] it was established, that Weiss model of ferro-magnetism is explained
by electric interaction, which origin may be understood on base of theory of Heitler–London hydrogen molecule. It
is naturally combined with Hartree–Fock theory [2] and its further self-consistent one-particle generalizations that
provide better exchange integral evaluation including the system spectral properties [3].

The group theoretical foundation of [1] is based on multispin state via irredicible representations of the
symmetry with respect to permutation group [4]. The problem of Hamiltonian spectrum parameters evaluation is
expressed in terms of irreducible representations of symmetry group and exchange integrals, see also [5].

The next important step in the theory development taking into account the antisymmetry of the wave function
of electrons and a more advanced extended symmetry, including space (geometry) symmetry of equivalent positions
of atoms equilibrium. The magnetic properties of matter exist as a result of electrons spins and the antisymmetry
of the wave function.

When a system is in an external electric or magnetic field, an additional terms in the Hamiltonian appear.
Its microscopic origin is conventionally understand in terms of perturbation theory that gives deformation of
wavefunctions and energy eigenvalues. The results in atomic physics are known as Stark and Zeeman effects.

A multiferroic control implies a manipulation of magnetic moment by electric field switching. General thermo-
dynamic consideration, specified by Dzialoshinski, introduces the magnetoelectric constants, namely longitudinal
and perpendicular dielectric constants, the magnetic susceptibilities, and the constants describing the magneto-
electrical effect.

In this paper, a spectral and statistical theory in the Heisenberg spirit is developed. The application of statistical
physics approach, formulated in [1] leads to the mentioned thermodynamic parameters evaluation with external
magnetic and electric fields account. The ferro-magnetism appearance conditions are illustrated by plotting the
dependence of closest neighbors number on exchange integral.

Applications to amorphous microwires and crystalline nanowires are discussed by example of a tube made of
atoms which space positions form symmetrical configuration. The energy and distribution parameter modifications
for nanotubes naturally introduce the closest neighbors exchange integrals defined by the nanostructure symmetry.
It gives a model thermodynamic description based on a statistical sum modifications.
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2. A joint symmetry group of multi-electron systems

Generally a wave function of a multi-electron system:

Φ = Φ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)
∈ H, (1)

depends on the variables ~Rj ∈ R3, j = 1, ...K, as on parameters, that are coordinates of “adiabatic” atoms
positions, ~ri ∈ R3, i = 1, ..., N are electron coordinates and σ1, σ2, . . . , σN are spin variables of electrons. Since
the electrons are fermions, the Pauli–Luders theorem states that the wave function must be antisymmetric in the
variables of the electrons; this means that the function belongs the irreducible representation of the all-electrons
permutation group.

A rotation in position space marked as R(α, β, γ), where the angles α, β, γ are Euler ones represents in a
1-electron spin space by a 2×2 matrix u(α, β, γ):

u(α, β, γ) = D1/2(α, β, γ), (2)

where D1/2 is an unitary matrix of irreducible representation of rotation group [6]. This means that the wave
function (1) transforms as direct product of the representations (2). To study the joint group table it is convenient
to “jump” into the representation of the spinors Φ, because the permutations and rotations act also to the atoms
positions. The actions in Hilbert space of states are for the permutations:

PΦ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)

=

Φ
(−→
R 1, · · · ,

−→
RK , (P

−→r 1, Pσ1) , · · · , (P−→r N , PσN )
) (3)

and
RΦ

(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)

=

D1/2
σ1,σ′

1
...D1/2

σN ,σ′
N

Φ
(−→
R 1, · · · ,

−→
RK , (R

−→r 1, σ
′
1) , · · · , (R−→r N , σ′N )

) (4)

for rotations. The operators P,R act in Hilbert space H, while P,R act in position space R3.
A combination of the transformations (4) and (6):

PRΦ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)

=

D1/2
Pσ1,σ′

1
...D1/2

PσN ,σ′
N

Φ
(−→
R 1, · · · ,

−→
RK , (PR

−→r 1, σ
′
1) , · · · , (PR−→r N , σ′N )

)
,

(5)

and, in opposite order,

RPΦ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)

=

D1/2
σ1,Pσ1

...D1/2
σN ,PσN

Φ
(−→
R 1, · · · ,

−→
RK , (P

−→r 1, Pσ1) , · · · , (RP−→r N , RPσN )
)
.

(6)

For the joint symmetry applications the Frobenius theorem is used. Let H be a subgroup of the group G and
γ(i) is a irreducible representation of H . Then the representation Γ of G, induced by γ(i) contains each irreducible
representation Γλ of G so many times as γ(i) contains in the representation of H given by matrices Γλ.

The characters of the symmetry group is evaluated by the formula from [7],
Let us give more details for simplest example of Hydrogen molecule. In the case of two-electron system the

wave function is defined in six-dimensional position space with the coordinate set {x1, y1, z1;x2, y2, z2} and with

extra discrete spin variables σ1, σ2, that runs numbers −1, 1. Φ = Φ
(−→
R 1,
−→
R 2;−→r 1, σ1;−→r 2, σ2

)
. Suppose atom

positions ~R1, ~R2 lie in the plane xy symmetrically to origin.
The permutation, in this case, acts in the direct product of space and spin variables as:

P{x1, y1, z1;x2, y2, z2;σ1, σ2} = {x2, y2, z2;x1, y1, z1;σ2, σ1}. (7)

A rotation in xy plane:

R{x1, y1, z1;x2, y2, z2} = {(cosπ)x1, (cosπ)y1, z1; (cosπ)x2, (cosπ)y2, z2}. (8)

is accompanied to a transformation in spin space u(R) ∈ SU(2) so as, generally

uvσ = D1/2
νσ vσ. (9)

The product of the actions is:

PR{x1, y1, z1;x2, y2, z2;σ1, σ2} =

P{(cosπ)x1, (cosπ)y1, z1; (cosπ)x2, (cosπ)y2, z2},
(10)
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and, in inverse order:

RP{x1, y1, z1;x2, y2, z2;σ1, σ2} = R{x2, y2, z2;x1, y1, z1;σ2, σ1}} (11)

with rotation action by (8).

3. Born–Oppenheimer approximation. Hamiltonian of the system of electrons of a solid

In the Born–Oppenheimer approximation, in the problem for electrons, the nuclei of a solid are assumed to be
static. The Hamiltonian is written for a system of N electrons, in the field of the nuclei:

Ĥ = − ~2

2m

∑
i

∆i −
∑
J,i

ZJe
2∣∣∣−→r i −−→RJ

∣∣∣ +
∑
i,j 6=i

e2

|−→r i −−→r j |
. (12)

In the expression (12),
∑
i

is a sum over all electrons, i is the electron number;
∑
J

is a sum over all nuclei, J is

nucleus number; ZJ is the charge of the nucleus with number J , expressed in charges of an electron module |e|;
−→
RJ is a position of the nucleus J , −→r i is a radius-vector for the electron number i.

The energy eigenvalue problem is formulated in terms of the equation:

ĤΦ = EΦ, (13)

where the eigenfinctions Φ = Φ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)
, are parametrized by the nuclei posi-

tions ~Rj , σ1, σ2, . . . σN are electron spin variables. Since the electrons are fermions, the Pauli principle claims,
that a wave function must be antisymmetric in the variables of the electrons, for example,

Φ
(−→
R 1, · · · ,

−→
RK , (

−→r 1, σ1) , · · · , (−→r N , σN )
)

= −Φ
(−→
R 1, · · · ,

−→
RK , (

−→r N , σN ) , · · · , (−→r 1, σ1)
)
.

For shorthand electrons are marked simply with their numbers, that is, we introduce the notation i = (−→r i, σi)
. Then Φ = Φ

(−→
R 1, · · · ,

−→
RK , 1, · · · , N

)
, so further the summation by spin variable is implied.

A symmetry of the equation (13) is determined directly from Fock equations.

4. The Fock equations

Within the framework of the Hartree–Fock method, the wave function Φ = Φ
(−→
R 1, · · · ,

−→
RK , 1, · · · , N

)
may

be searched for in the form of automatically antisymmetric Slater determinant (see [2, 8]) composed of single-
particle functions:

Φ =

∣∣∣∣∣∣∣∣∣∣∣

Ψ1 (1) Ψ2 (1) · · · · · · ΨN (1)

Ψ1 (2) Ψ2 (2) · · · · · · ΨN (2)

· · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

Ψ1 (N) Ψ2 (N) · · · · · · ΨN (N)

∣∣∣∣∣∣∣∣∣∣∣
Here the functions Ψj(i) are named as spin orbitals. From the variational principle

(
min

〈
Φ, ĤΦ

〉)
the Fock

equations for the spin-orbitals Ψi are derived. Let the set of variables “1,2” be marked as “x, y” as in [9] writing
for shorthand: ∫

dx =
∑
σ

∫
d~r. (14)

The conventional form of the equations is:.

F̂jΨj (x) = εjΨj (x) , (15)

and the F̂j are Fockians:

F̂j = ĥ1 +

′N∑
i=1

(
Ĉi − Ĵi

)
(16)

where the Coulombian interaction operator is defined by: .

ĈiΨj =

∫
Ψ∗i (y) Ψi (y)

r12
dyΨj (x) (17)
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where r12 = |~r1 − ~r2| and the exchange one is:

ĴiΨj =

∫
Ψ∗i (y) Ψj (y)

r12
dyΨi (x) (18)

and

ĥ1 = − ~2

2m
41 −

∑
J

ZJe
2∣∣∣~r1 − ~RJ

∣∣∣
A prime over summation sign means that a term with i = j under the sum sign is skipped. The integration is

carried out over the variables of particle 2, r12 = |~r1 − ~r2|, 41 =
∂2

∂x1
+

∂2

∂y1
+

∂2

∂z1
, ~r1 = (x1, y1, z1). It is

assumed that the functions Ψi are orthogonal:
∫

Ψ∗i (x) Ψk (x) dx = δik.

A symmetry of the equation (15) is determined by the following.

5. Fock equation covariance

We base on Fock Statement [2]. Let L be a Hermitian operator, which is symmetric with respect to all the
electrons, Ω = α1Ψ1 + ...+ αsΨs.

A =

∫
Ω̄LΩ∫
Ω̄Ω

, (19)

then the latter does not depend on coefficients α1; , , , , αs. If H is the energy operator, then, setting the variation
of A to zero, one obtains the Schrödinger equation for the function Ω, to infer the Schrödinger equation from
the variational principles, for any linear combination of functions. In particular the coefficients may be chosen as
matrix elements of irreducible representation Dν

ik(g) of the symmetry group g ∈ G, that defines action:

Ψi(gx) =

s∑
k

Dν
ik(g)Ψk, (20)

A symmetry of the equation (13) is determined directly from Fock equations. Application of permutation
transformation to the Fock equations system consist of

1) change the order of equations
2) the action of the operator Tg on exchange and Coulombian integrals includes action at r12 = |x − y|, that

looks as Tg|x − y| = |gx − y|. After change of variables y = gy′ and application of irreducible representation
matrices unitarity, we arrive at

s∑
i

TgĴiΨj =

s∑
k,p

Dν
jp(g)

∫
Ψ∗k (y) Ψp (y)

|g(x− y)|
dyΨk(x) =

s∑
k,p

Dν
jp(g)ĴkΨk, (21)

and on the Coulomb one
s∑
i

TgĈiΨj =

s∑
k,p

Dν
jk(g)

∫
Ψ∗p (y) Ψp (y)

|g(x− y)|
dyΨk =

s∑
k,p

ĈpD
ν
jk(g)Ψk. (22)

An account of symmetry with respect to the permutation group is studied in [4], where a determinant representation
for the eigenfunctions was introduced. It explored by Fock in derivation of one-particle self-consistent equations
via variational principle in terms of wave functions from irreducible subspaces [2].The space transformation group
action may be determined also via transformation of arguments.

A general symmetry transformations of the system of equations (15) is determined as in Sec. 2.
An irreducible representation basis is fixed by the projection operators P νik, numerated by indices ν, ik:

P νik =
∑
G

NνD
ν
ik(g)Tg, (23)

normalized by Nν .
The system of Fock equations then is rearranged under permutations action while the exchange integrals form

the set Jg . The Coulombian and differential parts are invariant under permutations.
The eigenvalue problem of the exchange operators, numerated by the group elements g after summation by

symmetry group is solved via:

det[
∑
g∈G

Dν
ik(g)Jg − δikE] = 0, (24)
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[4] that we take as the initial point of further investigation.

5.1. Heisenberg chain perturbation

Stark effect. A perturbation theory by the field ε = eE directed along x is applied to a solution φ of the
perturbed Fockian:

Hφ = (HF + εx)φ, (25)

reads as expansion by small parameter ε:
φ = φ0 + εφ(1) + .... (26)

In the first order it gives the following expression for an eigen state:

φ(1)n =

′∑
m

(m|x|n)

Em − En
φ0m, (27)

where (m|x|n) are matrix elements of the Cartesian coordinate x in nonperturbed states. Plugging (26) into
exchange integrals Jik, defined for the electrons coupled to the centers i, k, by the expression (21):

Jik =
e2

2

∫ ∫
ρik(~r, ~r′)

|~r − ~r′|
d~rd~r′, (28)

where, in a spirit of Fock paper [10], it may include all interacting electrons of the closest neighbors, as:

ρ(~r, ~r′) =
∑
p

φ∗p(~r)φp(~r
′) =∑

p

(φ∗0p(~r) + εφ(1)∗p (~r))(φ0p(~r
′) + εφ(1)p (~r′)) =∑

p

φ∗0p(~r)φ0p(~r
′) + ε

∑
p

[φ(1)∗p (~r)φ0p(~r
′) + φ∗0p(~r)φ

(1)
p (~r′)] + o(ε2) =

ρ0(~r, ~r′) + ερ1(~r, ~r′) + ....

(29)

In the case of Stark effect:

Jik =
e2

2

∫ ∫
ρ0(~r, ~r′)

|~r − ~r′|
d~rd~r′ + ε

e2

2

∫ ∫
ρ1(~r, ~r′)

|~r − ~r′|
d~rd~r′ = J0

ik + eEJ1
ik, (30)

we obtain the perturbed Heisenberg chain spin Hamiltonian [11]:

H = Jik(~Si, ~Sk) = (J0
ik + eEJ1

ik)(~Si, ~Sk), (31)

with obvious Ising case:

J1
ik =

e2

2

∫ ∫
ρ1(~r, ~r′)

|~r − ~r′|
d~rd~r′ =

e2

2

∫ ∫ ∑
p[φ

(1)∗
p (~r)φ0p(~r

′) + φ∗0p(~r)φ
(1)
p (~r′)]

|~r − ~r′|
d~rd~r′.

(32)

Plugging (27) and using the shorthand
∫ ∫

=

∫
yields:

e2

2

∫ ∑′
p,m φ

∗
0m(~r) (n|x|m)

Em−Enφ0p(~r
′)

|~r − ~r′|
d~rd~r′ +

e2

2

∫ ∑′
p,m φ

∗
0p(~r)

(m|x|n)
Em−Enφ0m(~r′)]

|~r − ~r′|
d~rd~r′, (33)

or, in a bit more compact from:

e2

2

′∑
p,m

(n|x|m)

Em − En

∫
φ∗0m(~r)φ0p(~r

′)

|~r − ~r′|
d~rd~r′ +

e2

2

′∑
p,m

(m|x|n)

Em − En

∫
φ∗0p(~r)φ0m(~r′)]

|~r − ~r′|
d~rd~r′ (34)

=
e2

2

′∑
p,m

(n|x|m)

Em − En
J0
mp +

e2

2

′∑
p,m

(m|x|n)

Em − En
J0
pm, (35)

with the obvious notation for J0
pm.

Having the results of evaluation of the Fockian eigenfunction, one may calculate (35), otherwise we consider
J1
ik as a parameter. Similarly, the Zeeman effect may be included on basis of the perturbation of Hamiltonian by

V = ~µ ~B, ~µ =
µB(gL~L+ gS ~S)

h̄
.
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6. The Heisenberg method of Gauss distribution parameter evaluation

6.1. On eigenvalues distribution

The basic eigenvalue equation written for multi-electron spin system for a given symmetry group g ∈ G
reads [1, 4]:

det[
∑
g∈G

Dν
ik(g)Jg − δikE] = 0, (36)

where ν is an irreducible representation number, Jg are exchange integrals. It defines the system of terms Γν
numerated by the irreducible representations of the symmetry group G, The Pauli principle yields: each value of
the system spin corresponds to one system of terms:

2n = 2 + ...+ 2 + 1 + ...+ 1. (37)

The mean energy is expressed as the sum of the roots
∑

Ei of the Eq. (36) as a coefficient by Enν−1:

Eν =
1

nν

∑
g

χν(g)Jg, (38)

here χν(g) = Dν
ii(g) are chartacters of the group. The next term in the polynomial by Enν−2 gives:∑

n>m

EnEm =
∑

i>k,g,g′

[Dν
ii(g)Dν

kk(g′)−Dν
ik(g)Dν

ki(g
′)]JgJg′ =

1

2

∑
i,k,g,g′

[Dν
ii(g)Dν

kk(g′)−Dν
ik(g)Dν

ki(g
′)]JgJg′ .

(39)

By the group property:

Dν
ik(g)Dν

ks(g
′) = Dν

is(gg
′),

taking Dν
ii(g) = χν(g) into account:∑

n>m

EnEm =
1

2

∑
g,g′

[χν(g)χν(g′)− χν(gg′)]JgJg′ . (40)

Plugging En = Eν + ∆En yields:∑
n>m

EnEm =
∑
n>m

(Eν + ∆En)(Eν + ∆Em) =

nν(nν − 1)

2
(Eν)2 +

∑
n>m

∆En∆Em.
(41)

As
∑

∆En = 0: ∑
n=1

(∆En)2 = −2
∑
n>m

(∆En)(∆Em). (42)

From (38,40,41,42) and χν(e) = nν we derive:∑
n=1

(∆En)2 =
−1

nν

∑
g,g′

(χν(g)χν(g′)− χν(gg′))JgJg′ . (43)

Finally, the mean square deviation from the mean value Eν

(∆En)2 =
1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν(g′))JgJg′ (44)

The characters of the symmetry group are evaluated by Frobenius theorem application. In the simplest case
of the symmetry group as direct product of the permutation group and space symmetry group, the irreducible
representations are all possible direct products of the irreducible representations of the subgroups. The characters
in this case are simple products of the correspondent characters.
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6.2. Perturbations of mean eigenvalues

The values of exchange integrals in external field (30) gives for (48):

Eν =
1

nν

∑
g

χν(g)(J0
g + eEJ1

g ) = Eν0 + eEEν1 , (45)

which demonstrates the Stark effect for the mean energy for a given IR of the symmetry group.
The mean square deviation from the mean value Eν turns now becomes:

(∆En)2 =
1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν(g′))(J0
g + eEJ1

g )(J0
g′ + eEJ1

g′) ≈

1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν(g′))J0
gJ

0
g′+

eE
1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν)(g′))(J0
gJ

1
g′ + J0

g′J
1
g ) =

1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν(g′))J0
gJ

0
g′ + 2eE

1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν)(g′)J0
gJ

1
g′ ,

(46)

after summation rearranging. The magnetic field is accounted for similarly.

6.3. Permutation group characters

The permutation group characters are listed in [4], the nonzero ones (P = e, P ∈ (12), (123), (12)(34)) are:

χν(e) = nν =
(2n)!(2s+ 1)

(n− s)!(n+ s+ 1)
,

χν(12) =
(2n− 2)!2(2s+ 1)

(n− s)!(n+ s+ 1)
(s2 + s+ n2 − 2n),

χν(123) = χν(12)(34).

(47)

For a specific case the result depends on Jg values. In a case of localized atomic states J(12) decays
exponentially with distance. Therefore the main contribution arises from nearest neighbors. A number of the
neighbors depends on atomic structure symmetry.

If to suppose that we account only the closest neighbors, taking for them Jg = J and neglect by others the
energy is:

Eν =
1

nν

∑
g

χν(g)Jg = −z s
2 + n2

2n
J + Je. (48)

For calculation of (∆En)2, we need:

A(g, g′) =
1

n2ν
(χν(e)χν(gg′)− χν(g)χν(g′))JgJg′ . (49)

Taking only the highest powers of n, s into account, we have:

1.g = g′

A(12)(12) =
(n2 − s2)(3n2 + s2)

4n4
,

2. g nad g’ have one joint element

A(12)(13) =
(n2 − s2)(s2)

4n4
,

3. g nad g’ have no joint element

A(12)(34) =
(s2 − n2)(s2)

2n5
.

(50)

If the atom has z neighbors, the type 1. we meet zn times, 2. - z(z-1) times and 3. - 3-
z2n2

2
times. Finally by

(42), a deviation from Eν is ∆Eσ ≈ J
√
n.

(∆En)2 = J2z
(n2 − s2)(3n2 − s2)

4n3
. (51)
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6.4. Nanotube example

The geometry of the nanoobject under consideration is shown at the Fig. 1, the positions of centers of adiabatic
potentials, denoted in previous sections by ~Rj are marked by boldface points. The axis of space symmetry of
the figure is z, that is used as rotations R ∈ S axis. The translations ta ∈ S are performed along this axis. The
transversal Cartesian coordinates are xy. Let the symmetry group G be a direct product of space symmetry group
S and the group of permutation P , G = S � P .

The permutation group characters (the nonzero ones P = e, P ∈ (12), (123), (12)(34)) are listed in [4],
As it was mentioned, for localized states account, the main contribution arises from nearest neighbors arriving

at (48) and (51).The number of the neighbors depends on the material atoms positions.
For the whole symmetry group that is a direct product G = S ⊗ P, s ∈ S.P ∈ P, dimG = dimSdimP , the

characters are also products
χ(g) = χ(s)χ(P ) (52)

and mean energy for the term corresponding to the irreducible representation ν of the whole G, yields, by the
general (48)

Eν =
1

nν

∑
g

χµ(s)χν1(P )Jg. (53)

The index ν is a pair µ, ν1, where µ is the number of irreducible representation of the space group S, while ν1 –
of the permutation group P .

For the tube of atoms at ~Ri, see the Fig. 1, the group is described as follows [12].

FIG. 1. The geometry of the tube centers positions

Let A ∈ S be a group of the point-centers set symmetry and the finite group Rj ∈ Sc ∈ S be a subgroup of

rotations on angles φj =
2πj

N
, j = 0, ..., N − 1 in a plane, orthogonal to the z-axis. Let also the translations along

z-axis are denoted as tna, n = 0, ...,M − 1 and form the discrete group tna ∈ GT , hence the group elements are
the pairs A = (Rj , tna). The particular case relates to the structure of the tube is described by the direct product:

S = Sc ⊗ ST . (54)

Let the group is represented by transformations in the position space ~r ∈ R3. It is straightforward to see that A is
equivalent to the combined operations of rotation:

Rj =

 cos θj sin θj 0

− sin θj cos θj 0

0 0 1

 (55)

and translation:

ta

 x

y

z

 =

 x

y

z + a

 . (56)

The representation of the elements A is written as:

A~r = Rj~r + tna~r =

 cos θjx+ sin θjy

− sin θjy + cosθj
z + na

 . (57)
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The transformations form an Abelian group, Rjta = taRj . In a realistic geometry of the tube and using periodic
von Karman conditions we restrict the positive n variable change so as n ≤ M . The group element, or the

transformation is parametrized by the vector ~s = {s1, s2} = {2πj

N
, na}. The transformation A ∈ G is written as

A~p = ~p+ ~s.
For Abelian symmetry groups and cyclic subgroups, the IRs are one-dimensional. Conventionally choosing it

as unitary, we write:
D~µ(s) = exp[i(~µ,~s)], (58)

where
~µ = {µ1, µ2} = {j1, j2},

the integers, numerating irreducible representations run the values j1 = 1, ..., N ; j2 = 1, ...,M . Hence:

D~µ(s) = exp[i(j1
2πj

N
+

2πn

M
j2], (59)

In such case, the sum that defines the mean energy is divided into two terms. One is “old”, corresponding the
unit element of the space group and the second relates to combined transformations.

Note that the dimension of the IR nν of S ⊗ P is equal to dimension of the IR for the permutation group P
because the dimension of it is unit:

Eν =
1

nν

∑
~s

∑
P

exp[i(~µ,~s)]χν1(P )JPs. (60)

The summation may be rearranged as:

Eν =
1

nν

∑
P

χν1(P )
∑
~s

exp[i(~µ,~s)]JPs. (61)

In the model of equal exchange integrals the sum is proportional J. The characters of space group do not
contribute: ∑

s

χ~µ(s) =

N−1∑
j=0

M−1∑
n=0

exp[2πi(j1
j

N
+
j2
M
n]. (62)

For nontrivial IR (j1 6= 0, j2 6= 0) the sum (62) is the sum of the geometric progression, that gives:
N−1∑
j=0

exp[2πi(j1
j

N
] =

1− exp[2πij1]

1− exp[2πi j1N ]
= 0

For the trivial IR D0(s) = 1, the sum is equal to NM . Generally, the sum in (61) depends on the model of JPs
, that, for example, may depend on direction that link neighboring atoms. For the tube we study, the distance

between neighbors along axis is a, while the neighbors at rings are at distance b = 2R sin
π

N
. Generally a 6= b,

hence we have two principal exchange integrals Ja, Jb. We divide the sum (58) into two terms:

Eν =
1

nν

[∑
P

χν1(P )
∑
~s

exp[i(~µ,~s)]JPs +
∑
P ′

χν1(P ′)
∑
~s

exp[i(~µ,~s)]JP ′s

]
. (63)

The first contains permutations that are products of transpositions inside rings, while the second are built from
transpositions along z axis. Other permutations are not taken into account as related to non-closest neighbors.

We calculate the first internal sum by the space group:∑
~s

exp[i(~µ,~s)]JPs =

N−1∑
j=0

M−1∑
n=0

exp[2πi(j1
j

N
+
j2
M
n]JPs =

M−1∑
n=0

exp[2πi
j2
M
n]

N−1∑
j=0

exp[2πij1
j

N
]Jb

(64)

For nontrivial IR we have zero, for trivial MNJb. The second one is:∑
~s

exp[i(~µ,~s)]JP ′s =

N−1∑
j=0

M−1∑
n=0

exp[2πi(j1
j

N
+
j2
M
n]JP ′s =

N−1∑
j=0

exp[2πij1
j

N
]

M−1∑
n=0

exp[2πi
j2
M
n]Ja

(65)
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with the same result, but for Ja. The nonzero sum (66) for ν = {0, ν1} hence is equal to:

Eν =
MN

nν

[∑
P

χν1(P )Jb +
∑
P ′

χν1(P ′)Ja

]
. (66)

The mean square deviation from the mean value Eν , ν = {0, ν1} is also splits as follows

(∆En)2 =
1

n2ν

∑
g,g′

(χν(gg′)− χν(g)χν(g′))J2
b + .... (67)

in the first term the pair g, g′ runs a ring set of atoms.

