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In this paper, a parametrically driven discrete nonlinear Schrödinger equation will be considered for defocusing case. Analytical and numerical
calculations will be performed to determine the existence and stability of intersite dark discrete solitons admitted by discrete nonlinear Schrödinger
equation. It will be shown that a parametric driving can stabilizes intersite discrete dark solitons. Stability windows of all the fundamental solitons
will be presented and approximations to the onset of instability will be derived using perturbation theory, with accompanying numerical results.
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1. Introduction

We consider a parametrically driven discrete nonlinear Schrödinger (PDNLS) equation for defocusing case:

iϕ̇n = −C∆2ϕn + |ϕn|2 ϕn − ωϕn − γϕ̄n, (1)

where, ϕn ≡ ϕn(t) is a real-valued wave function at site n, the overdot and the overline indicates to time derivative and
complex conjugation, respectively. The coupling constant between two adjacent sites is represented by C. ∆2ϕn =
ϕn+1 − 2ϕn + ϕn−1 is the one-dimensional (1D) discrete Laplacian, γ is the parametric driving coefficient with
frequency ω. In the absence of parametric driving, i.e., for γ = 0, Eq. (1) is reduced to the standard discrete nonlinear
Schrödinger (DNLS) equation which appears in a wide range of important applications [1–5] and admits dark solitons
with defocusing nonlinearities, respectively.

With a focusing nonlinearity and finite C PDNLS has been studied first by Susanto et al