7. Statistics

7.1. Magnetic field

Let, following [1], the eigenvalues around the medium value are distributed by Gauss. As the number of
terms, that belongs to a spin s is equal to nν , then, within the interval Eν + ∆E,Eν + ∆E + d∆E one have for
the number of terms

nν√
2π(∆En)2

exp{− ∆E2

2(∆En)2
}d∆E. (68)

In the external magnetic field the additional energy of the system is:

E′ = − eh

2πµ
Hm (69)

where s ≥ m ≥ −s, µ is electron mass.
The statistical sum of states:

n∑
s=0

S∑
m=−s

∫ ∞
−∞

d∆E
nν√

2π(∆En)2
exp{αm+ β

s2

2n
− ∆E

kT
− ∆E2

2(∆En)2
} =

n∑
s=0

s∑
m=−s

nν exp{αm+ β
s2

2n
+

∆(En)2

2k2T 2
}

(70)

where:

α =
eh

2πµkT
H

β =
zJ

kT

(71)

Plugging (51) gives:

Z =

n∑
s=0

s∑
m=−s

nν exp{αm+ β
s2

2n
+ β2 s

2(4n2 − s2)

8n3z
}. (72)

Denoting:

g(s) = exp{βs
2

2n
} (73)

and taking into account:

nν =

(
2n

n+ s

)
−

(
2n

n+ s+ 1

)
, (74)

after reordering summation one obtains:

Z =

n∑
m=−n

n∑
s=|m|

exp{αm}g(m)

[(
2n

n+ s

)
−

(
2n

n+ s+ 1

)]
. (75)

After transformation similar to integrating by parts, we have:

Z = F

n∑
m=−n

exp{αm}g(m)

(
2n

n+m

)
. (76)
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One may show that the expression exp{αm}g(m)

(
2n

n+m

)
has the sharp maximum at a point m0, hence the

Taylor expansion in the vicinity of this point may be a good approximation in the exponent of g(m). Approximately:

g(m) = exp{βn
2
0

2n
+ β

m0

n
(m−m0)− β2

8n3z
[4m2

0n
2 −m4

0+

8m0n
2(m−m0)− 4m3

0(m−m0)]},
(77)

the statistical sum Z takes the form:

Z = F

n∑
m=−n

exp{(α+ β
m0

n
− β2 m3

0

2n3z
)m}g(m)

(
2n

n+m

)
=

F

[
2 cosh(

α+ βm0

n − β
2m0

nz + β2 m3
0

2n3z

2
)

]2n
.

(78)

The space symmetry account is based on modifications of the characters formula in expressions for energy (66)
and the Gauss distribution parameter (67).

7.2. Electric field

The electric field perturbs the exchange integral as it is prescribed by (30)

β =
z(J0 + εJ1)

kT
= β0 + εβ1. (79)

Plugging it into (85) yields:

Z

F
=

[
2 cosh(

α+ (β0 + εβ1)m0

n − (β0 + εβ1)2m0

nz + (β0 + εβ1)2
m3

0

2n3z

2
)

]2n
=[

2 cosh(
α+ β0

m0

n − β
2
0
m0

nz + β2
0
m3

0

2n3z + εβ1
m0

n (1− 2
z +

m2
0

2n2z ) + ...

2
)

]2n
,

(80)

the quadratic terms in ε are not shown.

7.3. To thermodynamics

The most probable value of magnetic moment is determined as:

m0 =
∂ lnZ

∂α
= n tanh

α+ βm0

n − β
2m0

nz + β2 m3
0

2n3z

2
. (81)

The neglected term with lnF is of order “1”. Further expansion of
m0

n
in power series of ε gives the coefficients

in the equation of state [13]:

∂m0

n∂ε
|ε=0 = β1

(
1

2
− 1

z
+

m2
0

2n2z

)(
1− tanh2 α+ β0

m0

n − β
2
0
m0

nz + β2
0
m3

0

2n3z

2

)
m0

n
. (82)

The derivative of lnZ by ε gives the polarization per atom:

p0
n

=
∂ lnZ

n∂ε
= β1

m0

n

(
1

2
− 1

z
+

m2
0

2n2z

)
tanh

(
α+ βm0

n − β
2m0

nz + β2 m3
0

2n3z

2

)
, (83)

which demonstrates electromagnetic effects. The energy (66) and the Gauss distribution parameter (67) modi-
fications for nanotubes naturally introduce the closest neighbors exchange integrals defined by the nano-object
symmetry. This gives a model thermodynamic description on base of a model of statistical sum.
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7.4. Discussion

The expression (83) differs from Weiss formula by cot−1/x → tanhx because of two spin orientation and
cubic term. Set:

m0

n
= y,

α+ βm0

n − β
2m0

nz + β2 m3
0

2n3z

2
= x, (84)

arriving at the equations:
I. y = tanhx

II. α+ βy − β2 y

z
+ β2 y

3

2z
− 2x = 0.

(85)

Plots Fig. 2, α = 0.2, η = 2, z = 8, ferromagnetism condition (II curve inclination at y = 0 is less than one for I.)

FIG. 2. Graphic solution of (85)

The next figure Fig. 3 presents number of closest neighbors as function J/kT .

FIG. 3. The number of neighbors as function
J

kT

β(1− β

z
) ≥ 2, (86)

maximum of the l.h.s. is βmax = 1/2, that yields

z ≥ 8.
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a good example is zFe = 8.
A small α allows the expansion (thx ≈ x− x3/3 + ...), that gives the following dependence on β

y =
α

2− β + β2

z

+
α3(

2− β + β2

z

)4 (β2

2z
− 2

3

)
, (87)

The first term of the series gives the Weiss modification of Curie law

m0 =
1

T −Θ

T

T
(

1 +
√

1− 8
z

)
−Θ

(
1−

√
1− 8

z

) (88)

with the Curie point

Θ =
2J

k
(

1−
√

1− 8
z

) . (89)

Within the concept suggested in this paper, the electric field account is introduced via its exchange integral
perturbation by Stark effect (30).

8. Conclusion

The Zeeman energy we also can consider as a Zeeman effect, that add a perturbation to the exchange integral.
Both from microscopic (multipole expansion) and macroscopic (symmetry-based expansion of the free energy)

points of view, with Dzialoshinski–Moryja interaction account see [14].The great interest to the magnetoelectric
effects is expressed in abundant publications [15].

An equivalence of the nonlinear Schrödinger equation and the equation of a Heisenberg ferromagnet [16]
points out possible applications of the advanced NS equation perturbation theory.

The important perspective of more deep understanding of the chemical bonds contains in the Fock paper [9];
let us put here a citation: “...idea of a bond which is built by a pair of electrons assumes such strong interaction
between the electrons with opposite spins that any description of this interaction by means of two one-electron
functions is somewhat artificial and cannot be exact. It is much more natural to associate with each saturated
bond its own two-electron function”. This also leads also to more natural notion and values of exchange integrals.
The ideas of Heitler and Heisenberg are unified also with Floquet theory for non-localized eigenstates of Fock
Hamiltonian and specified in the context of Wigner theorem [6].
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Singly-excited singlet-triplet pairs of states of two-electron spherically symmetric systems, that are degenerate in the absence of inter-electronic

repulsion, are revisited. In addition to the obvious two-electron atom we consider the two-electron quantum dot confined by either a harmonic

potential or by an infinite spherical well, the confined two-electron atom, and three variants of an atom immersed in a plasma, modeled by the

screened Coulomb (Debye) potential. The validity of Hund’s multiplicity rule is confirmed, and the contribution of the interparticle repulsion

energy to the singlet-triplet splitting is examined. One feature that all these systems share is that the triplet wave function is contracted relative

to that of the corresponding singlet. This feature, which is a consequence of the virial theorem, affects both the behavior of the outer electron

ionization energies and the relative magnitudes of the inter-particle repulsion energies in the singlet vs. the triplet. Whereas in atomic highly

positive ions the interelectronic repulsion is lower in the triplet than in the corresponding singlet state, this ordering is reversed in neutral

atoms. Such reversal does not take place in quantum dots. Confined and screened systems exhibit more nuanced behavior. The analysis utilizes
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1. Introduction

The earliest theoretical framework allowing an interpretation of Hund’s heuristic rules [1] concerning the
energetic ordering of atomic open-shell multiplets, and examination of their validity, was developed by Slater [2]. A
generalization of Hund’s rules that is consistent with Slater’s treatment was developed by Morgan and Kutzelnigg [3,
4]. Slater’s treatment assumed that the different states to which each electronic configuration gives rise can be
treated in terms of a common set of one-electron orbitals. Within this scheme, the differences among the energies
of these different states is entirely due to the corresponding differences in the magnitudes of the interelectronic
repulsions. Hence, the virial theorem is violated, with different states having a common kinetic energy but different
total energies.

Going beyond this frozen orbital approximation, an intriguing feature is observed. While the splitting of
the states within a common configuration is driven by the interelectronic repulsion term in the Hamiltonian, the
order of the calculated expectation values of this term is sometimes reversed relative to the order of the total
energies. This reversal was reported for the first time by Davidson [5], studying singly excited states of He within
the Hartree–Fock framework, in which the orbitals are optimized for each term individually. Later Hartree–Fock
calculations [6] confirmed that the interelectronic repulsion energy is higher in the 3P than in the 1P state for all
group II atoms (Be, Mg, Ca, Sr and Ra), where one of the two outermost ns electrons is excited into the np
orbital. Similar observations had been reported in the late sixties and early seventies with respect to other atoms as
well as to open shell molecules. An interpretation emphasizing the role of the virial theorem and of the interaction
between inner and outer shells was presented in [7] and reviewed in [8]. It was argued that correlation (i.e.,
beyond Hartree–Fock features) does not play a qualitatively significant role in this context. Moreover, the absence
of an inner shell in systems such as doubly excited He in which the two electrons are specified by means of the
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same principal quantum number, was argued to exclude a reversal of the relative magnitudes of the interelectronic
repulsion energy between states corresponding to common configurations of this type (such as (2s2p)1,3P or
(2p)2 1D 3P 1S). Some evidence supporting this claim was presented. Progress in the treatment of doubly excited
states within the He isoelectronic sequence allowed, many years later, a study that suggested that correlation does
play a significant qualitative role, yielding a reversal in the magnitudes of the interelectronic repulsion energies
towards the low end of the isoelectronic sequence [9], despite the claim mentioned above. A comprehensive study
of multiplets of neutral atoms within Hartree–Fock theory was undertaken by Koga and Koshida [10], establishing
the rather universal validity of the reversal of the high- vs. low-multiplicity interelectronic repulsion in neutral
atoms. Although positively charged atomic ions have not been studied nearly as extensively, we can conclude on
sound theoretical grounds that the ordering of interelectronic repulsion energies must reverse into the “naively”
expected one (the interelectronic repulsion is smaller in the lower energy state) upon increase of the nuclear charge,
along isoelectronic sequences.

Application of the virial theorem suggested, rather early on, that reversal of the relative magnitudes of the
interelectronic repulsion energies in different multiplicity states belonging to a common configuration is possible [7].
The proof that this reversal is inevitable was only proposed many years later [11].

During the last decade or two, growing interest in electrons “trapped” within nanoscale cavities in solids,
referred to as “quantum dots”, has drawn attention to the spectroscopic properties of such systems. Evidence has
been accumulating that these systems typically satisfy Hund’s rule, higher spin states tending to be lower in energy
than corresponding lower spin states within a common configuration. However, unlike atoms, evidence has been
presented indicating that these systems do not exhibit a reversal of the magnitudes of the interelectronic repulsion
energies. Indeed, such reversal does not take place in the two-electron harmonically confined quantum dot [12,13],
a fact that could also be accounted for analytically [11].

The two-electron atom in a spherical cavity was recently explored, interpolating between the free atom and
a pair of electrons in an infinite spherical well [14]. Atomic-like behavior (reversal of the singlet vs. triplet
interelectronic repulsion energies) was observed at large cavity radii, where the Coulomb nuclear attraction regulates
the extension of the wave function, whereas no such reversal takes place in smaller cavities.

This issue was also explored for open-shell screened atoms, in which the Coulomb potentials were replaced
by Debye (Yukawa) type potentials [15]. Three variants of the two-electron Debye atom were considered:

1. The fully-screened (FS) two-electron Debye atom, whose Hamiltonian is:

HD = −1

2

(
∇2

1 +∇2
2

)
− Z

(
exp(−λr1)

r1
+

exp(−λr2)

r2

)
+

exp(−λr12)

r12
, (1)

where λ is the screening constant.
2. The screened nuclear attraction (SNA) Hamiltonian:

Hd = −1

2

(
∇2

1 +∇2
2

)
− Z

(
exp(−λr1)

r1
+

exp(−λr2)

r2

)
+

1

r12
, (2)

3. The screened interelectronic repulsion (SIR) Hamiltonian:

Hint = −1

2

(
∇2

1 +∇2
2

)
− Z

(
1

r1
+

1

r2

)
+

exp(−λr12)

r12
. (3)

The aim of the present article is to provide a synthetic overview of all these studies. We start by presenting
rigorous relations between the interelectronic repulsion energy and derivatives of simple functions of the total
energy, depending linearly on the latter. These relations follow by application of appropriate versions of the virial
and the Hellmann–Feynman theorems. The linear dependence mentioned above means that the same relations hold
for the energy differences between different states of the pertinent system. Homogeneous potentials are dealt with
in Section 2, allowing the treatment of the free Coulomb atom and the harmonic quantum well as well as the
infinite spherical well. Inhomogeneous potentials are treated in Section 3. These include the confined two-electron
atom as well as the systems that involve Debye screening of the nuclear attraction, the interelectronic repulsion,
or both. These relations are of particular interest for pairs of states for which the corresponding function of the
energy difference is non-monotonic, yielding a vanishing first derivative (i.e., reversal in the sign of the difference
of interelectronic repulsion energies) somewhere along the isoelectronic sequence. By considering the asymptotic
behavior of the energy differences at both the high and low ends of the isoelectronic sequence, we show that
such non-monotonicities generically arise within open-shell atomic isoelectronic sequences. On the other hand,
confined few-electron systems (“quantum dots”), that remain bound in the weak attractive potential limit, do not
give rise to such non-monotonicities. This provides a “kinematic” interpretation of the sign reversal of differences
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of interelectronic repulsion energies, as opposed to the “dynamical” interpretations (right or wrong) that have been
proposed. This analysis leaves open the possibility of reversal of interelectronic repulsion energies in the weak
attractive potential limit of non-confining quantum dots, such as the Gaussian or finite spherical well, that exhibit
analogues of a lower critical charge at which the system ceases to be bound.

Computational results for the various systems specified above are reviewed in Sections 4–8, confirming
the analysis briefly reviewed above. For details of the computational procedures used we refer to the original
publications.

Finally, we emphasize that the formal relations presented in sections 2 and 3 have a much broader relevance
than the applications actually considered; the analysis of the He isoelectronic sequence is an illustration that can
be extended to any open-shell, many-electron atomic isoelectronic sequence. Hence, our analysis establishes that
the reversal of the relative magnitudes of the interelectronic repulsion energies in atomic multiplets corresponding
to a common configuration is inevitable, while the absence of such reversal in many-electron quantum dots with
confining potentials is equally universal.

2. The virial and Hellmann–Feynman theorems for homogeneous potentials

We consider the two-electron Hamiltonian:

H = −1

2

(
∇2

1 +∇2
2

)
+

1

r12
+

1

ν

((r1
R

)ν
+
(r2
R

)ν )
, (4)

noting that the generalization to N electrons is straightforward. For an eigenstate Ψ the energy components are:

The kinetic energy T = −1

2
〈Ψ
∣∣ (∇2

1 +∇2
2

) ∣∣Ψ〉 ,
The one-body potential energy H =

h

ν
, where h = 〈Ψ

∣∣ (r1
R

)ν
+
(r2
R

)ν ∣∣Ψ〉 ,
The interelectronic repulsion energy C = 〈Ψ

∣∣ 1

r12

∣∣Ψ〉 .
The total energy is:

E = 〈Ψ
∣∣H∣∣Ψ〉 = T + C +H . (5)

Coordinate scaling, followed by minimization of the energy with respect to the scaling parameter, yields the virial
theorem in the form:

2T + C − h = 0 . (6)

The Hellmann–Feynman theorem, applied to the parameter R, yields:

h = −RdE
dR

. (7)

Combining (5), (6) and (7) we obtain:

C = 2E +
ν + 2

ν
R
dE

dR
=
ν + 2

ν
R

2−ν
2+ν

d

dR

(
R

2ν
ν+2E

)
. (8)

We assume that ∆E, the difference between the energies of some pair of eigenstates of the Hamiltonian (4),
is known as a function of the parameter R (in practice, this amounts to knowing it for a sufficiently dense set
of values of R). Then, the differences between the interelectronic repulsion energies, ∆C, can be evaluated by
applying (8) to ∆E. For a pair of related states whose difference of energies satisfies ∆E > 0, if it can be shown

that
(
R

2ν
ν+2 ∆E

)
is non-monotonic as a function of R then the interelectronic repulsion difference reverses sign at

the value of R at which
(
R

2ν
ν+2 ∆E

)
is extremal.

We shall consider the following special cases:

2.1. The Coulomb potential, ν = −1

In this case R can be identified with Z, the nuclear charge. We obtain:

T = −E ,

H = Z
dE

dZ
,

and

C = −Z3 d

dZ

(
E

Z2

)
. (9)
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2.2. The harmonic potential, ν = 2

In this case we relate R to the harmonic force constant k via k =
1

R2
, and obtain

T = 3k
4
3
d

dk

(
E

k
1
3

)
,

H = −2k
dE

dk
,

and

C = −4k
3
2
d

dk

(
E√
k

)
. (10)

The expression for C, the expectation value of the interelectronic repulsion, can be written in terms of the frequency
ω, related to the force constant via k = ω2. One obtains:

C = −2ω2 d

dω

(
E

ω

)
. (11)

2.3. The infinite spherical well, ν =∞

Taking the limit ν →∞ we obtain:

T = − d

dR
(RE) ,

H = 0 ,

and

C =
1

R

d

dR

(
R2E

)
. (12)

These expressions are consistent with T + C = E.

3. The virial and Hellmann–Feynman theorems for inhomogeneous potentials

3.1. Two-parameter Hellmann–Feynman systems

Consider the Hamiltonian:

H = −1

2

(
∇2

1 +∇2
2

)
+

1

r12
+

1

νa

((
r1
Ra

)νa
+

(
r2
Ra

)νa )
+

1

νb

((
r1
Rb

)νb
+

(
r2
Rb

)νb )
. (13)

Here, the potential is manifestly inhomogeneous.
The scaling argument yields the virial theorem in the form:

2T + C − ha − hb = 0 .

T and C are the kinetic energy and the interelectronic repulsion energy, respectively, and

ha =

〈
Ψ

∣∣∣∣ ( r1
Ra

)νa
+

(
r2
Ra

)νa ∣∣∣∣Ψ〉 , Ha =
ha
νa

,

hb =

〈
Ψ

∣∣∣∣ ( r1Rb
)νb

+

(
r2
Rb

)νb ∣∣∣∣Ψ〉 , Hb =
hb
νb
.

The Hellmann–Feynman theorem can be applied to each of Ra, Rb individually, yielding:

ha = −Ra
∂E

∂Ra
,

hb = −Rb
∂E

∂Rb
.

Using these relations we obtain:

C = 2E +
νa + 2

νa
Ra

∂E

∂Ra
+
νb + 2

νb
Rb

∂E

∂Rb
.
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3.2. The confined two-electron atom

For particles in a Coulomb potential confined by an infinite spherical well of radius R [16] (and references
therein) we have νa = −1, Ra = Z and νb →∞, Rb = R. We obtain,

C = 2E − Z ∂E
∂Z

+R
∂E

∂R
, (14)

or

C = −Z1−µZ ∂

∂Z

(
ZµZE

)
+R1−µR ∂

∂R

(
RµRE

)
,

where µR − µZ = 2.
Choosing µZ = 0 we obtain:

C = −Z ∂E
∂Z

+
1

R

∂

∂R

(
R2E

)
, (15)

and choosing µR = 0,

C = −Z3 ∂

∂Z

(
E

Z2

)
+R

∂E

∂R
. (16)

3.3. The one-electron Debye-screened atom

The one-electron Debye Hamiltonian is:

hd = −1

2
∇2 − Z exp(−λr)

r
. (17)

Let ψ be an eigenfunction with eigenvalue e. Let:

t =

〈
−1

2
∇2

〉
,

v = −Z
〈

exp(−λr)
r

〉
,

e = t+ v ,

u = λZ 〈exp(−λr)〉 ,

where 〈Ô〉 ≡ 〈ψ|Ô|ψ〉. The virial theorem:

2t+ v = 2e− v = u , (18)

yields:

t = −e+ u ,

v = 2e− u .

The Hellmann–Feynman theorem with respect to Z yields

Z
∂e

∂Z
= v ,

and the Hellmann–Feynman theorem with respect to λ yields

∂e

∂λ
=
u

λ
. (19)

Using equations (18) and (19) we obtain:

2e− λ ∂e
∂λ
− Z ∂e

∂Z
= 0 , (20)

hence,

v = Z
∂e

∂Z
= 2e− λ ∂e

∂λ
= −λ3 ∂

∂λ

( e
λ2

)
, (21)

and

t = −e+ λ
∂e

∂λ
= λ2

∂

∂λ

( e
λ

)
.
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3.4. The two-electron Debye screened atom

3.4.1. Screened nuclear attraction Hamiltonian, Hd. Let Ψ be an eigenfunction of the two-electron Hamiltonian,
equation (2).
E is the corresponding eigenvalue. Let:

T =

〈
−1

2

(
∇2

1 +∇2
2

)〉
,

L = −Z
〈

exp(−λr1)

r1
+

exp(−λr2)

r2

〉
,

C =

〈
1

r12

〉
,

V = L+ C ,

E = T + L+ C ,

U = λZ 〈exp(−λr1) + exp(−λr2)〉 . (22)

The virial theorem [17–19] yields:

T = −E + U , (23)

V = 2E − U ,

the Z-Hellmann–Feynman theorem is

∂E

∂Z
=
L

Z
,

and the λ-Hellmann–Feynman theorem is:

∂E

∂λ
=
U

λ
.

It follows that the two components of the potential energy are given by:

C = 2E − λ∂E
∂λ
− Z ∂E

∂Z
, (24)

L = Z
∂E

∂Z
.

Subtracting (20) from (24) we obtain:

C = −2ε+ λ
∂ε

∂λ
+ Z

∂ε

∂Z
,

where ε = e− E is the first ionization energy of the two-electron system.

3.4.2. Fully screened Debye atom, HD. We follow the path described in the previous subsection, specifying only
the expressions that require modification. The expectation value of the two-electron term becomes:

C =

〈
exp(−λr12)

r12

〉
.

Equation (22) should be replaced by:

U = λ

〈
Z

(
exp(−λr1) + exp(−λr2)

)
− exp(−λr12)

〉
.

3.4.3. Screened interelectronic repulsion, Hint. In this case:

U = −λ〈exp(−λr12)〉 .
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4. The two-electron atom

4.1. The (1s2p)1,3P states of the He isoelectronic sequence

The energies calculated by Accad, Pekeris and Schiff [20] for Z = 2, 3, · · · , 10, along with the fact that the
singlet-triplet energy difference vanishes at the critical charge Z = 1 [21] yield,

∆E ≈ (Z − 1)
(

0.0344887− 0.0544423

Z
+

0.0081415

Z2

)
. (25)

This expression resembles the
1

Z
-perturbation expansion [22–25]

∆E =
224

6561
Z − 0.0840286 + · · · = 0.034141137Z − 0.0840286 + · · ·

and the two leading coefficients crudely agree. Since, at large Z, ∆E grows linearly in Z, it follows that
∆E

Z2
,

which vanishes at Z = 1 (since ∆E does), also vanishes asymptotically as Z → ∞. Hence,
∆E

Z2
must obtain

a maximum, which is found to be at Z ≈ 3.78. From (9) (applied to ∆E) it follows that ∆C is negative for
Z = 2, 3, and positive but small at Z = 4.

Substituting (25) into (9), we obtain:

∆C ≈ 0.0344887Z − 0.1778618 +
0.1877513

Z
− 0.0325661

Z2
. (26)

The differences between the ab initio values of the interelectronic repulsion energies in the 3P and the 1P
states [20] are consistent with the values obtained by evaluating equation (26).

4.2. The (1s2s)1,3S states of the He isoelectronic sequence

In complete analogy with the treatment of the (1s2p)1,3P sequence in the previous section, we notice, using

the energies calculated by Accad, Pekeris and Schiff [20] for Z = 2, 3, · · · , 10, that
∆E

Z2
obtains a maximum (at

Z ≈ 2.6), which implies, because of (9), that ∆C is negative for Z = 2. This is in agreement with the ∆C values

obtained using the 21-order
1

Z
variational perturbation theory expansion [26]. The value of ∆C at Z = 2 agrees

with the ab initio value, −0.018514 [27].

5. The two-particle harmonic quantum dot: (1s2p)1,3P states

Using the relative-motion energies ε(n, `) evaluated by Prudente, Costa and Vianna [28] we note that the
energies of the lowest 1,3P pair, (0, 1)r(0, 0)R

3P and (0, 0)r(0, 1)R
1P , are given by:

E(3P ) = εr(0, 1)(ω) +
3

2
ω ,

E(1P ) = εr(0, 0)(ω) +
5

2
ω ,

respectively. Fitting the numerical values we obtain:

E(1P )− E(3P )

ω
≈ 1 +

√
ω

(
0.00166828− 1.009793

0.283907 +
√
ω

)
,

in agreement with Hund’s first rule, E(1P ) > E(3P ). Obviously, lim
ω→0

(
E(1P ) − E(3P )

)
= 0, as each energy

individually vanishes in this (no confinement) limit. As expected, the calculated energies are consistent with

lim
ω→∞

E(1P )

E(3P )
= 1. Using (11) we obtain the difference between the 1P and the 3P interelectronic repulsion

energies. The ratio
∆E

ω
is clearly monotonically decreasing as a function of ω. Consequently, the interelectronic

repulsion energy in the singlet is higher than that in the triplet for all the values of ω considered.
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6. The two-particle infinite spherical well: the 1,3S states

The two-electron atom with nuclear charge Z, confined in a spherical well of radius R, interpolates between
the free two-electron atom (R→∞) and the spherical quantum dot (Z → 0) [14].

A careful analysis of the nodal structure of the various two-electron wave functions suggests that the lowest 3S
state, which corresponds to the configuration (1s2s), should be compared with the third 1S state, which corresponds
to the same configuration. The lowest 1S state corresponds, in complete analogy with the He-like atoms and the
two-electron Hooke’s atom, to the ground configuration 1s2. However, in the present case the following 1S state
corresponds to the (2p)2 configuration.

Indeed, the 3 1S and the 1 3S states are rather close in energy (the latter being lower, in conformity with
Hund’s rule). The interelectronic repulsion energy is rather significantly lower in the latter than in the former

state. Extrapolation yields: lim
R→0

C(3 1S)− C(1 3S)

E(3 1S)− E(1 3S)
= 1. Over the range of values of R available, R2

(
E(3 1S)−

E(1 3S)
)
, whose first derivative is related to C(3 1S) − C(1 3S), is a monotonically increasing function of R,

approaching zero in the limit R→ 0. This is consistent with C(3 1S)− C(1 3S) > 0.

7. The confined two-electron atom: the (1s2p) 1,3P states

A principal distinction between the atomic isoelectronic sequence and the harmonic quantum dot is that in the
former the singlet-triplet energy difference vanishes at some positive nuclear charge, below which the outermost
electron is not bound. In view of the confining nature of the harmonic potential, the coincidence of the singlet and
the triplet energies only takes place when the harmonic force constant vanishes. Since the infinite spherical well is
even more remote from the Coulomb potential – more confining – than the harmonic well, it is safe to anticipate
no reversal, as a function of the radius of the confining sphere, in the latter system as well.

To understand the transition between these two types of behaviour we consider confined open-shell many-
electron atoms. The multiplet structure suggested by the single configuration – frozen orbitals treatment of the
systems that we actually study agrees with that specified by Hund’s rules. Furthermore, we deliberately avoid

systems that exhibit asymptotic degeneracies as
1

Z
→ 0. We follow the behavior of pairs of states that correspond

to a common configuration, say, the singlet and triplet states that correspond to the (1s2p) configuration of the
two-electron atom. In free space, the interelectronic repulsion is higher in the singlet for higher Z, and higher in the
triplet for lower Z. Confining the system into a sphere of radius R and setting Z = 0 we still get a singlet-triplet
pair, the triplet being lower in energy, but having a lower expectation value of the interelectronic repulsion, for all
R. Our aim is to trace the transition between the case R > 0, Z = 0 and the case R =∞, Z > 1.

For R→∞ ∆E is independent of R, so we obtain from (16):

∆C = −Z3 ∂

∂Z

(
∆E

Z2

)
. (27)

Since
∆E

Z2
vanishes at Z = Zc, the critical charge at which the outer electron ceases to be bound, as well as at

Z →∞, and is positive in between, it must possess a maximum at some intermediate value Zm. Hence, ∆C < 0
for Zc < Z < Zm, and ∆C > 0 for Z > Zm.

For Z = 0 we obtain from (15):

∆C =
1

R
· ∂
∂R

(R2∆E) . (28)

Near-Hartree–Fock wavefunctions and energies were obtained for the singly excited pair of states (1s2p) 1,3P ,
over a range of nuclear charges and confining radii. In all cases, the total energy is lower in the triplet than in
the singlet. The most interesting aspect is that the difference between the expectation values of the interelectronic
repulsion of the singlet and the corresponding triplet states. One notes that the interelectronic repulsion is higher
in the singlet except at low Z and high R.

For low R the difference of the interelectronic repulsions between the singlet and the triplet is a decreasing
function of Z. This is because when Z increases for a constant R the wavefunction contracts and the boundary
becomes less significant. Since the singlet is more expanded, the boundary affects it more significantly, increasing
the singlet-triplet difference of interelectronic repulsions. At high R, including the free atom (R = ∞), the
difference of interelectronic repulsions increases with increasing Z. This is a trivial consequence of the fact
that the difference of interelectronic repulsions is, asymptotically, equal to 2K[1s, 2p]Z, where K[1s, 2p] is the
exchange integral. A minimum in the singlet-triplet difference of interelectronic repulsions as a function of Z is
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noted at intermediate R. For Z above this minimum the high R behaviour is manifested, whereas for Z below
the minimum one is in the low R regime. The location of the minimum shifts to lower Z upon increase of R.
Noticing this trend helps understand what would otherwise look to be a suspicious sequence of interelectronic
repulsion differences at R = 5. The difference of interelectronic repulsions is always a decreasing function of R,
for constant Z. This trend is due to the fact that the confinement affects the singlet – that is more expanded –
more than the triplet, increasing the singlet interelectronic repulsion upon lowering R.

8. The Debye-screened two-electron atom: the (1s2s)1,3S states

Finally, we consider the fully-screened (FS) two-electron Debye atom, (1), the screened nuclear attraction
(SNR) Hamiltonian (2), and the screened interelectronic repulsion (SIR) Hamiltonian (3) [15]. We refer to the

term
exp(−λr12)

r12
either as the screened interelectronic repulsion or as the interparticle repulsion. The operator

1

r12
is referred to, as usual, as the interelectronic repulsion. We say “particle” to emphasize that the interaction is

modified, although the properties (mass, spin, statistics) are those of an electron. The expectation values of these
operators are referred to as the interparticle or interelectronic repulsion energies, respectively.

We find that the methodological standpoint taken by Lin et al. [29], allowing the effect of the Debye screening
of the one- and the two-particle terms to be distinguished from one another, is helpful when dealing with the
excited states as well. The fact that in HD both the one-electron and the two-electron potential energy terms are
screened leads to unexpected trends in the behavior of the triplet vs. the singlet interparticle repulsion energies.
We expect Hd to behave more similarly to the confined two-electron atom. A complementary picture is offered by
Hint. Upon increasing the Debye screening the interelectronic repulsion is quenched and the system approaches
two non-interacting hydrogen-like electrons in the (1s2s) configuration, with the λ → ∞ asymptotic energy

−Z2

(
1

2
+

1

8

)
.

v = Z
∂e

∂Z
= 2e− λ ∂e

∂λ
= −λ3 ∂

∂λ

( e
λ2

)
, (29)

and

t = −e+ λ
∂e

∂λ
= λ2

∂

∂λ

( e
λ

)
.

The differences between the singlet and the triplet energies for the FS, the SNA and the SIR models have

been examined as functions of
λ

Z
, for Z = 2, 3, 4, 5. The singlet is always higher than the corresponding triplet,

the difference increasing with increasing Z. From the different versions of the λ-Hellmann–Feynman theorem

it follows that the initial slopes of the singlet and the triplet energies, at
λ

Z
= 0, are equal. Hence, ∆E starts

horizontally, with a vanishing slope.
For the SNA atom both the singlet and the triplet energies are higher (lower in absolute value) than those of

the FS atom. This is due to the higher interparticle repulsion in the former systems. The singlet-triplet energy
differences are smaller for the SNA atoms than for the FS atoms.

For the SIR atom the singlet-triplet energy difference increases at low
λ

Z
, because the triplet energy is lowered

more rapidly by the enhanced interparticle screening. This energy difference reaches a maximum (roughly at
λm
Z
≈ 0.65√

Z
), vanishing asymptotically at

λ

Z
→∞.

8.1. The interparticle repulsion energies

For Z = 2 the interparticle repulsion energy is lower in the singlet over the whole range of values of the
screening constant for both the FS atom and the SNA atom. For the SIR atom the difference between the singlet
and the triplet interparticle repulsion energies rises, becoming positive above a certain screening constant. For
Z ≥ 3 the interparticle repulsion in the FS atom is lower in the triplet at low screening (up to λ ≈ 0.096 at Z = 3,
λ ≈ 0.17 at Z = 4 and λ ≈ 0.208 at Z = 5), but higher in the triplet for higher screening. This reversal takes
place at lower values of the screening constants for the SNA atom. While the SIR singlet interparticle repulsion

energy is always higher than that of the triplet, they both vanish, asymptotically, at
λ

Z
→∞, where the screening

quenches the interparticle repulsion. Like the ionization energy, the triplet interparticle repulsion energy approaches
the asymptotic value considerably more rapidly than the singlet.
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Finally, Debye screening of the nuclear attraction enhances the reversal of the magnitudes of the singlet vs. the
triplet interparticle repulsion energies by effectively lowering the nuclear charge, whereas Debye screening of the
interparticle repulsion acts in the opposite direction. This behavior is due to the fact that the singlet wave function
is more expanded, so that it samples the interparticle repulsion operator at higher values of r12, at which the effect
of the factor exp(−λr12) is more pronounced.

9. Conclusions

The behavior of the interelectronic repulsion energy in two-electron systems with a range of one-body potentials
was reviewed. Particular attention was paid to the relative magnitudes of the interelectronic repulsion energies
within pairs of states which, in the limit of vanishing interelectronic repulsion, belong to a common electronic
configuration. Expressions for these differences of interelectronic repulsion energies in terms of derivatives of
simple expressions involving differences of corresponding total energies were derived, using appropriate versions
of the virial and Hellmann–Feynman theorems. In the atomic case the expressions to be differentiated were shown
to be non-monotonic by considering their behavior for both Z → ∞ and for Z → Zc (where Zc is the critical
charge below which the outermost electron is not bound). Hence, their derivatives yield an inevitable sign reversal
in the difference of interelectronic repulsion energies, for some Z that satisfies Zc < Z <∞.

In the confined systems the behavior at the high correlation limit of the isoelectronic sequences (when k → 0
for Hooke’s atom and when R → ∞ for the infinite spherical well) implies a monotonic behavior of the energy-
related quantities that need to be differentiated to obtain the corresponding difference of interelectronic repulsion
energies. Hence, no sign reversal is expected. These conclusions are confirmed computationally, for appropriate
pairs of states.

Careful analysis indicates that the ordering and structure of electronic configurations in Hooke’s atom, and
even more so in the infinite spherical well, are sometimes very different from those in the atomic case, due to
different degeneracies and configuration mixing. Such distinctions are important to keep in mind when trying to
draw meaningful comparisons.

The lowest 1,3P pair exhibits remarkable robustness in the following sense: this is the only pair of states
in which both members are lowest within the subspaces of their respective symmetry types, being reasonably
well described by the (1s2p) configuration. The (1s2s)1,3S pair suffers from the fact that the singlet is not the
lowest of its symmetry type, which makes a treatment in terms of a single configuration approximation somewhat
delicate. The 1,3D states are even worse. They are nicely described in terms of the single configuration (1s3d)
in the atomic case, but each member of the pair belongs to a different limiting configuration (the singlet being
(2p)2 and the triplet (1s3d)) in the infinite spherical well. Even in Hooke’s atom the lowest 1D state involves a
linear combination of two configurations that are mutually degenerate in the non-interacting limit. In view of this
robustness of the 1,3P pair, the single most pertinent recommendation for further study is that this pair of states
should be examined more carefully for spherically symmetric quantum dots with a range of shapes and strengths,
including, in particular, non-confining potentials such as a finite well or a Gaussian potential. This is the context
in which the least ambiguous results are likely to emerge.

The lowest energy pair of singly-excited states, (1s2s)1,3S, is investigated for three types of two-electron
Debye Hamiltonians. The reversal in the relative magnitudes of the singlet vs. the triplet interparticle repulsions
has been charted for the three models over a reasonably broad range of the pertinent parameters [15]. The overall
behavior is in agreement with earlier results on the unscreened two-electron atom, showing interesting distinct
features.

Singlet-triplet splitting was studied for two confined open-shell atomic systems as a function of the nuclear
charge and of the radius of the confining sphere. In all the cases considered the total energy was confirmed to be
lower in the triplet. The interelectronic repulsion was found to be lower in the singlet when the nuclear charge
is low enough and the confining radius is large enough. The difference of interelectronic repulsions between
the singlet and the triplet (denoted ∆C) was found to be a decreasing function of the radius of the confining
sphere, at a constant nuclear charge. However, as a function of the nuclear charge at a constant confining radius,
this difference increases for large confining spheres, and exhibits a minimum at intermediate confining spheres.
For tightly confining spheres ∆C decreases with increasing nuclear charge in the two-electron 1s2p system, but
increases with increasing nuclear charge in the four-electron 1s22s2p system. This distinction can probably be
understood as a consequence of the fact that the 1s and the 2p orbitals are very differently affected by the confining
sphere, which is not the case for the 2s and 2p orbitals. While the contrast in the behavior of the difference between
the singlet-triplet interelectronic repulsions in the free and in the confined atom follows from the analysis in [11],
the transition between these two types of behavior is now clarified.



Hund’s rule in open-shell states of two-electron systems... 41

In both systems studied
∂E

∂R
< 0 (the energy decreases – increasing in absolute value – with increasing R).∣∣∣∣∂E∂R

∣∣∣∣ decreases with increasing R, vanishing at large R. More remarkably, it is higher in the singlet than in the

triplet, due to the fact that the triplet wave function is more contracted, hence less affected by the confining sphere.

Similarly,
∂E

∂Z
< 0. Like the absolute value of the derivative with respect to R,

∣∣∣∣∂E∂Z
∣∣∣∣ decreases with increasing R,

remaining finite at R→∞ where it is equal to the expectation value of
N∑
i=1

1

ri
, N being the number of electrons.

As a function of Z,

∣∣∣∣∂E∂Z
∣∣∣∣ increases. This is obvious, at least at large R, reflecting the contraction of the wave

function upon increasing Z. The contraction of the triplet wave function relative to the singlet is also reflected in

the fact that

∣∣∣∣∂E∂Z
∣∣∣∣ is larger in the former than in the latter.

Investigation of the effects of milder confining potentials, such as a finite spherical square-well or a Gaussian
potential, are worth-while extensions of the present study.
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The article presents a developed gradient-pixel method of fractal analysis and results of multifractal characterization of nano- structured materials

with a high proportion of non-autonomous phases obtained from micrographs of their surface chips with high-resolution scanning microscopes.

Compared with the black and white binarization option, the gray gradation improves the quality of multifractal analysis of nanostructured

materials and expands its capabilities, in particular, the selection of multi-scale composite inclusions in the structure of the material and

nano-objects on transparent or opaque basis. Establishing the characteristics of these dependencies permits linking the indicators of structural

and phase nonuniformity in the development of new materials with changes in their physicochemical properties. In comparison with the fractal

dimension of the Sierpinski carpet as a classic regular monofractal computed on the outlined basis, quite accurately coinciding with the known

analytical value, the resulting spectrum of fractal dimensions of the synthesized chemical-catalytic and thermoelectric nanomaterials indicates

the multifractal nature of their structural and phase nonuniformity according to the Rényi generalized equation.
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1. Introduction

Studies of various processes for the synthesis of nanostructured materials with significantly different pro-
perties and composition from homogeneous model media show that fractal self-organization is a characteristic
feature of their formation [1–3]. This causes the invariant metric-statistical self-similarity of multi-scale composite
structures with a non-Euclidean (fractional) relationship between the rate of increase in the number of considered
elements and the increase in the scale of their consideration [4, 5]. This is de facto valid for all technologies
and methods for the synthesis of nanomaterials and is determined by the special role of the energy and entropy
characteristics of the surface and interfacial layers, the correlation scale of the matter and energy transfer phenomena
in different macro, micro and nanostructural blocks of the material, as well as the boundary tolerance factor of their
partitioning [6–10]. This is clearly seen in materials with a high content of nanostructured non-autonomous phases
of a substance. That is, the phases that are thermodynamically not existing in isolation from its macrovolumes
and forming on their surface or interfaces under the conditions of spatial and mass restrictions [11, 12]. The high
specific surface area of fractal aggregates of different nature explains the possibility of their active participation in
condensation processes, sorption processes, chemical reactions of heterogeneous catalysis and inhibition, and other
applied areas [13]. Establishing the characteristics of these dependencies allows us to link the indicators of structural
and phase nonuniformity in the development of new materials with changes in their physicochemical properties, as
well as predicting the effect of the size of the fractal object and the spatial scale of its consideration [14–20].

2. Methodology of fractal analysis

The calculation-experimental methods of fractal analysis, including the developed gradient-pixel method of
characterization of the structural-phase nonuniformity of nanomaterials, are based on the general idea of Mandelbrot
of the difference between the topological Euclidean dimension of such non-smooth objects and the geometric
dimension. Mathematically, this manifests itself in the form of the dependence M ∼ εD between the rate of
increase in the number of structural elements Munder consideration and the increase in the spatial scale interval
ε of their consideration with a fractional index of fractal dimension D. The similar pattern also takes place when
considering the occurrence of fractal processes of deterministic chaos in time [21]. Here, the time series of the
measured signal U(τ) is displayed in the phase space of the embedding U ′ = f(U) in the form of an attracting set
of unstable infinitely jagged phase trajectories, the so-called strange fractal dimension attractor, characterizing the
effective number of degrees of freedom, forming a stochastic signal in a dynamic system. For real fractal objects,
the self-similarity manifests itself in a certain scaling interval of natural scales of the considered elements size
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Rmin ≤ ε ≤ Rmax, where Rmin is associated with the finite size of these elements, and Rmax – with the tendency
of D to its final limit.

The practical assessment of the fractality of real objects (mass fractals, fractal cluster-aggregates, branched
structures, fractal surfaces, fractal curves and fractal time series) is made by mathematical processing of experi-
mental data to measure the abovementioned ε, M scale-structural parameters. The recognized methods of their
“in situ” measurements for various powdered, porous, and composite polycrystalline materials, including nanos-
tructured ones, are invasive mercury porosimetry, gas and liquid pycnometry, low-temperature nitrogen adsorption,
calorimetry, inverse gas chromatography, small-angle neutron scattering, X-ray diffraction, transmission and scan-
ning electron microscopy and some others [15, 22–24]. Some of these methods are used to characterize not only
material structure defects (pores, cracks, liquid, gas and solid inclusions), but also for dispersed systems of a
different nature (emulsions, aerosols, etc.). In some cases, the identification of the dynamic characteristics of the
processes taking place in time can be carried out simultaneously, for example, a topochemical measurement of
the reaction rate [25–29]. It should be noted that the use of the outlined invasive methods is quite laborious,
requiring high-precision measuring instruments along with special equipment, and is associated with a number of
assumptions about the nature of the contact interaction of the substance being embedded with the material under
study. In addition, many of the methods of “in situ” measurements of the fractal dimension were developed for a
specific task. The use of radiation scattering methods (X-ray, neutron, light) by the fractal structure is sufficiently
correct only in case when all the aggregates are characterized by the same size of primary particles and the same
nature of their fractal growth.

One of the very common methods of express experimental study of the fractal nature of real nanoclusters
in three-dimensional and two-dimensional space is the analysis of their electron microscopic images based on
transmission and scanning electron microscopy. Despite the possibility of some subjective errors of the subsequent
interpretation of images and a certain deformation of objects in preparation for the experiment, electron microscopy
allows the required variation of the image scale and its spatial resolution. However, identical generally accepted
algorithms for processing these images have not yet been developed, nor the general algorithms for processing
the experimental data on the dynamics of fractal processes in real time. In all cases, the fractal indicator D for
the measured M , ε parameters for spatial structures and for time processes of regular monofractal sets can be
obtained geometrically in practice. In the first case, it can be done by the slope ratio of the line, approximating
the graph of the above dependence lnM ∼ D ln ε in logarithmic coordinates as the limit D = lim

ε→0
[lnM/ ln ε]. In

the second case, the same can be achieved as the slope of the limit D = lim
ε→0,K→∞

[lnC(K, ε)/ ln ε] dependence

for the correlation integral (correlation sum) C(K, ε) = K−2
K∑
i,j

θ [r − ρ(xixj)], which characterizes the averaged

probability of proximity of fractal processes phase trajectories. Here, ε is the characteristic scale of consideration
of the phase trajectory attractor elements, θ is the Heaviside function, [r − ρ(xixj)] is the distance function in
the n-dimensional phase space, K is number points of the considered attractor in the correlation. The classical
mathematical examples of the fractal analysis of ordered geometric models serve as illustrations of this approach:
the infinitely jagged Koch curve (or snowflake) having no derivative in any point, the Cantor set or Cantor dust, the
Sierpinski carpet, the Menger sponge, the Minkowski sausage. Their fractals are determined analytically and are
respectively D = ln 4/ ln 3 = 1.2618...; D = ln 2/ ln 3 = 0.6309...; D = ln 8/ ln 3 = 1.8928...; D = ln 20/ ln 3 =
2.7268...; D = lim

ε→0

[
ln(3/2

√
ε)/ ln ε

]
= 1/2. A rare exception to the definition of fractals as objects with non-

integer dimensions is the three-dimensional analogue model of the Sierpinski triangle with D = ln 4/ ln 2 = 2, the
Peano and Hilbert plane curves with D = 2, the Fournier Universe with D = 1, and some others [30–32]. The
difference between these examples reflects the fact of non-compactness (“friability”) of the fractal in the first case
and the dense filling of the space it occupies in the second.

However, it should be noted that for an adequate description of the real unordered (nonuniform) na- tural
fractals and many irregular model structures, using only one single value of the fractal dimension D is not enough.
Along with the metric characteristics, it is necessary to determine their statistical properties, reflected by the
full spectrum of fractal dimensions using the multifractal formalism [32]. The Rényi generalized dimensional
equation [33] is its basis:

DRq = lim
ε→0

lim
τ→0

lim
m→∞

[
1

q − 1

lnZ(q, ε)

ln(ε)

]
.



44 A. N. Kovalenko

Here, IRq (p, q) = [lnZ(q, ε)] /(q − 1) is the Rényi generalized entropy of order q; Z(q, ε) =

N(ε)∑
i=1

pqi (ε) is the

generalized statistical sum; N(ε) is the minimum number of the “measuring” cubes with edge ε required to cover
the attractor in n – dimensional phase space of embedding; pi(ε) is the probability of visiting the i-th cube by the
phase trajectory in this phase space of embedding; m is the number of points used to estimate the dimension (or
the number of measurements at time intervals τ ). The well-known expressions for the Kolmogorov–Sinai entropy
and the Kolmogorov–Hausdorff fractal dimension (q = 0), the Shannon–Gibbs entropy and the corresponding
information dimension (q = 1), the correlation entropy and the correlation dimension (q = 2) are special cases of
this equation with various values of q. Since the Rényi dimension is a steadily decreasing function of q, in order
to display the attractor for larger q, a smaller dimension of the embedding space is required. An approximate
analog of the Hausdorff dimension is the Minkowski dimension D = lim

ε→0
[lnM(ε)/ ln ε], which coincides with the

Hausdorff dimension for the main classical fractals and many applied problems, but has a more efficient calculation
algorithm.

For mathematical processing of the dynamic characteristics of the proceeding fractal processes with a limited
sequence of the measured signal time series, the Takens theorem is used. According to it, the restoration of the
missing coordinates of the attractor trajectories is carried out by using the data from the same series, taken with
some delay [34].

3. Software implementation of the methodology

The main part of the research published on this base refers to the well-known software packages of fractal time
series processing: the FracLab module of the MatLab package, the CDA program (by J. C. Sprott, G. Rowlands),
the RQA program (by C. J. Webber, J. P. Zbilut), the TISEAN package (by R. Hegger, H. Kantz, T. Schreiber),
the Fractan 4.4 package (by V. Sychev), the CorDimension application (Copyright R© AIRES), etc. They were
briefly reviewed in paper [35]. Less work is devoted to the software implementation of multifractal processing of
disordered structures of materials (the MFDrom program by G.V. Vstovsky, the multifractal image analysis program
by K. A. Kichigina, A. I. Degtyarev, D. M. Karavaev, etc. [15, 36]. Since fractal dimension is an invariant property
with scale transformation, along with the standard method of physical change of the general scale of consideration
of the object being analyzed, the method of digital zooming of its non-detailed elements (the size of “pixels”)
forming a grid of the complete bitmap image can be used. At the same time, each pixel can be characterized
only by one specific color or brightness, and also transparency. The latter possibility has not yet been taken into
account. In the above-mentioned papers, either the change in the overall scale of the analyzed object was used,
or a variant of black and white binarization of its pixel photographic images. To remove the limitations of this
approach in the presence of different-scale composite inclusions in the structure of the material, the grid method
of digital gradient pixelation of its micrographs by resizable cells is used as a method for changing the scale of
consideration of details of the nanostructured nonuniformity in the algorithm developed below. As a method for
identifying nonuniformities in these cells, including those on transparent or non-transparent basis, the gray level
gradation of color and transparency of cell images is used.

The gray gradation, in contrast to the black-and-white one used in the above-mentioned works, improves
the quality of the multifractal analysis of nanostructured materials and expands its capabilities, in particular, the
selection of multi-scale composite inclusions and nano-objects on transparent or non-transparent basis. For each
pixel partitioning, as a measure of the fractal spectrum of structural nonuniformity, the probability pi(ε) = ni/N(ε)
of the gray color distribution in the cells on the set digital scale of its gradation is used (for example, from 0 to 1),
for the binary black and white gradation the probability of distribution is 0 or 1. Here, ni is the fixed degree of
color gradation in cell i;N(ε) is the total number of cells by size ε. Then, depending on the set size of εk cells,

the generalized correlation function is estimated (generalized statistical sum) Z(q, ε) =

N(ε)∑
i=1

pqi (ε) for all cells,

characterized by the exponent q, which can take a value in the interval −∞ < q < +∞. Then, the spectrum of the
generalized Rényi fractal dimensions, which characterize the given distribution, is determined using the relation
Dq = τ (q) / (q − 1) [32]. Here, the function τ (q) = (q − 1)Dq = lim

ε→0
[lnZ(q, ε)/ ln(ε)] is defined as the slope

ratio of the approximate dependence Z(q, ε) ≈ ετ(q) by the least squares method from the size ε of cells of the
pixel division. The function of the multifractal spectrum is determined f(α) = qα − τ(q), where α = dτ/dq =

− lim
ε→0

N(ε)∑
i=1

pqi ln pi

 /

N(ε)∑
i=1

pqi ln ε

 is the derivative of the function τ (q), note that α = dτ/dq|q→+∞ =
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D+∞ = αmin and α = dτ/dq|q→−∞ = D−∞ = αmax [32]. Furthermore, the multifractal characteristics are found:

with q = 0 the Hausdorff dimension is D0 = − lim
ε→0

[lnN(ε)/ ln ε], where

N(ε)∑
i=1

pq=0
i (ε)

 ≈ N(ε); with q = 1

the information dimension is D1 = lim
ε→0

N(ε)∑
i=1

pi ln pi

 / (ln ε), where

−N(ε)∑
i=1

pi ln pi

 = S(ε) is the Shannon

entropy; with q = 2 the correlation dimension is D2 = lim
ε→0

N(ε)∑
i=1

p2i

 / (ln ε), where

N(ε)∑
i=1

p2i

 ≈ C(K, ε) is

the correlation integral (correlation sum).
The procedure of gradient gray pixelation with dividing the area of the processed image into a square grid

with cells of a certain size (εk × εk) can be included in the overall program using the size doubling algorithm
εk = 2n+1(n = 1,2,3,4,5. . . ). This procedure can also be performed using the standard options of the Adobe
Photoshop graphics editor [37], the standard PHP function of the ImageMagick command line utility in the
Windows environment [38] and other graphics processing tools with the addition of the “alpha channel” program
component in them to define the pixel image transparency.

Obvious criteria for the quality of digital “pixelation” are the ratio of the physical area of the processed image
to the number of cells used by pixel partitioning, related to the size of the pixel itself, as well as the number of
information units used to describe each pixel of the image.

4. Results and discussion

As an example, Fig. 1 shows the micrographs of samples of new model compounds with a high proportion of
nanostructured non-autonomous phases for original functional materials for catalytic and thermoelectric purposes
that were kindly provided by E. A. Tugova. The samples were synthesized at the Ioffe Institute of the Russian
Academy of Sciences on the basis of layered oxides of different composition and structure using different tech-
nological methods. The micrographs were obtained using high resolution scanning (raster) electron microscopes
JSM-5610 LV and CamScan MV2300 Quanta FEI 200 with direct magnification from 5000 to 300000 times and
passport resolution of 2.5 nm for lines, 3.5 nm for points.

FIG. 1. Micrographs of the samples of Ca3Co4O9 nanocrystalline compounds synthesized by the
co-precipitation method with subsequent heat treatment (a) and the gas-flame combustion method
of the glycine-nitrate gel precursor (b)

The sample of material according to Fig. 1(a) is characterized by multi-scale composite inclusions in its
structure with an average crystallite size of 45±5 nm according to X-ray diffraction data. The material was obtained
by the method of co-precipitation of cobalt hydroxide Co(II) into CaCO3 suspension with NaOH solution followed
by the heat treatment. According to this method, synthesis reactions proceed in a diffusion mode, which is also
characteristic of other traditional methods for producing nanodispersed materials based on solid-phase and sol-gel
synthesis, hydrothermal and high-temperature processing. The use of the kinetic regime of gas-flame combustion of
the glycine-nitrate gel precursor helps solving the problem of sintering the obtained Ca3Co4O9 nanopowders with
the size of coherent scattering regions of 40±4 nm and approximates the properties of thermoelectric nanoceramics
on their basis to the properties of single-crystal samples (Fig. 1(b)).
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Examples of the results of partitioning the original electronic images Fig. 1 with square cells with pixel sizes
of 4p, 8p, 16p and 32p, graded in 10 shades of gray, and their comparison with black and white binarization are
shown in Fig. 2.

FIG. 2. Comparison of grid partitioning of the source micrographs of synthesized nanocomposite
materials samples by cells with pixel sizes 4p, 8p, 16p and 32p: (a) for the image of the
micrograph Fig. 1(a) in gradation of 10 shades of gray (cells 4p 8p, 16p and 32p - top row) and
in the black and white binarization variant (cells 4p 8p, 16p and 32p – bottom row); (b) – same
for the image of the micrograph of Fig. 1(b)

As can be seen, the variant of black and white binarization is associated with a significant loss of the
information richness of the analyzed structures as compared to their gray gradation in the gradient pixelation
method. The quality of the latter, if necessary, can be improved, for example, up to 256 shades (gradations) of
gray color due to the transition to the gray scale widely used in a usual computer representation using 8 bits
of information for each pixel of the image. More is possible when using the multibyte full color schemes of
16/24/30/36/48 bits and the transition to the full-color image. In this case, it becomes possible to add the program
“alpha channel”, which sets the transparency of the image for each pixel [33, 34].

For comparison, Fig. 3 shows an example of the gradient pixelation of the classical model image of the Sier-
pinski carpet as a planar analogue of the regular monofractal Cantor set constructed in the MATLAB-SIMULINK
simulation environment [39]. For its construction the method of random iterations was used with the number
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of repeated partitionings of 23 with exclusion of the middle thirds by removing the central squares from all the
fragments formed by successive division of the sides of the carpet and all its remaining fractions into 3 equal parts.

FIG. 3. The Sierpinski carpet (a), constructed by random iteration with exclusion of middle
thirds, and its grid partitionings by gradient cells with pixel sizes of 4p (b), 8p (c), 16p (g) and
32p (d)

The results of the fractal analysis of the aforementioned model nanostructures based on the developed approach
are shown in Fig. 4 in the form of the Dq(q) dependence. Thus, Fig. 4(a) shows the fractal dimension of the
Sierpinski square carpet model, obtained from its black and white binarized and gradient pixelized images in Fig. 3
and Fig. 4(b) shows the dependence Dq(q) obtained from micrographs of the surface chip of a nanocomposite
material samples synthesized by different methods on the basis of layered calcium cobaltite Ca3Co4O9 (see
Fig. 1). Fig. 4(c) shows the dependence of the function multifractal spectrum f(α) = qα− τ(q) on the synthesized
nanocomposite material from factor q and synthesis method. For calculations, we used a square fragment, maximum
in area, with initial resolution from (1024× 768) to (1920× 1080) pixels with different cell sizes of their “digital”
pixelation, graded by 10 shades of gray, examples of which were shown in Fig. 2.

FIG. 4. Comparison of the calculated fractal dimension from the factor q for the Sierpinski carpet
model (a) and for the nanocomposite material (b) synthesized by the co-precipitation method with
subsequent heat treatment (1) and the gas-flame combustion method of the glycine-nitrate gel
precursor (2) with their function of the multifractal spectrum (c)

As can be seen, the resulting fractal dimension of the Sierpinski carpet as a regular monofractal does not depend
on q and with sufficient accuracy coincides with the known analytical value D = ln 8/ ln 3 = 1.8928.... At the
same time, the obtained spectrum of the generalized fractal dimensions of the synthesized nanocomposite material
depends non-linearly on q, indicating the multifractal nature of its structural-phase nonuniformity depending on the
synthesis method.

5. Conclusion

Fractal self-organization is a characteristic feature of the nanostructured materials formation with significantly
different properties and composition from homogeneous model media for virtually all technologies and methods
of synthesis. This is manifested in the invariant metric-statistical self-similarity of multi-scale nanocomposite
structures with non-Euclidean (fractional) dependence between the rate of increase in the number of elements
under consideration and the increase in the scale of their consideration. The value of the fractal dimension of
such structures is potentially related to the resulting material properties. This is especially evident when there
is a high content of nanostructured non-autonomous phases in the material, that is, the phases that do not exist
thermodynamically in isolation from the macrovolumes of the substance and are formed on their surface or
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interfaces under conditions of spatial and mass restrictions. Energy-entropy characteristics and the correlation scale
of transfer phenomena in different-sized macro, micro and nanostructural blocks of the material, as well as the
boundary tolerance factor can be the key in establishing the relationship between the indicators of structural-phase
nonuniformity and the influence of the object’s fractal dimensionality on them during the development of new
materials with variable physicochemical properties.

Along with in situ measurements of fractal dimensions by invasive methods (mercury porosimetry, gas and
liquid pycnometry, low-temperature nitrogen adsorption, calorimetry, inversion gas chromatography) and methods of
radiation scattering (X-ray, neutron, light), the analysis of electron microscopic images of nanostructured materials
based on the transmission and scanning electron microscopy is very common. Since the fractal dimension is an
invariant property in the scale transformation, along with the standard technique of the “physical” changing the
overall scale of consideration of the object being analyzed, the method of the “digital” zooming of its non-detailed
elements (pixel size) forming a comprehensive raster image can be used. The paper proposes the gray-gradient
(if necessary expanded to full-color) pixel method of fractal characterization of nanostructured materials from
micrographs of their surface chips using high-resolution scanning (raster) electron microscopes without changing
the scale of the processed micrograph itself. Compared with the black and white binarization option, the gray
gradation improves the quality of multifractal analysis of nanostructured materials and expands its capabilities, in
particular, the selection of multi-scale composite inclusions in the structure of the material and nano-objects on
transparent or opaque basis. Obvious quality criteria for such digital “pixelation” are the ratio of the physical area
of the image being processed to the number of cells used by pixel partitioning, related to the dimensions of the
pixel itself, as well as the number of information units used to describe each pixel of the image.

The obtained results of using this method for characterizing the synthesized samples of new nanostructured
materials of chemical-catalytic and thermoelectric purposes with a high proportion of non-autonomous phases in
comparison with the classic example of Sierpinsky monofractal model of the carpet indicate the multifractal nature
of their structural-phase nonuniformity with a whole range of fractal dimensions according to the generalized Rényi
equation.
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1. Introduction

A normal metal ring threaded by a magnetic flux can sustain a loss-less current, commonly referred to as
the persistent current, because of the quantum mechanical phase coherence effect. This novel effect was first
predicted by Buttiker, Imry and Landauer [1] and later quite a few other aspects of this problem were reported by
several other investigators [2]. For example, it was proposed that the persistent current would be periodic in flux.
Several experiments [3] have established quite unequivocally that persistent current can exist in a semiconductor
quantum ring and it is indeed periodic in nature. The Hubbard model turns out to be a suitable model to investigate
the persistent current in a quantum ring consisting of discrete sites [4]. The effects of spin-orbit interactions [5]
are also found to be pronounced in quantum rings. Recently the effect of electron-phonon interaction on the
persistent current in a correlated quantum ring in the presence of Rashba spin-orbit interaction has been studied by
Monisha et al. [6] using the one-dimensional Holstein–Hubbard model. Using of quantum rings is rather popular
in nanoscience (see, e.g., [7, 8]. The advantage with the Rashba interaction is that it can be manipulated by tuning
the external magnetic field and concomitantly the persistent current can be controlled. This is one of the main
principles on which spintronics is based.

In the present work, we study the effect of Rashba spin-orbit interaction on persistent current in a chain of two
Holstein–Hubbard rings threaded by an Aharonov–Bohm flux. We consider the magnetic flux going through the
quantum rings in such a way that the magnetic field is zero at the radii of the rings. It is a quantum mechanical
phenomenon which can be observed in small metallic rings whose size is comparable to the electron coherence
length. The energy spectrum is periodic in flux and consequently, the persistent current which is the change in
ground state energy with respect to the magnetic flux is also periodic in flux.

2. Model of two Holstein–Hubbard rings in the presence of Rashba spin-orbit interaction

The chain of two Holstein–Hubbard rings considered in this work is shown in Fig. 1. Both of the rings consist
of discrete lattice sites and the electrons can hop from one site to another.

The Hamiltonian for a chain of two Holstein–Hubbard rings threaded by a magnetic flux is written in the
presence of Rashba spin-orbit interaction as:

H = Hel +Hp +Hep +Hso (1)

with

Hel = ε0

∑
i

c+i ci+ε0

∑
k

c+k ck−te
γθ
∑
〈i,j〉

(c+i cj+h.c)− t
2
eγθ

∑
〈k,l〉

(c+k cl+h.c)+U
∑
i

ni↑ni↓+U
∑
k

nk↑nk↓, (2)
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FIG. 1. Chain of two Holstein–Hubbard rings. The intersection point is 0, points 11, N1, 12, N2

are its nearest neighbors

Hp = ~ω0

∑
i

(
b+i bi +

1

2

)
+ ~ω0

∑
k

(
b+k bk +

1

2

)
, (3)

Hep = g1

∑
i

ni
(
bi + b+i

)
+ g1

∑
k

nk
(
bk + b+k

)
+ g2

∑
〈i,j〉

ni
(
bj + b+j

)
+
g2

2

∑
〈k,l〉

nk
(
bl + b+l

)
, (4)

Hso = −t
∑
〈i,j〉

(c+i tsoe
γθcj + h.c)− t

2

∑
〈k,l〉

(c+k tsoe
γθcl + h.c), (5)

where 〈i, j〉 is any pair of two nearest neighbors on the ring, except at the point of intersection and its nearest
neighbors. Pairs 〈k, l〉 include the point of intersection and its nearest neighbors. Hel, given by Eq. (2), is the
electronic Hamiltonian which consists of six terms. The first two terms stand for the site energies of the two rings,

ε0 referring to the on-site energy, ci =

(
ci↑
ci↓

)
, c†iσ(ciσ) denoting the creation (annihilation) operator for an

electron at site i with spin σ, i taking values 1, 2, 3, 4, . . . N , where N is the total number of sites in each ring
except the point of intersection and its nearest neighbors, k is the number of point of intersection and its nearest
neighbors (points 0, 11, 12, N1, N2 on Fig. 1). Next two terms describe the kinetic energies, t being the hopping
integral and θ = (2πΦ/n) the Aharonov–Bohm phase arising from the quantized magnetic flux Φ = mΦ0 where
m is an integer and Φ0 = hc/e is the elementary flux quantum. The last two terms represent the onsite Coulomb
repulsion with U measuring the strength of the repulsion and niσ = c†iσciσ refers to the operator corresponding to
the electron number at site i with spin σ. Hp, given by Eq. (3), is the sum of the Hamiltonians for non-interacting
phonons in the two rings, b†i (bi) being the phonon creation (annihilation) operator at site i and ω0 the phonon
frequency which is assumed to be dispersionless. Hep, given by Eq. (4), describes the on-site and nearest-neighbor
electron-phonon interactions with g1, g2 denoting the corresponding coupling strengths. We assume that g2 is
smaller than g1 by an order of magnitude or so. Finally, Eq. (5) represents the Rashba spin-orbit interaction with
tso as the spin-orbit coupling constant given by: tso = iα(σx cosϕij+σy sinϕij) where σm is the m-th component
of the Pauli matrix σ, ϕij = (ϕi + ϕj)/2 with ϕi = 2π(i − 1)/N , i being the site index along the azimuthal
direction of the ring.

3. Analytical results

To eliminate the phonons we carry out the celebrated Lang–Firsov transformation [7,9] on the Hamiltonian (1)
with the generator:

R =
1

~ω0
(g1

∑
iσ

niσ
(
b+i − bi

)
+ g1

∑
kσ

nkσ
(
b+k − bk

)
+ g2

∑
〈i,j〉σ

niσ
(
b+j − bj

)
+
g2

2

∑
〈k,l〉σ

nkσ
(
b+l − bl

)
). (6)
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The transformed Hamiltonian is given by:

∼
H = eRHe−R = H + [R,H] +

1

2!
[R, [R,H]] + ... =

− 1

~ω0
(g2

1 + zg2
2)
∑
iσ

niσ − teιθ
∑
〈i,j〉σ

e(Yi−Yj)c+iσcjσ − ιe
ιθ
∑
〈i,j〉σ

[
0 P

Q 0

]
e(Yi−Yj)c+iσcjσ+

+(U − 2

~ω0
(g2

1 + zg2
2))
∑
i

ni↑ni↓ −
g2

2

~ω0

∑
i∆σσ′

niσni+∆σ′ − 2

~ω0
g2g1)

∑
〈i,j〉σσ′

niσnjσ′ + ~ω0

∑
i

(
b+i bi +

1

2

)
−

− 1

~ω0

∑
kσ

(g2
1 +

zkσ
4
g2

2)nkσ −
t

2
eιθ

∑
〈k,l〉σ

e(Yk−Yl)c+kσclσ −
ι

2
eιθ
∑
〈k,l〉

[
0 P

Q 0

]
e(Yk−Yl)c+k cl+

+
∑
k

(U − 2

~ω0
(g2

1 +
z1

4
g2

2))nk↑nk↓ −
g2

2

2~ω0

∑
〈k,l〉σσ′,k,l 6=0

nkσnlσ′ +
1

~ω0
g2g1

∑
〈k,l〉σσ′

nkσnlσ′+

+~ω0

∑
k

(
b+k bk +

1

2

)
.

(7)
The effective electronic Hamiltonian can be obtained by taking the zero-phonon averaging:

Heff =
〈
0
∣∣eRHe−R ∣∣ 0〉 =

〈
0
∣∣∣∼H ∣∣∣ 0〉 . (8)

It is easy to see that [Yi, Yj ] = 0, [Yk, Yl] = 0 and〈
0
∣∣eYi−Yj ∣∣ 0〉 = e−( 1

~ω0
)2[(g1−g2)2+(z−1)g22 ],

〈
0
∣∣eYk−Yl ∣∣ 0〉 = e−( 1

~ω0
)2[(g1−g2)2+(zk−1)g22 ].

Using these results, we can write the effective electronic Hamiltonian in a simplified form as:

Heff = εe0
∑
iσ

niσ − teeιθ
∑
〈i,j〉σ

c+iσcjσ − t
ij
SO−ee

ιθ
∑
〈i,j〉σ

c+iσcjσ + Ue
∑
i

ni↑ni↓+

+
∑
kσ

εe0knkσ −
eιθ

2

∑
〈k,l〉σ

tekc
+
kσclσ −

eιθ

2

∑
〈k,l〉σ

tklSO−ekc
+
kσclσ +

∑
k

Ueknk↑nk↓,

where εe0 = − (g2
1 + zg2

2)

~ω0
, z is the number of nearest neighbors (for all the sites except the point of intersection

and its nearest neighbors), εe0k = −
(g2

1 + zk
4 g

2
2)

~ω0
, zk – number of nearest neighbors (for the point of intersection

and its nearest neighbors),

te = te
−
(

1
~ω0

)2

[(g1−g2)2+(z−1)g22] , tek = te
−
(

1
~ω0

)2

[(g1−g2)2+(zk−1)g22],

tijSO−e = ιAe
−
(

1
~ω0

)2

[(g1−g2)2+(z−1)g22], tijSO−ek = ιAke
−
(

1
~ω0

)2

[(g1−g2)2+(zk−1)g22],

A =

[
0 P

Q 0

]
=

[
0 αe−ιφij

αeιφij 0

]
, Ak =

[
0 P

Q 0

]
=

[
0 αe−ιφkl

αeιφkl 0

]
,

Ue = U − 2

~ω0

(
g2

1 + zg2
2

)
, Uek = U − 2

~ω0

(
g2

1 +
zk
4
g2

2

)
.

Next, we perform the unitary transformation on the effective Hamiltonian Heff with the matrix:

Um =
1√
2

[
1 −1

e
2πι
N (m− 1

2 ) e
2πι
N (m− 1

2 )

]
.

This transformation helps us to eliminate the index dependence of the spin-orbit interaction coefficients tijSO−e,

tijSO−ek and transforms the old operators ci, ck to a new set of operators
∼
c
i

= U+
i ci,

∼
c
k

= U+
k ck. The transformed

effective Hamiltonian is given by:
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He = εe0
∑
iσ

∼
n
iσ
− 1

2
eιθ

∑
〈i,j〉σ

c+iσ[te + ιαe]Bcjσ + Ue
∑
i

∼
n
i↑

∼
n
i↓

+
∑
kσ

εe0k
∼
n
kσ
− 1

4
eιθ

∑
〈k,l〉σ

c+kσ[tek + ιαek]Bclσ+

+
∑
k

Uek
∼
n
k↑

∼
n
k↓

+

∼
n
i

[ ∼
c†i↑
∼
c
i↓

+
∼
c†i↓
∼
c
i↑

]
4

−

[ ∼
c†i↑
∼
c
i↓

+
∼
c†i↓
∼
c
i↑

]
∼
n
i

4
+

∼
n
k

[ ∼
c†k↑

∼
c
k↓

+
∼
c†k↓

∼
c
k↑

]
4

−

[ ∼
c†k↑

∼
c
k↓

+
∼
c†k↓

∼
c
k↑

]
∼
n
k

4
,

where

αe = αe
−
(

1
~ω0

)2

[(g1−g2)2+(z−1)g22], αek = αe
−
(

1
~ω0

)2

[(g1−g2)2+(zk−1)g22],

B =

[
1 + e

2πι
N −1 + e

2πι
N

−1 + e
2πι
N 1 + e

2πι
N

]
.

Next, we use the mean-field approximation to linearize the quadratic terms in He (see equation (9). In 1D
systems, for a half filled band the electron-phonon interaction can cause the distortion of the lattice leading to
dimerization with the unit cell getting doubled.

To proceed further, we divide the lattice into two sublattices: even numbered sites-A,and odd numbered sites-B.
Using some algebraic simplifications following Cabib and Callen [10] we obtain:

Hm
e =

N∑
i=1

c̃+i [C + (−1)iD]c̃i − eι(θ+
π
N )

N∑
<ij>σ,i,j 6=0

c̃+iσ[teE + ιαeF ]c̃jσ +K1+

N∑
k=0

c̃+k [Ck + (−1)kDk]c̃k − eι(θ+
π
N )

N∑
<kl>σ

c̃+kσ[tekE + ιαekF ]c̃lσ +K2.

where

C =

[
ε+
AB↑ 0

0 ε+
AB↓

]
, Ck =

[
ε+
AB↑k 0

0 ε+
AB↓k

]
,

ε+
AB↑ =

εA↑ + εB↑
2

, ε+
AB↓ =

εA↓ + εB↓
2

, ε+
AB↑k =

εA↑k + εB↑k
2

, ε+
AB↓k =

εA↓k + εB↓k
2

,

D =

[
ε−AB↑ 0

0 ε−AB↓

]
, Dk =

[
ε−AB↑k 0

0 ε−AB↓k

]
,

ε−AB↑ =
εA↑ − εB↑

2
, ε−AB↓ =

εA↓ − εB↓
2

, ε−AB↑k =
εA↑k − εB↑k

2
, ε−AB↓k =

εA↓k − εB↓k
2

,

εA↑ = εe0 +
Ue(c− s)

2
, εB↑ = εe0 −

Ue(c− s)
2

, εA↓ = εe0 +
Ue(c+ s)

2
, εB↓ = εe0 −

Ue(c+ s)

2
,

εA↑k = εe0k +
Uek(c− s)

2
, εB↑k = εe0k −

Uek(c− s)
2

, εA↓k = εe0k +
Uek(c+ s)

2
, εB↓k = εe0k −

Uek(c+ s)

2
,

E =

 cos(
π

N
) ι sin(

π

N
)

ι sin(
π

N
) cos(

π

N
)

 , F =

 cos(
π

N
) ι sin(

π

N
)

−ι sin(
π

N
) − cos(

π

N
)


K1 =

NUe(n
2 − c2 + s2)

4
, K2 =

NUek(n2 − c2 + s2)

4
,

n =
[(nA↑ + nA↓) + (nB↑ + nB↓)]

2
,

c =
[(nA↑ + nA↓)− (nB↑ + nB↓)]

2
,

s =
[(nA↑ − nA↓)− (nB↑ − nB↓)]

2
,

where n is the electron concentration, c is the charge density wave order parameter, and s is the spin density wave
order parameter. Performing the Fourier transformation:

c̃mσ =
1√
N

∑
ξ

eιξmac̃ξσ,

where a is the lattice spacing and making the redefinitions: c̃iσ(c̃+iσ) as ciσ(c+iσ) and c̃kσ(c̃+kσ) as ckσ(c+kσ) and
using the following identities:
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N
2∑

m=1

c+2mc2m =
1

2

∑
ξ

c+ξ cξ +
1

2

∑
ξ

c+ξ cξ+π
a
, for even sites,

N
2∑

m=1

c+2m−1c2m−1 =
1

2

∑
ξ

c+ξ cξ −
1

2

∑
ξ

c+ξ cξ+π
a
, for odd sites, we can separate the Hamiltonian into even and

odd sited terms to get the effective mean-field Hamiltonian as:

HM
e = 2

π/a∑
ξ=−π/a,ξ 6=0

c+ξ Gcξ + 2

π/a∑
ξ=−π/a,ξ 6=0,ξ+(π/a)6=0

c+ξ Dcξ+(π/a) + c+0 G0c0 + c+0 D0cπ/a + 2K1 +K0, (9)

where

G =

[
ε+
AB↑ + α11 α12

α21 ε+
AB↓ + α22

]
, D =

[
ε−AB↑ 0

0 ε−AB↓

]
,

G0 =

 ε−AB↑ − ε
+
AB↑ +

1

2
[ε+
AB↑0 − ε

−
AB↑0] + α11,0 α12,0

α21,0 ε−AB↓ − ε
+
AB↓ +

1

2
[ε+
AB↓0 − ε

−
AB↓0] + α22,0

 ,

D0 =

 ε+
AB↑ − ε

−
AB↑ −

1

2
[ε+
AB↑0 − ε

−
AB↑0] 0

0 ε+
AB↓ − ε

−
AB↓ −

1

2
[ε+
AB↓0 − ε

−
AB↓0]

 ,

α11 = −2te cos(π/N) cos(ξa+ θ + π/N) + 2αe cos(π/N) sin(ξa+ θ + π/N),

α12 = 2te sin(π/N) sin(ξa+ θ + π/N) + 2αe sin(π/N) cos(ξa+ θ + π/N),

α21 = 2te sin(π/N) sin(ξa+ θ + π/N)− 2αe sin(π/N) cos(ξa+ θ + π/N),

α22 = −2te cos(π/N) cos(ξa+ θ + π/N)− 2αe cos(π/N) sin(ξa+ θ + π/N),

α11,0 = 2[2te − te0] cos(π/N) cos(θ + π/N)− 2[2αe + αe0] cos(π/N) sin(θ + π/N),

α12,0 = 2[−2te + te0] sin(π/N) sin(θ + π/N)− 2[2αe − αe0] sin(π/N) cos(θ + π/N),

α21,0 = 2[−2te + te0] sin(π/N) sin(θ + π/N)− 2[−2αe + αe0] sin(π/N) cos(θ + π/N),

α22,0 = 2[2te − te0] cos(π/N) cos(θ + π/N) + 2[+2αe + αe0] cos(π/N) sin(θ + π/N).

It is convenient to work in the reduced zone scheme and so we choose the domain of ξ as: −π/2a. The
matrix elements then satisfy the equation: αij(ξ + π/a) = −αij(ξ). The effective Hamiltonian is finally given in
the mean-field approximation by:

HM
e = 2

π∑
ξ=0

(c+k↑c
+
k↓c

+
k+π,↑c

+
k+π,↓)W


ck↑
ck↓
ck+π,↑

ck+π,↓

+ (c+0↑c
+
0↓c

+
π,↑c

+
π,↓)W0


c0↑
c0↓
cπ,↑
cπ,↓

 , (10)

where

W =


ε+
AB↑ + α11 α12 ε−AB↑ 0

α21 ε+
AB↓ + α22 0 ε−AB↓

ε−AB↑ 0 ε+
AB↑ − α11 −α12

0 ε−AB↓ −α21 ε+
AB↓ − α22

 ,



Persistent current in a chain of two Holstein–Hubbard rings in the presence... 55

W0 =
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1
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−
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1

2
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1
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−
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−
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1

2
[ε+
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−
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0
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+
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1
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[ε+
AB↑0 − ε

−
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−α11,0

−α12,0

0
ε+
AB↓ − ε

−
AB↓−

1

2
[ε+
AB↓0 − ε

−
AB↓0]

−α21,0

ε−AB↓ − ε
+
AB↓+

1

2
[ε+
AB↓0 − ε

−
AB↓0]−

−α22,0



.

HM
e can be exactly diagonalized numerically to obtain the energies Ei and distribution functions f(Ei), where:

f(Ei) =
1

[eβ(Ei−µ)+1]
.

The ground state energy can be finally written as:

EGS =
∑
i

2N − 1

2N
Eif(Ei) +

∑
i

1

2N
Eif(Ei) + 2K1 +K0. (11)

The persistent current and the Drude weight can be evaluated from the following relations:

Ipc = − 1

2π

(
∂EGS
∂Φ

)
, (12)

DW =
N

4π2

∂2EGS
∂Φ2

, Φ = Φm, (13)

where Φm is the location minimum of EGS and can take values 0 or 1/2 depending on the parity of the number
of electrons.

4. Numerical results

We set t = 1, KBT = 0.1, U = 0, g1 = g2 = 0 and measure all energies in units ~ω0 (see Fig. 2), the
persistent current (see Fig. 3) and the Drude weight (see Fig. 5).

In Fig. 2 the dependence of the ground state energy EGS on the flux Φ is represented for different values
of Rashba spin-orbit constant α. One can see that the ground state energy is periodic with Φ and monotonically
changes with α.

In Fig. 3, we plot the persistent current Ipc for different values of α. The phase of the persistent current
changes when α exceeds a critical value αc.

The variation of persistent current Ipc as a function of α is represented on Fig. 4. When α > αc, Ipc with α
becomes monotonically increasing.

The dependence of the Drude weight as a function of flux Φ for different α is shown in Fig. 5.
The finite value of the DW indicates that the system is in the metallic phase. One can see that there is no

periodicity and when α increasing, the minimum value varies greatly.
To compare these results to a single ring [6], they are similar in cases for EGS and Ipc as a functions of the

flux Φ for different α and differ considerably for the Drude weight function. The Drude weight as a function of
flux Φ for different α in a single ring is a periodic function and the period changes with the change of α.

Then, to understand the effect of electron-electron interaction, we set t = 1, KBT = 0.1, α = 2, g1 = g2 = 0
and measure the persistent current for different values of U (U = 0, U = 1.4, U = 1.8, U = 2.2, U = 2.4). The
behavior of Ipc as a function of U with (when α = 2) and without (when α = 0) Rashba spin-orbit interaction is
shown in Fig. 6. The behavior of Ipc for such values of U has a small difference.

The variation of persistent current for different values of U with α = 0, 2 is shown of Fig. 7. In absence of
Rashba spin-orbit interaction when α = 2 there seem to exist a critical value Uc. When U > Uc the persistent
current decreases when U increases. The decrease is quite rapid. Such affect appears as when U increases the
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FIG. 2. The ground state energy EGS as a function of the flux Φ for different α

FIG. 3. The persistent current Ipc as a function of the flux Φ for different α

electrons experience a larger onsite repulsion and find it more difficult to hop from one site to another and this
reduces the persistent current.

Next, we explore the effects of on-site electron-phonon interaction. We set t = 1, KBT = 0.1, α = 0,
U = g2 = 0 and measure the persistent current (see Fig. 8) for different values of g1 (g1 = 0.1, g1 = 0.5,
g1 = 0.9). The function for g1 = 0 is similar to function g1 = 0.1 with the difference that could be neglected.
It is evident that persistent current decreases when g1 increases. The increase of g1 leads to deepening of the
self-trapping polarization potential causing localization which will inhibit conduction.

The variation of persistent current for different values of g1 with α = 0, α = 2 on Fig. 9 shows the effects
of g1 on persistent current with and without Rashba spin-orbit interaction. When there is no Rashba spin-orbit
interaction, the Ipc decreases as g1 increases. The gradient of the curve vanishes monotonically. When there is a
Rashba spin-orbit interaction (α = 2) there seem to exist a critical value g1c. The Ipc decreases when g1 > g1c

increases.
Next, to study the NN electron-phonon interaction, we set t = 1, KBT = 0.1, α = 0, U = g1 = 0 and

measure the persistent current (see Fig. 10) for different values of g2 (g2 = 0.1, g2 = 0.3, g2 = 0.6). The function
of Ipc for g2 = 0 is similar to function g2 = 0.1 with the difference that could be neglected. The behavior of g2 is
similar for that of g1 but the effect of g2 on persistent current is stronger. The periodicity of Ipc decreases when
g2 increases.
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FIG. 4. Variation of Ipc as a function of α

FIG. 5. The Drude weight as a function of flux Φ for different α
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FIG. 6. Persistent current Ipc for different values of U with α = 0, 2

FIG. 7. Variation of persistent current Ipc for different values of U with α = 0, 2

FIG. 8. Persistent current Ipc for different values of g1 with α = 0
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FIG. 9. Variation of persistent current Ipc for different values of g1 with α = 0, α = 2

FIG. 10. Persistent current Ipc for different values of g2 with α = 0

In Fig. 11 we show the dependence of persistent current Ipc on g2 with α = 2, g1 = 0.9 in the presence of
on-site electron-phonon interaction. The periodicity of Ipc also decreases.

The next important step is to study the effects of temperature on persistent current. We set t = 1, α = 0,
U = 0, g1 = g2 = 0 and measure the persistent current (see Fig. 12) for different values of KBT (KBT = 0.1,
KBT = 0.24, g2 = 0.46, KBT = 0.71) and for α = 2 (see Fig. 13).

Both Fig. 12,13 show that persistent current decreases as temperature increases. According the Fig. 14, there
appears to exist a critical value (kBT )c, and when kBT > (kBT )c, the persistent current decreases.

In the presence of Rasba spin-orbit interaction we plot the variation of persistent current Ipc for different
values of kBT with α = 2, g1 = 0.5 and compare it with the variation for α = 2, g1 = 0. The persistent current
also decreases when temperature increases (Fig. 15).

Finally, we will study the effect of chemical potential on persistent current. On Fig. 16 the dependence of
persistent current on Φ for different values of chemical potential µ is shown. We set t = 1, KBT = 0.1, α = 0,
U = 0, g1 = g2 = 0 and measure the persistent current for different values of µ (µ = 0, µ = 0.01, µ = 0.03,
µ = 0.05) and α = 2. One can see that the resulted figures are quite similar. So the changes of magnitude and
phase of persistent current with µ are small. This result is different from what is presented in [6] for similar
quantum ring.
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FIG. 11. Persistent current Ipc for different values of g2 with α = 2, g1 = 0.9

FIG. 12. Persistent current Ipc for different values of kBT with α = 0

FIG. 13. Persistent current Ipc for different values of kBT with α = 2
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FIG. 14. Variation of persistent current Ipc for different values of kBT with α = 0, 2

FIG. 15. Variation of persistent current Ipc for different values of kBT with α = 2, g1 = 0,
α = 2, g1 = 0.5

FIG. 16. Persistent current Ipc as a function of flux Φ for different values of µ, α = 0
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The variation of persistent current Ipc for different values of µ in the presence (α = 2) and absence (α = 0)
of Rasba spin-orbit interaction is shown in Fig. 17. In both cases there seem to exist a critical value µc such that
when µ > µc the persistent current decreases.

FIG. 17. Variation of persistent current Ipc for different values of µ, α = 0, 2

5. Conclusions

Thus during the work, the model of two chained Holstein–Hubbard rings in the presence of Rashba spin-orbit
interaction and the effect of Rashba spin-orbit interaction were obtained. First, the phonons degrees of freedom
were eliminated by the conventional Lang–Firsov transformation and then the spin-dependence was removed by
performing the unitary transformation, the effective electronic Hamiltonian was diagonalized by using the Hartree–
Fock approximation. The equations for ground state energy, persistent current and Drude weight were also obtained.
The persistent current was calculated by differentiating the GS energy. The dependence of ground state energy,
persistent current and Drude weight as a functions of flux for different values of Rashba spin-orbit interaction
was numerically shown. Next, the effects of Aharonov–Bohm flux, temperature, chemical potential spin-orbit
interaction and electron-phonon interaction on the persistent current were also investigated.
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The TiO2/SiO2 alternating multilayers of one-dimensional photonic crystals (1DPCs) was fabricated by the sol-gel process and a spin coating

method. This study investigated the possibility of creating a better solar cell back reflector by introducing maximum and broader reflection

towards longer wavelength spectral region with effect of optimal thin films. After the fabrication of 1DPCs, the optical properties were

investigated by Raman spectroscopy, Fourier infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-vis) and scanning electron microscopy

(SEM). From the results, the Raman spectra exhibited notable peaks and indicates the presence of anatase TiO2 and SiO2 layered structures.

Furthermore, the highest reflectance was observed in the visible region and shifting into the longer wavelength spectral region due to the

increment of alternative layers (stacks). These structural and morphological results are encouraging for the realization of TiO2 and SiO2

materials for various applications, including LED and photovoltaics.
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1. Introduction

Currently, TiO2 has great attention due to its various applications and correlating research associated with
nanomaterials that are environment-friendly. Y. Y. Liu et al. reported that the addition of SiO2 onto TiO2 films
enhanced photon induction [1]. The fabrication of dielectric multilayers can be accomplished using various
techniques such as ion-assisted-deposition (IAD), sol-gel, dip-coating, spin-coating, sputtering, etc [2–5]. Sol-gel is
an appropriate method for the synthesis of TiO2/SiO2 thin films with enhanced electrical and optical performance
in industrial applications because of large refractive index contrast. This is one of the significant features of
one-dimensional photonic crystals (or multilayers) and existing photonic band gap (PBG) with high (n1) and low
(n2) refractive index contrast. The alternative layers (stacks) of TiO2/SiO2 coatings mainly focusing on various
applications such as antireflection coating, photocatalysis, light emitting diodes (LEDs), solar cells, optical filter,
dental implants, sensor and thermal applications [6–12]. Dubey and Ganesan have studied the optical properties
of SiO2/TiO2 multilayers by using sol-gel spin coating method. They have obtained maximum ∼78% reflection
with the combination of six alternative low (SiO2) and high (TiO2) refractive indices of the films. For the
corresponding fabricated multilayer structure, it was observed that when the number of stacks was increased, the
reflectance was also enhanced. Furthermore, the film thickness (230 and 70 nm), refractive index (1.43 and 2.0)
along with surface topography (AFM) were discussed [13]. Ding et al. have demonstrated the improvement of
reflectance and efficiency of the light emitting diodes (LEDs) with the integration of aluminium film and double
(16 stacks) distributed Bragg reflectors (TiO2/SiO2). They have also reported the light output power of LED
with double distributed Bragg reflector (DBR) was ∼3.7% greater than single (8 stacks) DBR stacks [14]. Pana
et al. have reported the design and fabrication of seven stacks TiO2/SiO2 multilayers by using optical modeling
and RF magnetron sputtering. The RF magnetron sputtering used for the thermal solar collector consists of an
optical filter comprising TiO2/SiO2 alternative layers. They have demonstrated colored glazing showing significant
reflectivity ∼54% at 574 nm and integrated total transmittance was ∼80.3%. The yellow and green glaze had the
best mechanical and thermal stability for thermal solar collectors [15]. Ilinykh and Matyushkin have fabricated
1DPCs using a sol-gel process and spin coating method. They have found minimum transmittance (∼7%) between
the photonic band gaps (450–600 nm). Also, the band gap varied with respect to the viscosity of the prepared
solution and the thickness of the layers also changed [16]. Jena et al. have investigated design and fabrication
of 1DPCs (TiO2/SiO2) using an asymmetric bipolar pulse DC magnetron sputtering technique. They have proved
both theoretical and experimental works were congruent by measured photonic band gap (PBG) in the visible
spectral region [17]. Hegmann et al. have prepared SiO2-TiO2 scattering layers using sol-gel process and a
dip-coating method. They improved thin film solar cells with the addition of aluminium doped ZnO and a-Si:H/µc-
Si:H by vapor phase deposition. Further, the electrical properties and performance have been studied by different
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characterizations. They have implemented sol-gel based scattering thin films for light trapping mechanism with
two different concepts for solar cell application [18]. In this present work, highly reflective TiO2/SiO2 multilayers
were prepared using sol-gel spin coater techniques and characterized their optical performance. Section 2 explains
the experimental works of sol-gel process and spin-coating techniques. After calcination, the thin films analysis
results are discussed in section 3 and conclude the paper in section 4.

2. Experimental approach

An experimental technique for the synthesis of the TiO2/SiO2 multilayer structure was a spin coating of SiO2

sol and TiO2 sol on a glass substrate in which the prepared solution was used in a sol-gel technique at room
temperature. Fig. 1 shows the schematic diagram of the preparation of TiO2/SiO2 thin films.

FIG. 1. The schematic diagram of the preparation steps of TiO2/SiO2 thin films

Prior to coating, the glass substrates were cleaned using ultra sonication process in distilled water, acetone,
ethanol respectively. First, SiO2 and TiO2 solutions were prepared independently. The TiO2 solution was prepared
by adding 1.7 mL CH3COOH (acetic acid) in 20 mL CH3OH (methanol) and to this mixture 1.2 mL of C16H36O4Ti
(TBOT) was added dropwise and stirred for 30 minutes. After magnetic stirring, the TiO2 solution was deposited on
the glass substrate with the rotation speed of 3000 rpm for the 30s. Then, the coated glass substrates were annealed
at 500◦C for 1 hour. Next, a solution of SiC8H20O4 (TEOS-1.5ml), C2H6O (ethanol-20ml) and CH3COOH (Acetic
Acid-2.3ml) was first prepared and stirred for 90 minutes at room temperature. Then, SiO2 solution coated on a
TiO2 coated glass substrate by the spin-coater technique with the 3000 rpm for the 30s. The coated glass substrates
were dried at room temperature and then heat-treatment (300◦C) for 1 hour. Both the final stirred solution was
aged in a closed glass container at room temperature for one day and then used for coating. Simultaneously, we
prepared the 5, 7, 9 and 11 stacks of alternating TiO2 and SiO2 layers. Fig. 2 shows the schematic diagram of
final multilayer stacks of TiO2/SiO2.

3. Results and discussion

The Raman spectroscopic technique was employed to study the presence of different frequency modes. Fig. 3
shows the comparison of Raman scattering spectra at various TiO2/SiO2 stacks. The relevant positions of the bands
are also indicated and calculated band range from 300 to 2300 cm−1.
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FIG. 2. The schematic diagram of the fabricated TiO2/SiO2

FIG. 3. Raman spectra of anatase TiO2/SiO2 multilayer thin films grown on a glass substrate

First, the anatase phase TiO2 thin films were successfully observed on glass substrates using Raman spec-
troscopy. The Raman bands of the anatase phase noticed on 5, 7, 9 and 11 stacks at 393 and 640 cm−1, which
can be indicated B1g and Eg modes. These broader and low-intensity peaks the presence of a poorly-defined
anatase phase [19,20]. The characteristics recorded in our studies were similarto those obtained in previous studies.
Further, the deposition conditions such as solution viscosity, the deposition period and calcination temperature are
significant for obtaining a better anatase TiO2 phase. For SiO2 deposited on TiO2, we characterized and observed
broad peak at higher frequencies such as 600 cm−1 and 1369 cm−1. Here, the first peak was assigned to breathing
modes of oxygen atoms [21,22]. The SiO2 grown layers on TiO2 has higher peaks at 1369 cm−1 as seen in Fig. 3.
Compared to the TiO2 spectrum, the SiO2 is so broad and strong spectral curve. Fig. 4 shows typical infrared
transmittance spectrum of various stacks (5S, 7S, 9S & 11S) of TiO2/SiO2 layers. The strong peaks at 3400 cm−1

and 1644 cm−1 are attributed to OH stretching bands due to water adsorbed by TiO2 layers. The absorption band
at 1089 cm−1 confirmed the presence of Si–O–Si stretching vibration [23]. The characteristic of Ti–O vibration
bending mode shows the presence of metal oxide at 686–742 cm−1 [24]. We have observe that the peak intensity
increasing at lower wavelength range for the case of 5S and 7S while it is decreases for the 9S and 11S samples.

Figure 5 shows the reflectance spectrum of 5S, 7S, 9S and 11S stacks of TiO2/SiO2 prepared by spin coating
process. The partial reflection wave of each layer produces maximum reflections and the many reflected waves
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FIG. 4. FTIR spectrum of TiO2/SiO2 multilayer films deposited on glass with 3000 rpm at room temperature

creating high-quality back reflectors. This reflected wavelength range is called distributed Bragg reflector (DBR)
and referred as photonic band gap (PBG). The band gaps (full width at half maximum-FWHM) of DBR changing
with respect to refractive index contrast between the layered structures. This can be expressed in the terms of
frequency by using the following equation [25, 26]:

∆ω =
4ωmax

π
sin−1

(
|nh − nl|
nh + nl

)
,

here, ωmax = 2πc/λmax, nh and nl are the high and low refractive index. Overall, the reflectance peaks achieved
maximum (> 99 %) level and shift can be verified. When increasing the number (N) of alternating layers from 5
to 11 stacks, the enhanced reflection shifts significantly and broadening towards higher wavelength region which
will be optimized.

Figure 6 shows the enhanced reflectance FWHM with increased number of stacks, it is dominant for the case
of 11S sample with its reflectance FWHM 270 nm. Particularly, the reflectance is mainly dependent on the optical
thickness and surface structure of the layers also called first-order center wavelength:

λmax = 2(nhdh + nldl)

where λmax is the reflected wavelength, d is the thickness of the layers. The bright and dark color (interference)
shows the illuminated light yields a good reflectance band at desired wavelength region. These films exhibit bright
colors when the stop band fell in the visible spectral region. By controlling the optical thickness, thin film color
can be varied across both the visible and infrared spectral region [27, 28].
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FIG. 5. The reflectance spectra of different stacks of TiO2/SiO2 layers

FIG. 6. The bar diagram of the reflectance of FWHM vs a number of stacks

Cross-sectional TiO2/SiO2 multilayer (11 stacks) thin films were characterized by the field emission scanning
electron microscopy (FESEM) as depicted in Fig. 7. From the cross-sectional image of the alternating dielectric
layers, we can find some of the borders and remaining are merged with each other. The structural defect was
achieved by multiplying the layers of TiO2 and SiO2 embedded in which the light bands correspond to titanium
dioxide and dark bands are silicon dioxide layers. The cross-sectional image indicates that the film thickness is
1 µm TiO2/SiO2 multilayer film and confirms the heterogeneous structure.

4. Conclusion

In this paper, TiO2/SiO2 multilayers were fabricated and studied. TiO2 nantase phase and amorphous SiO2

were confirmed by the Raman Study. The back-side light reflecting structures of alternating high-index and low-
index multilayers of 11 stacks had shown maximum reflection in the visible spectral region. The reflectance center
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FIG. 7. The cross-sectional image of FESEM representative TiO2/SiO2 multilayers

wavelength noticed at 362, 365, 404 and 450 nm corresponding to the sample 5S, 7S, 9S and 11S upon increasing
the number of stacks the reflection bands were found shifted towards the longer wavelength with enhanced
reflectivity. The FESEM showed the formation of alternative layers of light (TiO2) and dark (SiO2) strips with
their one-dimensional periodicity. The morphological and optical measurement confirmed the changes in thin films
and surface roughness are attributed to the better backside reflector for the photovoltaic device. Further, the work
optimization is required to enhance optical behavior.
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Very wide-bandgap undoped and Y2O3-doped ZrO2 nanoparticles were synthesized and their structural, optical, morphological and energy

characteristics were investigated. It was found that the bandgap value in ZrO2 decreases with Y2O3 doping. The developed materials

were used for fabrication of nanostructured photoelectrodes for perovskite solar cells (PSCs) with the architecture of glass/FTO/ZrO2–

Y2O3/CH3NH3PbI3/spiro-MeOTAD/Au. The power conversion efficiency in the PSCs based on ZrO2–Y2O3 photoelectrodes was significantly

higher than that for undoped ZrO2 photoelectrodes. We have found that nanostructured layers, based on very wide-bandgap materials could

efficiently transfer the injected electrons via a hopping transport mechanism.
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1. Introduction

Nanostructured materials are widely used for the development of next-generation solar cells (SCs) since
they enable fabrication of high efficiency and low-cost devices which are promising for mass production of
photovoltaic technologies [1, 2]. Recently, a considerable interest is focused on inorganic–organic metal halide
perovskite solar cells (PSCs) in which the record power conversion efficiency (PCE) exceeded 22 % [3] and
reached 27.3 % in perovskite-silicon tandem solar cell [4]. PSC’s architecture comprises a mesoscopic layer of
metal-oxide nanoparticles on a conductive substrate, which plays a role of the electron-conductive photoelectrode,
a perovskite (CH3NH3PbI3) layer deposited on top of the photoelectode, a hole-conductive layer and a metallic
counter electrode [5, 6].

One of the key components of the PSC is an electron-conductive photoelectrode, which consists of metal
oxide semiconductor nanoparticles organized in a mesoscopic architecture. Nanostructured layers of titanium
dioxide (TiO2) with the band gap (Eg) of 3.0 – 3.2 eV are generally used as photoelectrodes in PSCs [7,8]. At the
same time, some other wide-bandgap materials were also successfully used in photoelectrodes [9]. The application
of a very wide-bandgap metal oxide, such as ZrO2 with Eg ∼ 5.7 eV, is of special interest for this purpose [10].
Condensed layers of wide-bandgap materials are dielectrics with insulator type conductivity behavior and can’t be
used as a conductive medium. However, their analogs with nanostructured morphology demonstrate high electron-
conductive abilities, due to the large concentration of the nanoparticle surface defects. A number of publications
confirmed that in nanostructured systems with Eg > 5 eV, the effective transfer of the injected electrons was
observed, while the density of the electrons in the conduction band was negligible [9]. Charge transport through
the nanostructured layer can be realized on the basis of a hopping conduction mechanism through localized states
within forbidden zone [10].

The formation of crystal phase and morphology in ZrO2 as well as optical and electrical properties of ZrO2

nanoparticles strongly depend on the synthesis conditions [11]. A significant advantage of ZrO2 material is its
ability to be doped with yttrium oxide (Y2O3), which allows one to vary the optoelectronic characteristics of
ZrO2–Y2O3-based nanostructured systems. Doping with rare-earth metals or niobium (Nb) allows to significantly
improve the transport characteristics of the photoelectode and to increase the PCE of the PSCs [12,13]. Previously
reports of PSCs fabricated using undoped ZrO2-based photoelectode have been made [14]. In this work, we have
synthesized ZrO2 nanoparticles and yttrium oxide doped ZrO2–Y2O3 systems which were used for fabrication of
the nanostructured electron-conductive photoelectrodes for PSCs. Using the developed ZrO2–Y2O3-based photo-
electrodes, we have prepared a series of PSCs and provided comparative measurements of the main photovoltaic
parameters.
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2. Experimental

2.1. Materials and samples preparation

Nanocrystalline zirconium dioxide was prepared by hydrothermal treatment of zirconium oxyhydroxide precip-
itated from a solution of ZrOCl2 (chemical pure grade) with concentrated aqueous NH4OH. Hydrothermal treatment
was performed at T = 250 ◦C and P = 70 MPa over 4 h. The Y2O3-doped ZrO2 nanoparticles were obtained by
hydrothermal treatment of co-precipitated zirconium and yttrium hydroxides from solutions of the corresponding
metal salts. The conditions of hydrothermal treatment were chosen according to the data in [11] and corresponded
to complete dehydration of zirconium hydroxide.

To fabricate a nanostructured photoelectrode based on ZrO2–Y2O3 system, we utilized a known technique;
pastes from ZrO2 and ZrO2–Y2O3 nanopowders were prepared in organic solvent [6]. The photoelectodes were
formed by depositing the pastes on the glass substrates with a conductive FTO coating. The ZrO2 and ZrO2–Y2O3

layers with a thickness of about 200 nm were deposited using spin-coating method, followed by sintering at 500 ◦C
for 30 min.

The PSC fabrication process was provided under ambient conditions with high humidity (∼ 50 – 60 %) using
a one-step method described previously [15]. During the fabrication process, ZrO2-based photoelectodes were first
coated with a photosensitive perovskite (CH3NH3PbI3) layer, obtained from lead iodide and methylammonium
iodide precursor solutions, followed by depositing a layer of spiro-MeO-TAD as a hole-transporting material [7,14].
The PSC fabrication process was completed by thermal evaporation of conductive Au contacts with a thickness
of 50 nm using vacuum system VUP-4. As a result, we have prepared PSCs with a device architecture of
glass/FTO/ZrO2–Y2O3/CH3NH3PbI3/spiro-MeOTAD/Au, in which the doping content of Y2O3 was varied from
0 % (undoped system) to 3 and 10 mol.%.

2.2. Characterization studies

The structure and composition of nanostructured ZrO2–Y2O3 system were determined by X-ray diffraction
(XRD) analysis in the 13 – 65 ◦ range (Cu Kα radiation) using Rigaku Corporation SmartLab 3 diffractometer.
The optical properties were investigated using UV-vis double-beam spectrophotometer Shimadzu 3600 with an
integrating sphere ISR-3100 (Shimadzu, Japan), followed by an analysis of diffuse reflection spectra over a
wavelength range 200 – 900 nm. The morphology of the films was investigated using dual-beam scanning electron
microscope (SEM) Helios NanoLab 660 (FEI, USA).

The measurements of the photovoltaic parameters for PSCs were provided under standard illumination con-
ditions (AM1.5G) with PIN = 1000 W/m2 by recording the current-voltage characteristics (J–V) using Abet
Technologies Solar Simulator (Abet, USA) as a light source and Keithley 4200-SCS Parameter Analyzer (USA)
for recording the current-voltage characteristics (J–V). The PCE (η) of the PSC was calculated from the J–V data
using the known formula:

η =
JSC · VOC · FF

PIN
· 100 %, (1)

where JSC – short-circuit current density, VOC – open-circuit voltage, FF – fill factor and PIN – light intensity
of solar radiation.

3. Results and discussion

In Fig. 1, we present comparative data of XRD patterns for the powders of undoped ZrO2 nanoparticles and
for ZrO2–Y2O3 system with Y2O3 doping level of 3 and 10 mol.%. XRD results for the samples, obtained using
hydrothermal processing of co-precipitated zirconium and yttrium, reveal the co-existence of tetragonal (∼ 53 %)
and monoclinic (∼ 47 %) phases in ZrO2 nanoparticles. The addition of 3 mol.% Y2O3 to ZrO2 leads to the
formation of a predominantly pseudo-cubic modification of ZrO2 (c-ZrO2) and a trace amount of the monoclinic
modification of m-ZrO2 (up to 5 %), the addition of 10 mol.% Y2O3 leads to the complete disappearance of m-
ZrO2. The crystallite size of zirconia phases, determined by the X-ray line broadening method using the Scherrer
equation, was found to be 16 and 14 nm for m-ZrO2 and t-ZrO2, respectively. The obtained results shows that 3
mol.% Y2O3 additive does not affect the crystallite size. The addition of 10 mol.% Y2O3 decreases the crystallite
size down to 5 nm, which can be explained by the formation of the “core-shell” structure in which the shell is
enriched with yttria [16].

Figure 2 shows the dependence of the diffuse reflection spectra for the powders of undoped ZrO2 and ZrO2–
Y2O3 system with Y2O3 content of 3 and 10 mol.%. XRD data have shown that yttria doping stabilizes the
high-temperature tetragonal ZrO2 phase. This result revealed that ZrO2–Y2O3 samples have a monophase structure
and, thus, the semiconductor properties of these materials could be characterized by a direct transition from the
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FIG. 1. XRD patterns for ZrO2 nanoparticles with a varied Y2O3 content

FIG. 2. Diffuse reflectance spectra for the powders of undoped ZrO2 and ZrO2–Y2O3 system

valence to the conduction band. Following the Kubelka–Munk theory, the value of the optical energy bandgap
(Eg) for direct transitions can be determined from the Tauc plots [17]:

α(hν) = C
(hν − Eg)

1/2

hν
, (2)

where a – optical absorption coefficient, C – constant, hν – photon energy.
The Eg values for ZrO2 and ZrO2–Y2O3 system were defined with linear extrapolation of (αhν)2 plots with

the photon energy axis (Fig. 3). The results obtained showed that Eg value also enhances with the increase of
doping concentration from 5.74 eV in ZrO2 to 5.63 eV in ZrO2–Y2O3 (3 %). However, in ZrO2–Y2O3 (10 %),
the Eg value was found to be 5.45 eV, which can be explained by a significant decrease of the nanoparticle size
for that particular sample, to about 5 nm.

Typical scanning electron microscopy (SEM) surface image of the undoped ZrO2 nanostructured layer de-
posited on a conductive glass substrate (Fig. 4) indicates the agglomeration of ZrO2 sphere-like crystallites. SEM
results show that the average particle size was approximately 30 – 40 nm. Fig. 5 presents the cross-sectional
SEM image of the undoped ZrO2 electron transport layer spin-coated on FTO glass substrate. It is seen that FTO
conductive layer is covered with ∼ 200 nm uniform ZrO2-based mesoscopic layer. Fig. 6 presents J–V charac-
teristics, recorded for PSCs under standard illumination AM 1.5G. Photovoltaic parameters for all the investigated
PSCs are summarized in Table 1. Comparative studies of the PSCs based on undoped and Y2O3-doped ZrO2

photoelectrodes showed that doping leads to the increase of the short-circuit current values and improves the fill
factor of the devices, resulting in the increase of total PCE values. The best performance of 11.4 % was obtained
for the PSC with ZrO2–Y2O3 (10 %) photoelectrode that significantly exceeds the corresponding value of 5.9 %
for PSC based on undoped ZrO2 photoelectrode.

The performance of ZrO2-based PSCs developed in this study was higher than that in TiO2 based PSCs
with much higher observed VOC . The major difference between the above mentioned configurations of PSCs
concerns the different charge transport mechanisms at the perovskite/photoelectrode interface for ZrO2 and TiO2

electrodes. Fig. 7 presents schematic energy band diagrams demonstrating the energy band structure for PSCs
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FIG. 3. Eg values for ZrO2–Y2O3 system extracted from (αhν)2 vs. photon energy graphics

FIG. 4. SEM image of undoped ZrO2 nanostructured layer spin-coated on a conductive glass substrate

FIG. 5. Cross-sectional SEM image of the ZrO2-based photoelectrode

TABLE 1. Photovoltaic characteristics of ZrO2–Y2O3 based PSCs

PCE parameters Photoelectrode

ZrO2 ZrO2/3 mol.% Y2O3 ZrO2/10 mol.% Y2O3

VOC , V 0.94 1.0 1.0

JSC , m/m2 10.9 13.6 15.4

FF , a.u. 0.58 0.69 0.74

η, % 5.9 9.4 11.4
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FIG. 6. J–V characteristics of the PSCs based on ZrO2–Y2O3 photoelectrodes under simulated
AM 1.5G (1000 W/m2) irradiance

based on a ZrO2 photoelectrode (Fig. 7(a)) and on traditional TiO2 photoelectrode (Fig. 7(b)). The band diagram
in Fig. 7(b) demonstrates that the conduction band edge of perovskite has the energy above the conduction band
edge of TiO2 [18] that enables a classic photoexcited electron transfer from the perovskite layer to the TiO2

photoelectrode. Unlike the previously described situation, the conduction band edge of ZrO2 has much higher
energy (Fig. 7(a)), leaving the conduction band edge of perovskite far below, which makes it impossible to transfer
the electrons from the perovskite to ZrO2 in terms of the classical charge transfer mechanism. It is also known
that under ambient temperature, ZrO2 is an insulator with poor carrier transport characteristics and its practical
applicability as a charge carrier transporting material is questionable. However, several publications confirmed
that the mechanism of charge transport in nanostructured wide-bandgap electrodes, being of primary physical and
technical significance, is different from that in the bulk materials [19]. It was also shown that rare earth oxide
doping initiates the creation of core-shell structures and results in a high concentration of surface defects [16] that
significantly improves the transport characteristics of the mesoscopic photoelectrodes and increases the efficiency
of the solar cells [20, 21]. The latter is possible due the large concentration of the nanoparticle surface defects.
A number of publications confirmed that in nanostructured systems with Eg > 5 eV, the effective transfer of the
injected electrons was observed, while the density of the electrons in the conduction band was negligible [19].
In our study, we observed the effective electron conduction through the nanostructured ZrO2 layer that can be
explained on the basis of the hopping conduction mechanism through localized states within forbidden zone of
ZrO2 [10].

FIG. 7. Schematic energy band diagrams comparing the energy band structures for PSCs based
on ZrO2 (a) and TiO2 photoelectrodes (b)
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4. Conclusions

As a result, we have developed the technology and provided synthesis of both undoped and Y2O3-doped ZrO2

nanoparticles for which the structural, optical and energy characteristics were investigated. It was found that the
band-gap value in ZrO2 decreases with increased Y2O3 doping. The developed materials were used for fabrication
of nanostructured thin film photoelectrodes for constructing and providing a comparative study of the PSCs with
the architecture of glass/FTO/ZrO2–Y2O3/CH3NH3PbI3/spiro-MeOTAD/Au. The power conversion efficiency in
the PSCs based on ZrO2–Y2O3 photoelectrodes was shown to be significantly higher than that for undoped ZrO2

photoelectrodes. We have found that nanostructured layer, based on very wide-bandgap ZrO2 nanoparticles, could
efficiently transfer the injected electrons to the back contact through the hopping transport mechanism via trap states
in the forbidden zone of ZrO2. The obtained results demonstrate the possibility of using a very wide-bandgap
oxide nanostructured materials with Eg values exceeding 5 eV for fabrication electron-conductive layers, including
their successful application as mesoscopic photoelectrodes for perovskite solar cells.
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Soft hydrogels based on a transient network of wormlike surfactant micelles containing bentonite nanoclay tactoids as physical cross-links

were developed. The network was composed of mixed micelles of nontoxic zwitterionic surfactant oleylamidopropyldimethylcarboxybetaine

and an anionic surfactant sodium dodecyl sulfate. It was demonstrated that before nanoclay addition the solution has pronounced viscoelastic

properties with zero-shear viscosity of 100 Pa s and plateau modulus around 7 Pa, which were attributed to the formation of an entangled

micellar network. The solution demonstrated pronounced shear thinning behavior provided by the elongation of wormlike micellar chains in

flow direction. Upon addition of non-exfoliated nanoclay particles, the zero-shear viscosity increases by an order of magnitude, while the

useful property of shear-induced thinning is retained. Oscillation amplitude tests show that viscoelastic fluid becomes hydrogel upon addition

of nanoclay, because elastic response was observed even at large stress amplitudes. This behavior was attributed to the formation of nanoclay-

wormlike micelles junctions. Prepared soft hydrogel is a promising candidate for injection applications, because of its self-assembled structure

providing pronounced shear-thinning behavior and fast recovery of rheological properties at rest. In this nanocomposite material, nanoclay

tactoids strengthen the hydrogels and can serve as reservoirs for the delivery of various substances.
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1. Introduction

Injectable nanocomposite hydrogels represent an ever-growing class of nanomaterials possessing a unique
combination of physical and chemical properties. For injection applications, the hydrogels should demonstrate a
shear-thinning behavior resulting in a significant decrease in viscosity when subjected to shear strain and a fast
recovery of the initial state, when the deformation is no longer applied. Such hydrogels can be used as control
delivery systems since they can be delivered in a minimally invasive manner because the final form and shape are
defined by the space into which they are injected.

Injectable hydrogels can be based either on polymer network or on self-assembled network of wormlike sur-
factant micelles (WLMs). Polymer hydrogels are classically defined as three-dimensional, water-swollen polymer
networks formed as a result of physical or chemical cross-linking [1,2]. For injectable hydrogels application phys-
ically cross-linked polymer networks are preferred. They are disrupted under shear deformation during injection
and then reassembled at rest due to recovery of noncovalent cross-links between the macromolecules. To provide
additional functionality to the matrix the hydrogels can contain delivery vehicle components, for instance, nanoclay
tactoids, which make them very promising for drug delivery and tissue engineering applications [3–5].

Another type of injectable hydrogels is based on WLMs [6–9]. Such micelles are often compared with polymers
and have even been given the name of living polymers [10–12], because they incessantly break and recombine. With
increasing surfactant concentration, solutions of WLMs become viscoelastic and at certain conditions, a transient
network of entangled micellar chains is formed. Such a network possesses gel-like properties. In particular, its
rheological properties demonstrate plateau modulus, low values of loss factor and pronounced shear- or stress-
thinning behavior. At the same time, under high deformation, the micellar chains are disrupted, which induces
a much more pronounced drop of viscosity than the disruption of physical cross-links in polymer gels [12, 13],
which is advantageous for injection applications. The disrupted micellar chains are completely recovered due
to restoration of non-covalent bonds between surfactant molecules within the micelles [12]. Thus, WLM-based
hydrogels are promising candidates for the preparation of injectable systems.

Properties of the WLM network can be modified by nanoparticles. Until now, only spherical inorganic
particles were dispersed within WLM network [14–20]. It was shown that these particles can significantly increase
the rheological properties. For instance, near the overlap concentration of WLMs silica nanoparticles incorporated
within similarly charged WLM solutions [15] induced liquid to viscoelastic fluid transition. This was explained
by the formation of micelle-nanoparticle junctions as a result of binding of the WLMs to the layer of surfactant
adsorbed on the particle’s surface [15]. It was suggested that the WLMs are connected to surfactant layer on the
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particle surface by their end-caps because these parts are energetically less favorable in comparison with cylindrical
central parts of the micelles. Similar results were obtained for silica nanoparticles oppositely charged with respect
to WLMs [14, 18]. At the same time, addition of particles into dense WLM network either decreased rheological
properties or did not significantly alter them [14,18].

In addition to silica nanoparticles, some functional nanoparticles were incorporated into WLM networks includ-
ing pyroelectric [16] and magnetic particles [17, 19, 20]. Introduction of pyroelectric particles made the hydrogel
sensitive to temperature variation. Heating increased the charge on the surface of particles thereby strengthening
their interaction with oppositely charged surfactant micelles and enhancing the rheological properties [16]. In their
turn, magnetic particles imparted magnetoresponsive properties to WLM hydrogel [17, 19, 20]. The aggregation
of particles into chain-like/column structures because of magnetization resulted in a solid-like behavior even in
rather low magnetic fields and at small volume fraction of particles, indicating the weak restrictions imposed by
the matrix on the reorganization of particles in the field, which can be due to the self-assembled structure of the
micellar network [19].

Thus, many types of particles were incorporated within WLM network but such systems were never tested for
injection purposes. This gap is filled in the present paper. Moreover, instead of spherical particles we use plate-
like particles of natural nanoclay bentonite. We suggest that large surface area of such particles will additionally
stimulate the formation of WLM-particles junctions acting as cross-links in the network. Also, the interior volume
of these particles is quite promising for the incorporation and further delivery of different substances [21, 22].

For the preparation of the WLM hydrogel, the nontoxic zwitterionic surfactant oleylamidopropyldimethyl-
carboxybetaine (OB) was used. This surfactant can make transient network of long WLMs, as was shown
recently [23, 24]. Betaines demonstrate a strong synergism when mixed with anionic surfactant [25], in particular,
sodium dodecyl sulfate (SDS) [26]. For this reason, in the present paper, a small amount of SDS is added to
OB. Zwitterionic surfactants are the most eco-friendly and biocompatible type of the surfactants widely applied in
different cosmetic products. To the best of our knowledge, soft nanocomposites based on the zwitterionic surfactant
were not previously investigated.

Thus, the present paper is devoted to the preparation and study of soft nanocomposite hydrogels based on
network of WLMs composed of zwitterionic and anionic surfactants with embedded plate-like bentonite nanoclay
particles. It is shown that nanoparticles significantly enhance the rheological properties of WLM hydrogel, acting
as physical cross-links between micellar chains. It was demonstrated that the prepared nanocomposite hydrogels
possess promising properties for injection applications.

2. Experimental section

2.1. Materials

Zwitterionic surfactant OB (Fig. 1) with molar mass 450.5 g/mol and density of 1.1 g/cm3 was purchased from
SPF NIIPAV (Russia) as a solution containing 29.0 wt. % OB, 0.5 wt. % oleylamidopropyldimethylamine, 4.0 wt. %
sodium chloride, 17.0 wt. % isopropanol, and 49.5 wt. % water. To recover the solids the solvents were removed
by lyophilization. The complete removal of isopropanol was confirmed by 1H NMR spectroscopy. The resulting
dried solid contained 85.0 wt. % OB (surfactant), 1.44 wt. % oleylamidopropyldimethylamine, and 13.56 wt. %
sodium chloride. The carboxylic group of OB has pK = 2 [27], at the pH range under study (pH = 11÷11.5) it is
always charged and therefore the OB molecules are in the zwitterionic form. The ratio between sodium chloride
and OB is stoichiometric, since sodium and chloride ions are counterions of the charged groups of the surfactant.
The third component of the mixture – oleylamidopropyldimethylamine is a byproduct of the synthesis OB. Note
that the molar ratio between oleylamidopropyldimethylamine and OB surfactant is very small (1:51), and at the
experimental conditions (pH = 11÷11.5) the amine is uncharged, therefore it cannot appreciably affect the behavior
of the OB surfactant.

FIG. 1. Chemical structure of zwitterionic surfactant oleylamidopropyldimethylcarboxybetaine (OB)
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The anionic surfactant SDS, with molar mass of 265 g/mol and density of 1.0 g/cm3 was purchased from
Helicon. Bentonite nanoclay with density of 2.4 g/cm3 was provided by Sigma-Aldrich. Its specific surface area
is 63 m2/g [28]. The surface of bentonite nanoclay platelets contains Al–OH, Mg–OH and Si–OH functional
groups [29]. At pH range under study (pH = 11 – 11.5), the clay carries negative charge both on the face and at
the edge of a platelet [30]. Sodium hydroxide with purity 85 % and molar mass 56.11 g/mol was purchased from
Riedel-de Haen. Double distilled water purified on Milli-Q Millipore Waters was used as a solvent.

2.2. Organoclay preparation

It is well known [31–34] that clay can adsorb ionic surfactants both on the external surface and into the
interlayer region of tactoids (stacks of parallel clay platelets). As a result, the exchangeable ions can be transferred
from the tactoids to the solution. Therefore, when clay is added to a solution of WLMs, the effective concentration
of a surfactant in the solution can decrease, whereas the concentration of ions can increase. To prevent these
effects, we prepared organoclay saturated with the surfactant, thus ensuring that the clay will not adsorb more
surfactant from the solution.

Three different types of organoclays were prepared: (i) clay saturated with only SDS (anionic organoclay),
(ii) clay saturated with only OB (zwitterionic organoclay), and (iii) clay saturated with both these surfactants
(mixed organoclay). To prepare each type of clay, the bentonite (4 wt. %) was added to water containing an
excess of surfactant (0.6 wt. %). The resulting dispersions were stirred with a magnetic stirrer for two days for
complete intercalation of surfactant into the clay. Then saturated clay was separated from the surfactant solution by
centrifugation (10 min at a speed of 5000 rpm) and rinsed several times with distilled water. As was demonstrated
previously [31–34], after these operations the intercalated surfactant remains between the clay platelets. The
saturated organoclay thus prepared was dried for 3 days at 50 ◦C and then ground in an agate mortar. As was
demonstrated previously [34], after these operations the intercalated surfactant remains between the clay platelets.

2.3. Characterization methods

2.3.1. Transmission electron microscopy (TEM). TEM experiments were performed on transmission electron
microscope LEO912 AB OMEGA. To prepare samples for TEM examination, a drop of 0.01 wt. % aqueous
dispersion of clay was deposited on the grid and dried.

2.3.2. X-ray diffraction. Powder X-ray diffraction patterns were recorded on a Empyrean PANalytical diffractome-
ter in θ-2θ geometry using CuKα radiation (λkα(Cu) = 0.15406 nm). Patterns were processed using HighScore
software and structure database JSPDS.

2.3.3. Elemental analysis. CHN elemental analysis of the modified nanoclay samples was performed with Vario
Micro Cube Elementar Analyzer (Germany). The technique is based on the quantitative flash combustion method.
In the combustion process (at ca. 1000 ◦C), carbon is converted to carbon dioxide; hydrogen to water; nitrogen
to nitrogen gas/oxides of nitrogen. The gases are then passed through the absorbent traps in order to leave only
carbon dioxide, water, nitrogen and then analyze them.

2.3.4. Rheology. Experiments were performed on rheometer Anton Paar Physica MCR301 at 25 ◦C. Steady shear
measurements were carried out by setting shear stress σ and measuring shear rate γ̇. Oscillation amplitude tests
were carried out at a fixed frequency of 1 rad/s. Recovery test was carried out at fixed frequency of 6 rad/s and
step-like amplitudes of 0.1 and 20 Pa, which correspond respectively to linear and non-linear regimes. In the last
case, the amplitude was so high that the network should be disrupted.

In all experiments, the cone-plane measuring cell CP50-1 with diameter 49.973 mm, angle 10 and sample
volume 0.78 ml was used.

3. Results and discussion

3.1. Clay and organoclay characterization

The nanoclay particles were visualized by TEM. The image of bentonite is presented on Fig. 2. Similar TEM
images were obtained for three different types of organoclay. They show that the average size of clay platelets is
around 100 nm (Fig. 2, left). The platelets are aggregated in tactoids (Fig. 2, right) that is the interaction with
surfactants does not induce a full exfoliation of clay layers. This suggests rather weak adsorption of the surfactants
by the clay.

To estimate the amount of the adsorbed surfactants, elemental analysis was employed. The estimation was
made taking into account that all surfactants have carbon atoms, while clay itself does not contain them. In
addition, among the surfactants under study, the zwitterionic surfactant has nitrogen. The results of estimation
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FIG. 2. TEM micrographs of bentonite. Magnified image (inset) demonstrates an inner structure
of clay tactoid

TABLE 1. Characteristics of the clay samples

Clay Interlayer space Amount of adsorbed surfactant

d001, nm in mmol/g in % of CEC

Bentonite 1.301 0 0

Organoclay with anionic surfactant 1.437 0.08 1.6

Organoclay with zwitterionic surfactant 1.459 0.27 8.0

Organoclay with mixed anionic and
zwitterionic surfactants

1.356 0.03 0.7

are given in Table 1. The obtained values represent the total amount of the surfactant molecules intercalated
within tactoids and adsorbed on their surface. It is seen that among the surfactants under study, the zwitterionic
surfactant is more effectively adsorbed by the clay. Its adsorption is provided by electrostatic and hydrophobic
interactions [31, 32]. However, even in this case, the amount of the adsorbed surfactant is much smaller than
the cation exchange capacity (CEC) of bentonite equal to 90 – 110 mmol/100 g [29, 34] usually characterizing
the amount of intercalated surfactant molecules which can exfoliate tactoids as a result of the removal of all
exchangeable ions [31, 34]. This value can be achieved by cationic surfactants, which strongly bind on oppositely
charged clay surfaces. As seen from Table 1, the adsorption of zwitterionic surfactant reaches only 8 % of CEC.
As to anionic surfactant, its adsorption is even smaller (1.6 % of CEC), which may be attributed to electrostatic
repulsion with similarly charged clay surface. Some amount of anionic surfactant adsorption, which is still occurs
on the clay, may be due to hydrophobic interactions. By contrast, in the case of zwitterionic surfactant, the
electrostatic attraction should also contribute to the adsorption resulting in the increase of the adsorption capacity.
From Table 1, one can see that mixed organoclay contains the lowest amount of surfactant. Probably, this pair of
surfactants prefers to form mixed micelles in the solution rather than to intercalate into the clay.

With the surfactant intercalation, the space between the clay layers increases due to the large size of the
surfactant molecules [32]. To measure the gap between the clay platelets, X-ray diffraction (XRD) analysis was
performed. XRD patterns of bentonite and three types of organoclay: anionic, zwitterionic and mixed are presented
in Fig. 3. Analysis of the peaks using the database for clays JSPDS shows that the closest structure, which
describes the position of the diffraction peaks is montmorillonite, the main component of bentonite. The diffraction
patterns show that the positions of these peaks are similar for bentonite and organobentonite. Reflection peak (001)
at the lowest angle corresponds to a distance between the platelets. Other peaks correspond to the inner crystalline
structure of the platelets, and their position does not depend on the presence of surfactant molecules between the
platelets. As to the (001) peak, in organoclays it is shifted towards lower angles (Fig. 3), pointing to an increase

in the interlayer distances d, which can be estimated from the formula d =
λ

2 sin θ
, where λ = 0.154 nm is the

wavelength of Kα-radiation of copper.
The interlayer distance d values are summarized in Table 1. It is seen that for unmodified bentonite, the

distance d is 1.301 nm, and it increases for organoclays, which suggests the intercalation of surfactants in the
interlayer space of the clay. From Table 1, one can see that the most pronounced increase of d001 is observed
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FIG. 3. XRD patterns of bentonite (top curve 1) and different organoclays: anionic (2), zwitteri-
onic (3) and mixed (4). For clarity the intensity of the curves 1, 2, 3 was multiplied by 40, 20
and 10, respectively

for zwitterionic organoclay, which is more saturated with surfactant than other organoclays. Mixed organoclay
contains the lowest amount of surfactant and the gap between platelets is increased only slightly. As to anionic
clay, surprisingly its interlayer distance is increased significantly compared to untreated bentonite, whereas the
amount of adsorbed surfactant is rather low. This may be due to the electrostatic repulsion between the clay and
the intercalated surfactant.

It is important to note that in all types of organoclay, the intercalation of surfactant does not lead to exfoliation,
as the peak corresponding to periodic packing of platelets in tactoids saves its shape. Most of the observed tactoids
are composed of 6 – 10 clay platelets, therefore, the height of the tactoids is nearly 10 – 15 nm. Their axial ratio
is about 1:8, because the average size of the clay platelets is around 100 nm.

Thus, it was shown that anionic and zwitterionic surfactants intercalate into the clay tactoids, but in small
amounts, so that exfoliation does not occur. It suggests that the organoclay, which is used as a nanofiller of
WLM network, retains the useful properties of the initial clay and it can serve e.g. as delivery vehicle for various
substances embedded between the platelets.

3.2. Viscoelasticity of WLM networks with embedded nanoclay particles

Stable suspensions of mixed organoclay in viscoelastic surfactant solutions were prepared. For this purpose,
0.1 wt. % organoclay saturated with mixed surfactant was added to an aqueous solution of the same surfactant
mixture (2 wt. % of zwitterionic surfactant OB and 0.1 wt. % SDS), which was used for the preparation of the
organoclay. The concentration of organoclay under study was much less than the percolation threshold of the clay
platelets (around 3 – 5 wt. %). At 0.1 wt.% content of the nanoclay, the sample was homogeneous and stable for
a long period of time (for at least 6 months).

Before the addition of the organoclay, the surfactant solutions represented viscoelastic fluids. It should be
noted that the 2 wt. % OB solution, even without SDS, possesses viscoelastic properties indicating to the presence
of WLMs [23, 24]. At the same time, the solution of 0.1 wt. % of SDS behaves as Newtonian liquid with very
low viscosity close to pure water because at this concentration SDS forms only spherical micelles. The rheological
properties of the mixed OB–SDS surfactant system suggest the presence of network of entangled WLMs (Figs. 4,5),
since the zero-shear viscosity is several orders of magnitude higher than that of water and the dynamic rheological
data demonstrate a large region of predominantly elastic response, where the storage modulus exceeds the loss
modulus G′ > G′′ [35].

The influence of organoclay on the rheological properties of mixed WLMs of surfactants was studied. Fig. 4(a)
shows the viscosity as a function of shear stress before and after the addition of nanoclay particles. At low stress,
for both systems, one can see a plateau corresponding to zero-shear viscosity. Above a critical shear stress value
(2 Pa), the viscosity of pure surfactant system sharply drops by 5 orders of magnitude, approaching the viscosity
of pure water. So pronounced shear-thinning behavior is typical for the network of entangled WLMs. It was
explained by shear-induced elongation of wormlike micellar chains in flow direction [36, 37].
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FIG. 4. Viscosity as a function of shear stress (a) and shear stress as a function of shear rate (b)
for solutions of 2 wt.% zwitterionic OB (blue), 0.1 wt.% anionic SDS (grey), 2 wt.% zwitterionic
OB surfactant and 0.1 wt.% anionic SDS surfactant before (black) and after (red) the addition of
0.1 wt.% bentonite

FIG. 5. Storage (filled symbols) and loss moduli (open symbols) as a function of oscillation
amplitude at 1 rad/s (a) and the corresponding dependence of the loss factor for solution of
2 wt.% zwitterionic OB surfactant and 0.1 wt.% anionic SDS surfactant before (black) and after
(red) the addition of 0.1 wt.% bentonite

In the presence of nanoclay particles, the overall behavior is still the same with a huge viscosity drop,
but the zero-shear viscosity rises by one order of magnitude and the shear-thinning region starts from higher
stress (Fig. 4(a)). The effect of nanoclay can be explained by the formation of nanoclay-WLM junctions. The
particles covered by surfactant can act as physical cross-links of the WLM network similar to spherical inorganic
particles [15, 17]. When organoclay is added into the surfactant network, the end-caps of WLMs as the most
unfavorable parts of the micellar chains can fuse with surfactant aggregates on the particles. One can suggest that
the point of the junction can slide along the nanoclay particles surface to get additional gain in entropy.

Figure 4(b) shows the shear stress as a function of shear rate before and after the addition of nanoclay particles.
It is seen that very high shear rates can be achieved if we will overcome initial linear region. This is significant
for the application of these gels as an injectable system. Fig. 4(b) demonstrates that in the presence of nanoclay,
higher values of stresses are required to obtain the high shear rates that indicates the impact of nanoclay cross-links
on the flow of the sample.

To determine the elastic response of both pure surfactant network and the nanocomposite network the oscillation
stress was applied to the samples. At an angular frequency of 1 rad/s the storage G′ and loss G′′ moduli were
measured as a function of the deformation amplitude (Fig. 5(a)). From Fig. 5(a) it is seen that at small amplitudes
until 70 % in the absence of the nanoclay the storage modulus is higher than the loss modulus almost by one
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order of magnitude pointing out to a gel-like behavior. The entanglements of the WLMs make three-dimensional
network demonstrating such elastic response (Fig. 6 left). Moreover, these moduli do not depend on the amplitude,
indicating that it is the region of linear viscoelasticity. Out of this region (i.e. at higher amplitudes), the storage
modulus drops and becomes even lower than the loss modulus suggesting the transition to viscous flow state. This
indicates that the number of entanglements in the WLM network decreases under action of high amplitude shear
stresses.

FIG. 6. Solution of 2 wt.% zwitterionic OB surfactant and 0.1 wt.% anionic SDS surfactant
before (left) and after addition of 0.1 wt.% bentonite (right). The structure of the corresponding
systems is shown on the schematic representations below the photos. Before the addition of
nanoclay the solution contains entangled WLMs (left); after the addition of nanoclay the solution
contains two types of cross-links: entanglements of WLMs and WLM/nanoclay junctions (right)

In the presence of nanoclay particles, at small amplitudes, the storage modulus retains its values, whereas the
loss modulus drops significantly (Fig. 5(a)). This means that dissipated part of the response corresponding to WLM
reptation motion supplemented by breaking and recombination processes becomes lower. This can be explained
by the formation of additional bonds in the network due to cross-linking of the WLMs by nanoclay particles. At
higher amplitudes the storage modulus decreases, but remains always higher than G′′ up to as large amplitudes
of deformation as 1000 %. We assume that at high amplitudes, the network partly disrupts: the number of the
entanglements between the WLMs decreases, whereas the links between nanoclay and WLMs are strong enough so
that the WLM/nanoclay junctions remain undisrupted providing predominantly elastic response (G′ > G′′) of the
system. Thus, at low amplitudes, there are two types of cross-links in the network: entanglements between WLMs
and WLM/nanoclay junctions (Fig. 6 right). With increasing amplitude, some of the entanglements disappear (since
storage modulus for neat WLM network decreases), but the elastic response of the nanoclay containing network
remains up to much higher amplitudes indicating that the strength of WLM/nanoclay junctions is higher than that
of WLMs entanglements. Thus, nanoclay junctions in WLM network convert WLM viscoelastic fluid into soft
WLM nanocomposite hydrogel.

Surprisingly, a maximum of loss modulus is observed at some oscillation amplitude both for pure surfactant and
for nanocomposite networks (Fig. 5(a)). According to literature [38, 39], it can be due to the interactions between
the WLMs opposing their alignment induced by the strain. For instance, similar maximum was obtained for CTAB
micelles with embedded hydrotrope ions [39]. This was attributed to the formation of connections between WLMs
as a result of penetration of hydrotrope into two neighboring micellar chains. The same behavior is observed in the
present system without any hydrotrope ions indicating that the WLMs can interact with each other in the absence
of hydrotrope salt. When clay particles are added, the maximum of loss modulus becomes more pronounced and
shifts toward large amplitudes indicating to stronger links between subchains in the nanocomposite network in
comparison with the pure WLM network, thus pointing out to the cross-linking of WLMs by clay particles.

Figure 5(b) shows the loss factor (G′′/G′) as a function of amplitude of deformation for pure WLM and
nanofilled systems. The value of loss factor lower than 1 (G′′/G′ < 1) indicates gel-like state, while higher values
(G′′/G′ > 1) are inherent for viscous flow state for the samples. From Fig. 5(b), it is seen that with increasing
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amplitude, a gel-to-liquid transition takes place in the absence of nanoclay, whereas when nanoclay is present, a
gel-like state is observed in the whole range of deformation amplitudes up to 1000 %.

Thus, bentonite nanoclay particles can be incorporated into similarly charged WLM network and induce
pronounced reinforcement of the structure (Fig. 6). The observed enhancement of rheological properties indicates
to the formation of particles-WML physical junctions.

3.3. Recovery test

The oscillation recovery tests were carried out both at small (0.1 Pa) and high (20 Pa) stress amplitudes at
fixed angular frequency (6 rad/s) to study breaking and recovery of the nanocomposite WLM network. Fig. 7(a)
shows the storage and the loss moduli as a function of time under periodic change from low (0.1 Pa) to high
(20 Pa) stress amplitude actions. It is seen that initially at low stress (cycle 1) G′ > G′′ indicating to the gel state
of the system, but under high stress (cycle 2) storage modulus drops by almost 3 orders of magnitude and becomes
lower than the loss modulus G′ < G′′ (liquid-like state). This suggests that at high amplitudes, the network disrupts
because the cross-links and wormlike subchains themselves are formed by relatively weak physical interactions. At
the same time, at further switching to low stress (cycle 3) the system rapidly turns back to the gel state G′ > G′′,
which can be attributed to the reassembly of the nanocomposite surfactant network. From Fig. 7(a), it is seen
that the disruption of the network is faster than the recovery. Gradual growth of the storage modulus takes tens
of the seconds that is close to the typical relaxation time for the WLM networks [20, 25]. Such restoring rate
is comparable to the restoring rate of various injectable systems for wound healing application [5]. Fig. 7(b)
demonstrates the variation of the loss factor under the same periodical action. It is seen that the loss factor jumps
by 2 orders of magnitude from gel state (G′′/G′ < 1) into liquid state (G′′/G′ > 1). These high changes are
more pronounced than those obtained for polymer-nanoclay hydrogel physically cross-linked by ions [5], where
only cross-links are disrupted under high stress amplitudes, whereas the polymer chains remain intact. WLM-based
network is more responsive to shear stress because not only cross-links, but also subchains can be disrupted under
the stress. Thus, the WLM-based hydrogel have demonstrated high responsiveness to shear actions that makes it
promising as an injectable system.

FIG. 7. Storage (filled symbols) and loss moduli (open symbols) as a function of time under
periodic change of stress amplitude from 0.1 to 20 Pa at angular frequency of 6 rad/s (a) and the
corresponding dependence of the loss factor (b) for solution of 2 wt.% zwitterionic OB surfactant
and 0.1 wt.% anionic SDS surfactant containing 0.1 wt.% bentonite

4. Conclusions

The nanocomposite WLM-based soft hydrogels containing tactoid particles of bentonite organoclay are devel-
oped. It was found that the mixture of zwitterionic and anionic surfactant molecules adsorb only moderately on
nanoclay tactoids and in much smaller amounts than the surfactant molecules taken separately. The adsorption of
the surfactant molecules did not exfoliate nanoclay tactoids. A pronounced enhancement of rheological properties
of transient WLM network induced by nanoclay was observed. It was explained by the formation of particle-WLM
physical junctions reinforcing the network.
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High zero-shear viscosity and plateau modulus of the nanoclay-WLM hydrogels at moderate stress and shear
were detected, whereas significant shear- and amplitude-thinning effect at high stress was demonstrated. Shear-
induced disruption of the hydrogel and further recovery were explained by reassembly of non-covalent links in
WLM micelles and in nanoparticle-WLMs junctions.

The changes of rheological properties of WLM-based hydrogels induced by shear are more significant in
comparison with polymer-based physical nanocomposite hydrogels. This was explained by subchain disruption
of the WLM network under shear action in contrast to only cross-links disruption of polymer-based system. The
observed properties make WLM-based nanocomposite hydrogels promising candidates for injectable applications,
where nanoclay tactoids can be useful as delivery vehicles.
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The ZnS polymorphs – sphalerite and wurtzite – have the very close formation energies, setting their coexistence in nature. Moreover,

numerous cases of a disordered phase formation based on these polymorphs have been registered. However, sphalerite is a common mineral,

while wurtzite is rare. Perhaps the wider distribution of sphalerite can be explained by means of stabilizing effect from impurities. In this paper,

the most stable form and the localization of nitrogen impurities in both ZnS polymorphs is screened using the methods of quantum chemistry.

The influence of impurity on polymorphic wurtzite-sphalerite equilibrium is disclosed. According to the obtained results, the introduction of

nitrogen impurities facilitates the domination of sphalerite over wurtzite.
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1. Introduction

In natural deposits, zinc sulfide occurs in the form of two polymorphs: sphalerite and wurtzite. Sphalerite
is a more common mineral, while wurtzite is less frequent. Sphalerite is also predominant in ZnS of biogenic
origin [1, 2]. Wurtzite is a high-temperature phase formed from sphalerite when heated to 1020 ◦C [3]. The
phase transition temperature can be significantly reduced by reducing the size of ZnS samples to nanoscale [4] or
bringing sphalerite nanoparticles into contact with wurtzite-like ZnO nanoparticles [5]. According to theoretical
estimations, the difference in the formation energies between wurtzite and sphalerite ZnS is negligibly small
(∼ 3.25 meV/atom) [6]. Both phases can be obtained with different degree of phase purity in the lab, depending
on the conditions of synthesis [7–9]. In addition, there are examples of the formation of numerous intermediate
polytypes and disordered structures, which can be derived from the wurtzite and sphalerite polymorphs [10]. The
structures of disordered phases can be described as violations of the ZnS layers’ alternation along the c direction of
the hexagonal wurtzite lattice. The phase of wurtzite corresponds to the layers’ alternation A–B–A–B–A–B along
vector c, while sphalerite is formed by alternating A–B–C–A–B–C.

All factors affecting the formation of a particular ZnS phase in a solvent medium have not been fully identified,
yet. The addition of the tetrabutylammonium hydroxide modifier to the alcohol solution leads to the formation
of wurtzite, whereas sphalerite was mainly formed without the modifier [9]. This result was attributed by the
authors [9] to the higher modifier adsorption energy on the crystal seed of the wurtzite phase. A mechanism
for the ZnS crystal seed formation in water was proposed, relaying on the molecular mechanics calculations and
suggesting a higher stability of sphalerite seeds [11]. Other molecular dynamics studies show that wurtzite ZnS
in vacuum is more stable in a nanoscale form [12], while wetting the surface with water leads to stabilization of
sphalerite. A previous study [2] assumes that the interaction between the surface of biogenic ZnS nanoparticles
with some peptides may contribute to the formation of a crystal with fewer defects due to a decrease in the polarity
of the ZnS crystal surface. All these facts indicate a significant role of surface interactions in the formation of a
ZnS crystalline structure of one or another type.

Impurities within the bulk are another factor that may have a significant impact on the stacking order of the
ZnS layers. It was assumed in the past that under normal conditions another ZnS polymorph (matraite) could form
in addition to sphalerite and wurtzite [13]. Currently, the matraite is identified as (111)-twined sphalerite [14],
which twinning is likely forced by the admixtures of Fe, Mn, Cu, and In – the elements proned to accumulation in
(111) plane of growing sphalerite. The role of Cu and In admixtures in ZnS was investigated [15]. It was shown
that the concentration of these elements is higher in sphalerite than in wurtzite. Presumably, a higher concentration
of Cu and In in the cubic lattice of sphalerite is associated with a greater symmetry similarity between the sphalerite
and the CuInS2 structure. Meanwhile, GaN has a structure similar to ZnS and is stable in the wurtzite phase. It
was previously shown that the appearance of the sphalerite phase fragments within wurtzite GaN arose as a result
of the introduction of a Zn impurity [16].
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ZnS ores contain a large amount of various impurities. Namely, the traces of the following elements were
found in samples of sphalerite: As, Sb, Bi, Sn, Ge, In, Mo, Pb, Cd, Fe, Mn, Cu, Hg, Ni, Co, Ag, Tl [17, 18].
Often, the mineral ZnS is accompanied by sulfides of iron, copper, lead and cadmium, which can both lower and
increase the concentrations of individual impurity elements due to their redistribution [15, 17]. An impurity of N
and C attributed to peptides was found in the biogenic samples of ZnS [19]. Many attempts have been undertaken
to introduce a variety of dopants into synthetic ZnS: Mo [20], Ni [21], Sn [22], Cu [23, 24], Mn [23], N [25, 26],
C [25], etc. The effect of these impurities on the formation of the ZnS crystal lattice remains often unknown and
requires further research.

We have previously demonstrated that the O impurity replacing the S atoms has no significant effect on the
mutual thermodynamic stability of the wurtzite and sphalerite phases, as well as of their mixed polytypes [27]. Here,
the quantum chemistry method is employed to perform a comparative analysis of the chemical form, localization,
and energy difference of the N impurity hosted at sphalerite and wurtzite lattices.

2. Computational details

The self-consistent-charge density-functional tight-binding method (DFTB) was used [28, 29]. This is an
approximate method based on the density functional theory (DFT), enabling one to simulate the considerably
large supercells. Hence, a low content of impurity within a periodic crystal can be studied, eliminating any
spurious interaction between mirror images of the impurity atoms. A complete relaxation of the atomic positions
and the optimization of lattice parameters were carried out, employing the periodic boundary conditions in Γ-
point approximation as implemented in deMon program [30]. The 3OB-3-1 parametrization set of Slater-Koster
parameters for description of all interatomic interactions was employed [31, 32]. In addition, the main conclusions
of our study were confirmed by calculations on the DFT-GGA level using the SIESTA software package [33].

Extended 3a × 3a × 3a sphalerite and 3a × 3
√
va × 3c wurtzite cells consisting of 216 atoms were used as

the basic models. The admixture of nitrogen was introduced into these cells after complete optimization of their
geometry. Nitrogen was represented as one of three chemical species: an atom impurity N, molecular ammonia
NH3 or ionic ammonium NH4. An impurity was hosted instead of the Zn or S single atoms as well as at the
tetrahedral interstitial voids formed by four Zn or four S atoms. The octahedral voids in wurtzite were also
considered. Different dispositions of the H atoms in the complex impurities (NH3 and NH4) relative to a ZnS
crystal lattice were also taken into account. In a number of models, the possibility of a Zn or S vacancy near an
impurity was considered as well as the introduction of additional H atoms with the formation of SH groups near
an impurity. Hereafter, the only relaxation of atomic positions in the designed models of defective crystals was
carried out, while the values of translation vectors were maintained the same as for the pristine model of ZnS. The
thermodynamic stability of the models and the study of their electronic properties were performed after optimizing
the model geometry.

Molecular dynamics (MD) simulations at the same DFTB level were used to confirm the kinetic stability of
the most thermodynamically stable impurity defects. MD simulations have been performed using deMon code as
for canonical ensembles (NVT). The annealing temperature was set to 100 K or 300 K. In all simulations, the
temperature was controlled by global Berendsen thermostat with the time constant 100 fs. The MD trajectories
were collected during the time interval of ∼ 25 ps with the time step 0.1 fs.

Rendering of atomic structures and MD trajectories was performed using VMD software [34].

3. Results and discussion

3.1. Thermodynamic stability

According to the results obtained by DFTB, sphalerite is slightly more stable than wurtzite by only 0.2
meV/atom. DFT calculations indicate a larger difference in energies (1.3 meV/atom), which is closer to the
result 3.25 meV/atom in [6]. In any case, such tiny differences may be attributed to a numerical error during
computations.

An estimation of the thermodynamic stability of nitrogen impurity defects was performed according to the
formation energies of nitrogen impurity defects in sphalerite or wurtzite (Ef , eV). The latter was calculated on the
basis of DFTB simulations with respect to the pristine sphalerite crystal and the molecular species S8, N2, NH3

and H2 according to the following formula:

Ef = Emod ·N − EZnS · 2NZn − ENH3 · 4NN − ES8 · (NS −NZn)− EH2 · (NH − 3NN ),
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where Emod is the total energy of a model with a defect (eV/atom); N is the total number of atoms in a model;
EZnS , ENH3, ES8, EH2 are the total energies of sphalerite, NH3, S8, and H2, respectively, given in the eV/atom;
NZn, NS , NN , NH are the numbers of Zn, S, N and H atoms that make up the model (N = NZn+NS+NN+NH ).

The four types of the most stable nitrogen impurity defects in ZnS are listed in Table 1 and their consequence
turns out to be similar for both sphalerite and wurtzite. The fifth possible defect in the rank is different: in
sphalerite it is the introduction of NH3 into the tetrahedral void formed by Zn atoms, while in wurtzite it is the
introduction of NH3 into the octahedral void formed by S atoms. The most stable state of nitrogen in both ZnS
polymorphs is the substitution of one ZnS unit by NH4SH unit. Its formation energy in sphalerite is found to be
0.54 eV lower, than in wurtzite. All the following defects in Table 1 demonstrate the same pattern: the appearance
of nitrogen impurity in sphalerite is energetically more beneficial than in wurtzite. However, the relative difference
between the same types of defects in the ZnS polymorphs increases, approaching 1 eV.

TABLE 1. The rank of the most thermodynamically stable models of nitrogen impurity defects
in ZnS crystals. DFTB calculations

No. Defect description Defect formation energy, eV

sphalerite wurtzite

I replacement of a ZnS unit on NH4HS unit −0.19 +0.35

II substitution of a Zn atom on NH4 +0.72 +1.75

III replacement of a ZnS unit on single NH3 molecule +1.82 +2.86

IV substitution of a Zn atom on molecular NH3 +1.82 +2.88

The difference between the formation energies of the same nitrogen impurity defects either in sphalerite or in
wurtzite was confirmed by additional DFT calculations of the models I (Table 1) distinguished as the most stable
defect type. The difference between the total energies of single defect in these models was estimated as 0.34 eV
according to the DFT results, which is well comparable to 0.54 eV after DFTB calculation.

The simple substitution of an atom in a ZnS crystal for a single N atom impurity appears as the most unstable
defect; e.g., the most stable model among these variants is the substituition of S atom by N with Ef 6.33 and 7.35
eV for sphalerite and wurtzite, respectively. The appearance of vacancies near an atomic N impurity leads only to
further destabilization of the sphalerite and wurtzite lattices.

3.2. Kinetic stability

Molecular dynamics (MD) simulations were used to study the kinetic stability of three types of defects (I–III,
Table 1) hosted in both sphalerite and wurtzite. The collection of the main results can be viewed at the links [35].

MD simulation of the model I from Table 1 was carried out at 300 K for sphalerite and at 100 and 300 K for
wurtzite. This defect in the sphalerite crystal undergoes reversible changes: the NH4 group decomposes to NH3

molecule and H that forms the secondary SH group. The resulting NH3 molecule is coordinated on the nearest Zn
atom. Afterwards, the ammonium recombines. The same defect in the wurtzite crystal undergoes similar processes
at 300 K, but ammonium recombination is not observed (Fig. 1). The defect is stable only at 100 K, where the
decay of NH4 is not observed.

Model II from Table 1 was investigated at 100 and 300 K for sphalerite and at 100 K for wurtzite. The defect
in sphalerite is subject to reversible decomposition into NH3 and SH at 100 K and irreversible decomposition
at 300 K. Released NH3 molecule binds to one of the Zn atoms. Hence, the initial structure of this defect is
kinetically unstable. This defect in wurtzite also disintegrates already at 100 K.

MD simulations of model III from Table 1 at T = 300 K in both sphalerite and wurtzite demonstrate its kinetic
stability. Molecular ammonia coordinates alternately at neighboring Zn atoms with dangling bonds.

Thus, single-type defects in wurtzite and sphalerite crystals exhibit similar kinetic stability. Replacement of a
ZnS unit by a NH4HS unit or by a single NH3 molecule leads to the formation of a kinetically stable defect. The
defect in which the Zn atom is replaced by single ammonium is kinetically unstable and prone to decomposition
into NH3 molecule and H joining the S atom.
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FIG. 1. Optimized model of the most thermodynamically stable nitrogen impurity defect (re-
placement of a ZnS unit on NH4HS unit) in wurtzite (on the left) and the results of its MD
simulation at T = 300 K (on the right, see also the supplementary movies 1 and 2 [35]). Atom
color coding: Zn – gray, S – yellow, N – blue, H – white

3.3. Electronic properties

The electronic properties of sphalerite and wurtzite ZnS pristine crystals, as well as crystals containing various
nitrogen impurity defects, were investigated using the DFTB method. The plots of the electron densities of states
(DOS) for wurtzite crystals are given in Fig. 2. DOSs of sphalerite crystal with similar types of defects have the
same appearance.

FIG. 2. Total and partial densities of states (DOS) for the wurtzite ZnS perfect crystal (a) and for
the wurtzite ZnS crystal with different defects: replacement of a ZnS unit on NH4HS unit (b),
substitution of a Zn atom on NH4 (c) substitution of a Zn atom on molecular NH3 (d) (models I,
II and IV in Table 1, respectively)

The sphalerite and wurtzite are semiconductors with the fundamental band gaps (Eg) equal to 3.73 and 3.80 eV,
respectively (Fig. 2(a)). These values are in good agreement with the experimental data of 3.68 and 3.91 eV [36].
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The valence band of both crystals is formed predominantly by S3p states, and the bottom of conduction band by
Zn4s states.

Replacement of single ZnS unit by NH4HS (model I, Table 1) leads to the splitting of a part of the localized
Zn4s states from the bottom of conduction band (Fig. 2(b)). Similar changes in DOS occur for the introduction of
the NH3 molecule at the tetrahedral void formed by four Zn and for the substitution of a ZnS unit on single NH3

molecule (model III, Table 1).
Substitution of a Zn atom on NH4 (model II from Table 1) leads to a shift of the Fermi level (EF ) to the

edge of the valence band (Fig. 2(c)), which is characteristic for a p-type semiconductor. DOS near EF are formed
predominantly by S3p states. Similar changes in DOS can be observed for other unstable defect – the replacement
of one atom S by atom N which agrees with the earlier DFT study [37].

Substitution of a Zn atom on NH3 molecule leads to a new state located within the fundamental band gap
(Fig. 2(d)). This state is formed mainly by S3p and N2p orbitals. Orbitals’ visualization of the electron wave
function isosurfaces reveals that this state is strongly localized (Fig. 3), hence, it cannot lead to a decrease of the
value Eg .

FIG. 3. Orbitals visualization of the electron wave function isosurface for the states located
within the fundamental band gap of the model IV (Table 1). Color coding: Zn – gray, S – yellow,
N – blue, H – green

4. Summary

A comparative analysis of the most stable form and the localization of nitrogen impurities in sphalerite
and wurtzite ZnS crystals has been carried out using DFTB method. The effect of impurities on polymorphic
equilibrium in ZnS is considered. It was found that the most stable type of N impurity, irrespective of the ZnS
polymorph, is the substitution of one ZnS unit on NH4SH. However, the thermodynamic stability of this defect
depends on the ZnS polymorphism. The rise of this defect in the ZnS lattice leads to the removal of enthalpy
degeneracy of wurtzite and sphalerite in favor of the latter. Perhaps, this effect may also be caused by other
impurities, which would explain the wider distribution of sphalerite in nature.

Various types of N impurities modify differently the band gap of ZnS polymorphs. The most stable substitu-
tional defect – the NH4SH unit – may lead to a slight narrowing of the band gap.
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In this study, photochromic PVP-stabilized tungsten oxide nanoparticles (WO3−x NPs) were shown to exhibit a dose-dependent cytotoxic effect

on mouse fibroblasts in vitro. WO3−x NPs reduce viability and proliferative activity of the cells via induction of intracellular oxidative stress

leading to apoptosis and cell death. WO3−x NPs modulate the mRNA expression of a wide range of genes responsible for oxidative stress and

the cell redox-system.
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1. Introduction

Metal oxide-based nanomaterials are widely used in biomedical applications as radioprotectors, radiosensitizers,
photosensitizers, contrast agents, etc. One of the most promising X-ray contrast agents is nanocrystalline tungsten
oxide (WO3−x) [1–5]. In recent years, WO3−x NPs have also been widely employed in antibacterial coatings
or biosensors [6, 7]. Due to the specific physical and chemical properties of WO3−x NPs, such as high surface
energy and surface-to-volume ratio, quantum confinement effects and local plasmon resonance effects, they can
be used in photothermal cancer therapy [8, 9]. Sharker et al. synthesized dopamine-conjugated hyaluronic acid-
coated WO3 nanoparticles (WO3–HA) which demonstrated quite efficient photothermal conversion with time-
dependent tumor-specific accumulation [10]. Zhou et al. used tungsten oxide nanorods for effective photothermal
therapy and CT imaging of the tumor model in vivo [11]. Liu et al. used PEGylated WO3−x nanoparticles
as photothermal agents under near-IR laser irradiation (980 nm, 0.5 W·cm−2). Additionally, PEGylated WO3−x

nanoparticles were shown to be effective CT imaging contrast agent on a tumor-bearing mouse model [12]. Liu et
al. used ultrasmall WO3−x@γ-poly-L-glutamic acid (WO3−x@γ-PGA) nanoparticles with good photoacoustic and
photothermal properties for effective photothermal-enhanced chemodynamic therapy [13]. AbuMousa demonstrated
enhancement of photocatalytic activity of nanostructured silver loaded tungsten oxide providing high anticancer
efficiency under UV radiation [14].

The usage of tungsten oxide in advanced therapeutic compositions requires an in-depth systematic study of their
cytotoxicity including detailed investigation of molecular mechanisms of WO3−x NPs action on mammalian cells.
Here, we analyzed the cytotoxicity of PVP-stabilized WO3−x nanoparticles using the mouse fibroblasts NCTC
L929 cell line and provided the first report on the molecular mechanisms of WO3−x nanoparticles’ cytotoxic
action.

2. Materials and methods

2.1. Synthesis and characterization of tungsten oxide nanoparticles

Ultrasmall hydrated tungsten oxide nanoparticles were synthesized by hydrothermal processing of tungstic acid
in the presence of polyvinylpyrrolidone (PVP K-30, average mol. wt. 40,000) acting as template, stabilizer and
growth regulator. Tungstic acid was prepared by ion-exchange method using sodium tungstate (Na2WO4) solution
and strongly acidic cation exchange resin (Amberlite R©IR120). Briefly, ion exchange resin (in hydrogen form)
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was swelled in water and loaded into the glass column (filling volume 200 ml). Then, 100 ml of 0.05 M sodium
tungstate solution was passed through the column dropwise, 4 g of PVP was added to the obtained eluent; the
solution was transferred to the flask and stirred for 4 h under reflux. During heating a clear sol of hydrated WO3−x

was formed, as shown by the appearance of UV-absorption band at 325 nm and Tyndall cone observation. For
cytotoxicity study, WO3−x sol was diluted to prepare 0.1 – 25.0 mg/ml colloid solutions.

Comprehensive analysis of WO3−x nanoparticles was performed as described elsewhere [15].

2.2. Investigation of WO3−x photochromic properties

To analyze the photochromic properties of the PVP-stabilized WO3−x sol, it was subjected to UV exposure
(BLX-E312 chamber) for 10 min: then the absorption spectra of the irradiated sol were analyzed using an
OceanOptics QE65000 spectrometer for every 10 seconds during 10 min. After that, the sample was subjected to
UV exposure for the second time. Such procedure (cycle) was repeated 10 times. The volume of the sol was 2 ml,
the sol was diluted by 50 fold, i.e. the WO3−x concentration was about 0.0006 M. The temperature of the cuvette
compartment was maintained at 37 ◦C.

2.3. Cell culture

In vitro experiments were performed using a mouse fibroblast NTCT L929 cell line. The cells were cultivated
in a DMEM/F12 (1:1) medium containing 10 % of fetal bovine serum (FBS), 50 µg/mL of penicillin, 50 µg/mL of
streptomycin and 1 % of L-glutamine. The cells were cultivated at 37 ◦C in a humid atmosphere containing 95 %
air and 5 % CO2. The cells were seeded with the density of 30,000 – 35,000 per cm2. Fetal bovine serum (FBS),
penicillin, streptomycin, Dulbecco’s Modified Eagle Medium (DMEM), F12 medium, L-glutamine, trypsin/versene
solution were purchased from PanEco and Biosintez, Russia. Six hours after cells attachment, the medium was
replaced by a medium containing different concentrations of WO3−x NPs. In the control experiments, the cells
were cultured without WO3−x NPs.

2.4. MTT assay

Determination of mitochondrial and cytoplasmic dehydrogenase activity in living cells was performed using
the MTT assay, which is based on the reduction of a colorless tetrazolium salt (3-citation[4,5-dimethylthiazol-2-yl]-
2,5-diphenyltetrazolium bromide, MTT). 24, 48 and 72 h after cell incubation with WO3−x NPs a standard MTT
assay was performed.

2.5. Analysis of proliferative activity

Cells were seeded in 24 well plates. After incubation for 6 hours, WO3−x NPs were added to the cells at
various concentrations (1 – 15 mg/ml). After 24, 48 and 72 hours cells were counted using Clone Select Imager
(Molecular Device, USA).

2.6. Live/Dead viability assay

To evaluate the cytotoxic effects of the WO3−x NPs, a Live/Dead Viability Kit (Invitrogen, Life Technologies)
was used. Cells attached to the 96-well plate were processed according to the manufacturer’s protocol, and visu-
alized 25 minutes after adding the dye with an Axiovert 200 fluorescence-light microscope (Carl Zeiss, Germany)
and recorded by a Canon A620 digital camera (Canon, USA). The green signal (SYTO 9 λ = 485/498 nm)
characterized live cells and the red signal (propidium iodide λ = 535/617 nm) characterized dead cells. For each
cell group, four fields in each well were examined.

2.7. PCR-RT

In order to extract mRNAs a kit with magnetic particles was used, according to the manufacturer’s protocol
(Sileks, Russia). Reverse transcription was performed by a Sileks kit (Russia) using oligodT primer according to the
manufacturers protocol. The produced cDNAs served as a real-time PCR matrix. The amplification was performed
on a CFX-96 amplifier (BioRad, USA) or an ABI 7500 Fast Real-Time PCR System (Applied Biosystems, USA).
We determined the expression of 96 genes responsible for key cell processes (Table 1).
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TABLE 1. Selected gene groups for PCR-RT analysis

Description Symbol Description Symbol

glutathione peroxidase 1 Gpx1 interleukin 22 Il22

glutathione peroxidase 2 Gpx2 alsin Rho guanine nucleotide exchange
factor

Als2

glutathione peroxidase 3 Gpx3 apolipoprotein E Apoe

glutathione peroxidase 4 Gpx4 chemokine (C-C motif) Ccl5

glutathione peroxidase 5 Gpx5 excision repair cross-complementing
rodent repair deficiency complementa-
tion group 2

Ercc2

glutathione peroxidase 6 Gpx6 excision repair cross-complementing
rodent repair deficiency, complementa-
tion group 6

Ercc6

glutathione peroxidase 7 Gpx7 ferritin heavy polypeptide 1 Fth1

glutathione S-transferase
kappa 1

Gstk1 glutamate-cysteine ligase, catalytic
subunit

Gclc

glutathione S-transferase,
pi 1

Gstp1 glutamate-cysteine ligase, modifier
subunit

Gclm

EH-domain containing 2 Ehd2 glutathione synthetase Gss

peroxiredoxin 1 Prdx1 heme oxygenase 1 Hmox1

peroxiredoxin 2 Prdx2 heat shock protein 90 alpha (cytosolic),
class B member 1

Hspa1a

peroxiredoxin 3 Prdx3 isocitrate dehydrogenase 1 (NADP+),
soluble

Idh1

peroxiredoxin 4 Prdx4 keratin 1 Krt1,

peroxiredoxin 5 Prdx5 myeloperoxidase Mpo

peroxiredoxin 6 Prdx6 NAD(P)H dehydrogenase, quinone 1 Nqo1

adenomatosis polyposis
coli

Apc Parkinson disease (autosomal reces-
sive, early onset) 7

Park7

catalase Cat prion protein Prnp

cathepsin B Ctsb proteasome (prosome, macropain) sub-
unit, beta type 5

Psmb5

dual oxidase 1 Duox1 sequestosome 1 Sqstm1

eosinophil peroxidase Epx thioredoxin 1 Txn1

lactoperoxidase Lpo thioredoxin interacting protein Txnip

myeloperoxidase Mpo uncoupling protein 3 (mitochondrial,
proton carrier)

Ucp3

prostaglandin-
endoperoxide synthase
1

Ptgs1 xeroderma pigmentosum, complemen-
tation group A

Xpa

prostaglandin-
endoperoxide synthase
2

Ptgs2 ataxia telangiectasia and Rad3 related Atr

recombination activating
gene 2

Rag2 cytoglobin Cygb
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erine (or cysteine) pepti-
dase inhibitor, clade B,
member 1b

Serpinb1b dynamin 2 Dnm2

thyroid peroxidase Tpo Fanconi anemia, complementation
group C

Fancc

albumin Alb intraflagellar transport 172 Ift172,

glutathione reductase Gsr myoglobin Mb

sulfiredoxin 1 homolog (S.
cerevisiae)

Srxn1 neuroglobin Ngb

thioredoxin reductase 1 Txnrd1 solute carrier family 38, member 1 Slc38a1

thioredoxin reductase 2 Txnrd2 vimentin Vim

thioredoxin reductase 3 Txnrd3 beta-2 microglobulin B2m

superoxide dismutase 1,
soluble

Sod1 heat shock protein 90 alpha (cytosolic),
class B member 1

Hsp90ab1

superoxide dismutase 3,
extracellular

Sod3 actin, beta Actb

superoxide dismutase 2,
mitochondrial

Sod2 glyceraldehyde-3-phosphate dehydro-
genase

Gapdh

copper chaperone for su-
peroxide dismutase

Ccs glucuronidase, beta Gusb

cytochrome b-245, alpha
polypeptide

Cyba mVPA1 mVPA1

neutrophil cytosolic factor
1

Ncf1

neutrophil cytosolic factor
2

Ncf2

nitric oxide synthase 2, in-
ducible

Nos2

NADPH oxidase 1 Nox1

NADPH oxidase 4 Nox4

NADPH oxidase activator
1

Noxa1

NADPH oxidase organizer
1

Noxo1

RecQ protein-like 4 Recql4

stearoyl-Coenzyme A de-
saturase 1

Scd1

uncoupling protein 2 (mi-
tochondrial, proton car-
rier)

Ucp2

aldehyde oxidase 1 Aox1

flavin containing
monooxygenase 2

Fmo2

interleukin 19 Il19



96 A. L. Popov, A. M. Ermakov, T. O. Shekunova, A. B. Shcherbakov, O. N. Ermakova, et al.

The analyzed genes were selected from http://www.sabiosciences.com database for PCR profiling of
different biological processes. The level of gene transcription was normalized by the levels of expression of
housekeeping genes β-actin, B2m (beta-2 microglobulin), Hsp90ab1 (heat shock protein 90 alpha (cytosolic),
class B member 1), gapdh (glyceraldehyde-3-phosphate dehydrogenase) and Gusb (glucuronidase, beta). Each
measurement was repeated twice (internal repetition) and averaged for 2 independent samples. The obtained
expression data were analyzed using http://www.sabiosciences.com online services, mayday-2.14 software
(Center for Bioinformatics Tubingen, Germany) and the Genesis software.

2.8. Statistical analysis

The experiments were conducted in 3 or 4 repetitions. Experimental results were compared with the control.
Statistical analysis was performed using the methods of variation statistics. We determined the mean values and the
standard deviation of the mean. The significance of the difference between the groups was determined by Student
t-test. The obtained data were processed using GraphPad 6.0 and Microsoft Excel 2007 software.

3. Results and discussion

The synthesized WO3−x sol possesses good photochromic properties – it turns blue under UV radiation, and in
the absence of the UV light it gradually becomes colorless. A detailed study of the sol’s photochromic properties
regeneration showed the changes in the sol’s discolouration rate during the repeated UV exposure. Thus, after
the first irradiation (cycle 1), the sol become almost completely colorless in 10 min (Fig. 1(a)). In turn, after the
fifth and tenth irradiation (cycles 5 and 10, respectively) the sol remained light blue (Fig. 1(b,c)). It is also worth
noting that the absorption coefficient of the WO3−x sol after each irradiation cycle changed. To determine the
possible influence of polyvinylpyrrolidone stabilizer, we conducted a control experiment with an individual PVP
solution prepared in a similar way. The concentration of the solution was 0.03 mol/L. Fig. 1(d,e) show that the
PVP solution is stable under UV light, irrespective of the number of cycles.

Analysis of the dehydrogenase activity via MTT assay after 24 and 72 hours of incubation with tungsten oxide
nanoparticles showed a dose-dependent viability decrease (Fig. 2). In particular, viability of mouse fibroblasts
was significantly reduced after 24 hours of culturing with WO3−x NPs (5 – 15 mg/ml). Analysis of cell viability
after 72 hours of culturing also showed a significant decrease in the dehydrogenase activity for all the studied
concentrations of WO3−x nanoparticles (1 – 15 mg/ml). Such decrease indicates disturbances in the functioning of
mitochondria. Considering the ability of WO3−x NPs to generate ROS and free radicals [10], we can suggest that
oxidative stress in the cell was developed.

Analysis of the proliferative activity of the cells revealed an inhibitory effect of WO3−x nanoparticles (Fig. 3).
Low concentrations of WO3−x nanoparticles (1 and 2.5 mg/ml) did not significantly reduce the proliferative
activity of the cells (Fig. 3(b)). However, even a 5 mg/ml concentration of WO3−x nanoparticles led to a 50 %
inhibition of proliferative activity, resulting in the change of cell confluence. Higher concentrations of WO3−x

nanoparticles (10 and 15 mg/ml) resulted in more than 70 % inhibition of proliferative activity (Fig. 3(c)). Upon
72 hours incubation with higher concentrations of WO3−x nanoparticles, the appearance of the cells also changed
significantly. After 72 hours, almost all the cells detached from the substrate, acquired a rounded shape, losing the
characteristic spreading (Figure 3a).

We analyzed the number of dead cells after incubation with WO3−x nanoparticles using fluorescent dyes (Syto
9/propidium iodide) (Fig. 4). This analysis did not reveal the presence of dead cells after 24 hours of cultivation
with 1 to 10 mg/ml of WO3−x nanoparticles. Meanwhile, higher concentration of WO3−x nanoparticles (15 mg/ml)
led to the appearance of dead cells. After 72 hours of incubation, 5, 10 and 15 mg/ml concentrations of WO3−x

nanoparticles resulted in a significant proportion of dead cells. A significant reduction in the number of the cells
indicated both an inhibitory effect on the proliferation of the cell culture and their detachment from the substrate.

We carried out gene expression analysis of the effect of tungsten oxide nanoparticles on cellular components.
PCR RT method was used to analyze mRNA expression of 96 genes responsible for the development of oxidative
stress response (Fig. 5). The data obtained indicated that WO3−x nanoparticles led to changes in the transcriptional
activity of genes associated with the development and protection against oxidative stress. The action of WO3−x

nanoparticles was found to be dose- and time-dependent. Thus, WO3−x nanoparticles (1 mg/ml) after 24 hours
incubation activated transcription of the glutathione peroxidase (GPx) genes (Gpx 1 – 3, Gpx 5 – 7 and Gstk1)
and some other peroxidase genes (Epx, Lpo, Mpo, Rag2, Serpinb1b and Tpo). There was also an increase in the
transcriptional activity of a few genes associated with reactive oxygen species (ROS) metabolism (Cyba, Nos2,
Nox4, Il22), six genes associated with oxidative stress response (Ercc2, H spa1a, Krt1, Txn1 and Xpa) and one
gene of the oxygen transporters group (Ngb). After 72 h, a significant activation of gene expression took place, but
with a different pattern. Thus, in the glutathione peroxidases and peroxiredoxins (TPx) cluster, an increased level
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FIG. 1. Absorption spectra of the sol at the first, fifth and tenth irradiation cycle, respectively
(A–C), absorption spectra of the PVP solution during the first and fifth cycle (D–E)
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FIG. 2. Results of MTT assay 24 and 72 h after incubation of NTCT L929 cells with WO3−x

nanoparticles. Data are presented as mean ±sd (yEr±), n = 3. * – p ≤ 0.05, ** – p ≤ 0.001,
*** – p ≤ 0.0001 according to Mann–Whitney U-test

FIG. 3. Microphotographs of NCTC L929 cells after 24 and 72 h incubation with WO3−x

nanoparticles (1 – 15 mg/ml) (A). Confluence of NCTC L929 cells after 72 h of incubation
with WO3−x nanoparticles (1 – 15 mg/ml) (B). Growth curve of NCTC L929 cells after 3 day
incubation (C). Cells were plated in 96 well plates and left overnight. Then WO3−x nanoparticles
(1 – 15 mg/ml) were added and after 24, 48 and 72 h cells confluence was analyzed



PVP-stabilized tungsten oxide nanoparticles inhibit proliferation of NCTC L929 mouse fibroblasts ... 99

FIG. 4. Microphotographs of NCTC L929 cells after 24 and 72 h incubation with WO3−x

nanoparticles (1 – 15 mg/ml). Cells were plated in 96 well plates and left overnight. Then
WO3−x nanoparticles (1 – 15 mg/ml) were added and after 24 and 72 h cells were stained with
L-7007 LIVE/DEAD kit

of transcription of only 3 genes (Gpx2, Gpx3 and Ehd2) was recorded, and the expression level of some genes of
this group was reduced compared to the control (Gpx5, Gpx6 and Gstk1). During this period, an increase in the
expression of genes of other peroxidases (Apc, Cat, Duox1, Lpo, Ptgs2, Serpinb1b and Tpo) occurred. In contrast
to the 24-hour incubation period, after 72 hours incubation, NCTCT L929 cells showed increased transcription of
2 other antioxidant genes (Alb and Txnrd2), and in the cluster of other superoxide metabolism genes 7 genes were
up-regulated - Cyba, Nox1, Noxa1, Recql4, Scd1, Aox1 and Il19.

Compared to 24 h incubation, an increase in the transcription of a larger number of genes (Als2, Apoe, Ccl5,
Ercc6, Ercc2, Gclc, Sqstm1, Txn1, Txnip, and Ucp3) occurred in the oxidative stress responsive genes cluster. In
the group of oxygen transporters, there was a total activation of the expression of all genes, except for Vim. WO3−x

nanoparticles at the concentration of 10 mg/ml led to an increase in the transcriptional activity of genes involved in
the development of oxidative stress. Meanwhile, the transcriptional expression patterns were very similar to those
recorded for 1 mg/ml concentration after 72 hours of incubation. At the same time, in some clusters, a significant
decrease in the expression of some genes was observed (Gpx2, Gstp1, Ehd2, Prdx1, Prdx2, Prdx3, Cat, Serpinb1b,
Gsr, Sod3, Txnrd1, Txnrd3, Noxo1, Scd1, Ucp2, Gclc, Gcl, Im, Txnrd3, Noxo1, Scd1, Ucp2, Gclc, Gcl, Im, Txnrd3,
Noxo1, Scd1, Ucp2, Gclc, Gcl. Cygb, Fancc, Vim). After 72 hours of cell incubation with 10 mg/ml WO3−x

concentration, up-regulation of the maximum number of genes was observed. Thus, in peroxiredoxins group (TPx)
and other antioxidants, all studied genes were upregulated, as well as 70 % genes in the oxidative stress responsive
cluster. Despite this, expression of some genes was down-regulated (Gpx2, Gpx3, Gpx5, Gpx6 Gstk1, Epx, Mpo,
Rag2, Ncf1, Nos2, Noxo1, Fmo2, Hspa1a, Krt1 and Ngb). This suggests that WO3−x nanoparticles have a
pronounced pro-oxidant activity. Our results showed that WO3−x nanoparticles are able to significantly modulate
both pro- and antioxidant gene expression. Firstly, WO3−x nanoparticles activated the glutathione peroxidases and
peroxiredoxins after 24 h even at low concentrations (1 mg/ml). Higher concentration of WO3−x nanoparticles
(10 mg/ml) led to the activation of the transcriptional activity of other antioxidant protection genes and genes
responsible for ROS metabolism.

4. Conclusions

PVP-stabilized tungsten oxide nanoparticles provide dose- and time-dependent inhibition of the mouse fibrob-
lasts proliferative activity due to the induction of strong oxidative stress leading to cell death. The intermediate
concentration of WO3−x nanoparticles (5 mg/ml) showed significant inhibition of proliferation, while higher con-
centrations (10 and 15 mg/ml) resulted in the development of apoptosis and cell death. WO3−x concentrations less
than 2.5 mg/ml did not cause an increased cell death and did not significantly affect cell metabolism. The obtained
data indicate that WO3−x nanoparticles may have a potential toxic effect on mammalian cells.
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FIG. 5. Heat map of gene expression in NCTC L929 cells treated with WO3−x nanoparticles
(1 and 10 mg/ml) after 24 and 72 h of incubation (A). The intensity scale of the standardized
expression values ranges from −3 (green: low expression) to +3 (red: high expression, with
1:1 intensity value (black) representing the control (non-treated). Principal component analysis
(PCA) of qRT-PCR data from different concentration of WO3−x nanoparticles (B). Cluster groups
of genes and their functionality (C)
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We study graphene synthesis in a plasma-jet reactor. Graphene is obtained via decomposition of hydrocarbons in the plasma produced in the

DC plasma torch. The products of synthesis are characterized using the following methods: electron microscopy, Raman spectroscopy, X-ray

diffraction and X-ray photoelectron spectroscopy, thermal analysis and express-gravimetry. We make the conclusion that, at the few-layer

graphene samples, their hydrogenation takes place. The maximal hydrogen-to-carbon ratio was 1:4.
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1. Introduction

Graphene is a single layer of carbon atoms arranged in a hexagonal lattice and graphane is the hydrogenated
graphene where each carbon atom is covalently connected with the hydrogen atom in the CH stoichiometry [1].
Here, the sp3–hybridized carbon atoms shift up or down from the planes; according to the calculations in [1],
it is an energy-profitable system. The theoretically proposed models of the graphane structure are only partly
confirmed theoretically [2]. In the conditions of wide investigations of potential graphane applications to the
particular problems in various fields of technology, science, and industry, primarily for the hydrogen storage [1] or
in precise devices [3] or solar batteries [4], the search for optimal graphene synthetic methods becomes especially
urgent.

Recently, hydrogenated graphene structures were obtained, with the different hydrogen-to carbon stoichiometry
depending on the production method. The methods based on application of low or high pressure the hydrogen
containing gas medium result in lower sample saturation by hydrogen than the liquid-phase methods based on the
modified Birch method [5–9]. Authors [10] used the scaled electrochemical approach to obtain the hydrogenated
graphene from the solvated NR (4+) graphite. Yet, currently, totally hydrogenated graphene is still not synthesized.
Even in order to obtain the graphene with various hydrogenation degree, at least two or more stages are required.
At the first stage, the initial material, graphene, is obtained using one of the known methods: adhesive tape, CVD,
Hummers’ method, or on the SiC surface. At the second stage, the hydrogenation itself proceeds by means of
physical or chemical methods. In liquid-phase approaches, an additional stage of refinement from the undesirable
medium admixtures, i.e. atoms, molecules, small atomic clusters, is needed.

2. Experimental setup and procedure

Earlier, we investigated the possibility of synthesizing free graphene by means of high-power plasma torch at
the pressure of 150 – 710 Torr [11, 12]. Analysis of the processes in the carbon nucleation zone of the plasma
jet generated by the plasma torch indicates high concentration of the atomic hydrogen and of the C6H6-like
compounds; these substances, according to [13–16], might promote the graphene formation. Additionally, it is
common knowledge that application of the DC plasma torches makes it possible to synthesize high-quality pure
carbon nanomaterials from inexpensive precursors [17], thus reducing the requirements to the carbon source, its
cost and the final product cost. Authors [18–20] show that, with application of the plasma torches, high purity
graphene might be obtained with controlled electronic properties.

The present work is aimed at experimental search to plasma-assisted synthesis of graphene with the attached
hydrogen atoms. The plasma jets used here is the same one as in the work [21]. We performed decomposition of
hydrocarbons in the thermal plasma jet up to the carbon vapor formation. Then we rapidly cooled the decomposition
products of hydrocarbons in a vacuum chamber with the subsequent nucleation of solid carbon. We received
synthesized products on the collector. Simultaneous input of the precursors (methane, propane-butane, acetylene)
and the plasma-forming gas (helium) into the discharge gap of the plasma torch is an advantage of such method.
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Here, we might independently vary the component ratio in the plasma jet within wide ranges. Besides, the
extending anode channel – the constructive peculiarity of the plasma torch – makes it possible to widely vary the
rate of the vapor-gas flow cooling, to change its geometry, and, in general, to control the process efficiency [22].

Table 1 presents the parameters of experiments on the hydrogenated graphene synthesis. The synthesis process
duration equals to 6 min and is governed by the quantity of specimens required to investigate their properties.
Total output of the carbon sediment collected on the target varies from 6 g to 10 g (99 wt. %).

TABLE 1. Experimental conditions

Power
(kW)

Current
(A)

Voltage
(V)

Gas
pressure
(Torr)

Helium
flow
rate

(g·s−1)

Propane-
butane
flow
rate

(g·s−1)

Methane
flow
rate

(g·s−1)

Acetylene
flow
rate

(g·s−1)

22–36 350–400 60–90
150,
350,
710

0.75–0.9 0.11–0.30 0.15–0.37 0.05–0.16

We measured the temperature in the zone of carbon vapor condensation and formation of graphene and
graphane by the chromel-alumel thermocouple. Depending on the experimental conditions, the temperature on the
collector surface was varied from 500 – 700 ◦C. This temperature range is optimal to obtain the hydrogenated
graphene [23].

The samples synthesized in the plasma jet volume were characterized by means of the standard methods
of graphene materials investigation [7, 24, 25]. To provide the most accurate identification of the samples, we
used a method of a scanning electron microscopy (SEM) with a Hitachi S5500 microscope in the DF-STEM,
BF-STEM and SE modes and a Raman spectroscopy study (Nectra Spectra, a laser with a wavelength of 532 nm).
To quantitatively investigate the element composition and the electron state of the atoms, we used the X-ray
photoelectron spectroscopy (XRPS) – the measurements were performed at the room temperature by means of the
Theta Probe (ThermoFisher Scientific, GB) spectrometer: we took the Al K-a emission without using the system
of the surface charging neutralization. To determine the element composition, we applied the vario MICRO cube
express-gravimetry method. The phase composition of the synthesized samples was investigated by the thermal
methods (thermogravimetry and differentially-scanning calorimetry), under linear heating with a rate of 10 K/min,
under argon atmosphere, by means of the Netzsch (STA 409, PC Luxx) device. The X-ray structure analysis
was performed using the standard technique and the DRON-2 facility (CuKα-emission). We obtained the X-ray
diffraction spectra from the basic surfaces of the samples.

3. Results of experiments

The electron microscopy results confirm the possibility of graphene hydrogenation at its synthesis. Fig. 1
shows the typical SEM images of the hydrogenated graphene structures obtained via decomposition of methane
and acetylene in the helium plasma at 350 Torr and at the maximal consumption (0.16 – 0.37 g/s), Tab. 1.
In morphology, these structures are identical with the structures synthesized, with plasma application, in the
experiments [20]. The samples represent the disoriented flakes, differing in the edge morphology and the lateral
sizes (with sufficient scattering – from below 3 nm to above 1.5 µm). The X-ray analysis of the flakes shows
that the spectrum of a typical sample contains two weak halos. The first of them is in the Bragg angle range
2θ = 11 – 120 and can belong to any hydrocarbon phase. The maximum intensity of this halo corresponds to
the interplanar distance d = 0.7694 nm. The second halo is located in the area of angles 2θ = 24 – 280. The
maximum intensity of this halo corresponds to the interplanar spacing d = 0.3401 nm. Study of morphology shows
that the sample surface is wavy. Fig. 1 shows that the areas with swelling (covering not only the surface layer
but also the next ones) rise above the waves. The swelling has a rhomboid shape which, as a rule, forms when
a gas fills the layered structures. The rhomb angle equals to 120 ◦ – typical for the crystal structure rather than
for amorphous carbon. The swellings on the graphene surface are distributed irregularly. That very swelling effect
was previously observed when studying the morphology of the pyrolytic graphite surface after the impact by the
hydrogen flow [26].

The thermal sample analysis data concerning the hydrogen output are in agreement with the results obtained
earlier in the works on the hydrogen desorption from both graphite [27] and graphene [24]. Fig. 2 shows
an example of thermogram of the samples synthesized via the methane decomposition in the helium plasma at
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FIG. 1. (a) BF-STEM of the sample obtained via the propanebutane mixture decomposition in
helium plasma at 350 Torr; (b) SEM of the sample obtained via the propanebutane mixture
decomposition in helium plasma at 350 Torr; (c) SEM of the sample obtained via the acetylene
decomposition in the helium plasma at 350 Torr; (d) BF-STEM of the sample obtained via the
acetylene decomposition in helium plasma at 350 Torr; (e) SEM of the sample obtained via the
methane decomposition in the helium plasma at 710 Torr; (f) BF-STEM of the sample obtained
via the methane decomposition in helium plasma at 710 Torr

pressure of 710 Torr. Analysis of the thermogram shows that the content of the graphene component in the obtained
hydrogenated material is above 60 wt. %. Here, intensive mass decrease begins at 300 ◦C and continues up to
above 1000 ◦C. In the desorption curves, two desorption peaks are observed. Depending on the precursor type, the
maximum falls on the temperature ranges of 300 – 400 ◦C and 800 – 900 ◦C.

The XPS spectra also confirmed obtainment of graphane. Fig. 3 shows the high-resolution C1s spectra for
the specimen obtained via the propane-butane mixture decomposition in the helium plasma at 710 Torr and the
highly-oriented pyrolitic graphite (HOPG) measured at two angles against the normal to the surface. The spectra
differ in the width of the main peak because of the specimen non-uniformity caused by the presence of the different
size particles and the defects which is consistent with the work [28]. The difference in the spectra within the lower
binding energy region indicates different conductivity caused, possibly, by the presence of the C–H bonds – this
fact is in agreement with results [24].

By means of the direct express-gravimetry method, we determine the C:H content ratio in the samples. The
minimal quantity of the hydrogen atoms per a single carbon atom equals to 0.017. This value was obtained when
methane was used as the precursor. At the propane-butane mixture decomposition (with the flow rate of 0.37 g/s),
in the helium plasma (710 Torr), with variation of the gas flow velocities, we obtained the hydrogen-to-carbon
ratio of 1:4. The Raman-spectroscopic investigation of the samples also confirmed formation of graphane. Fig. 4
shows the Raman-spectrum of the samples synthesized from the propane-butane mixture in the helium plasma at
different temperature on the collector surface [29]. These results respect to the Raman-spectrum of the single-layer
graphene obtained via mechanical exfoliation (the adhesive tape) [24]. In Fig. 4, the D, G, and 2D peaks move up
to 1337 cm−1, 1569 cm−1, and 2659 cm−1, respectively. For all the spectra, the D line is present – due to the
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FIG. 2. Thermal analysis, in the inert
medium, of the sample obtained via the
methane decomposition in helium plasma at
710 Torr. The G is the sample mass varia-
tion, the DSC – variation of the sample heat
release under the linear heating, H – the hy-
drogen output

FIG. 3. Comparison of the C 1s
photoelectron spectra of the sam-
ple and of the HOPG measured
at the various angles against the
normal to the sample surface

morphology peculiarity of the structures, flakes with the fold edges. Certain discrepancy with the literary data is
caused by application of the different lasers for excitement of the spectra – this fact is confirmed by the analysis
in [30]. Figure 4 shows a typical spectrum of the hydrogenated graphene [31–34]. Note that the intensity shift
of the breathing modes to the higher frequencies takes place; respectively, the D, G, and 2D peaks move up to
1350 cm−1, 1580 −1, and 2690 cm−1. Analysis of shape of the 2D peaks shows that the samples are two-layered.
According to [35], the highest possibility of hydrogenation with respect to that, vary the bilayer graphene.

FIG. 4. Raman spectra of the samples obtained via the propanebutane mixture decomposition in
helium plasma at 350 Torr

Measurements of the electrical conductivity of synthesized hydrogenated graphene from 10 – 50 ◦C using
the classical four-probe method for bulk materials correlate with the data of [7] and correspond to the classical
temperature dependence for a semiconductor. The band gap energy (equal to 0.22 eV) confirms their semiconductor-
like character.

4. Conclusions

We demonstrate the possibility of synthesizing hydrogenated graphene structures in plasma jets. Their charac-
terization by Raman spectroscopy, the XPS, the express-gravimetry and the thermal analysis methods shows that
their properties are close to the properties of the hydrogenated single-layered graphene, both on the substrates and
in the liquid media. We state the correlation between the degree of hydrogenation and the synthesis conditions.
The hydrogen content depends on the synthesis conditions.
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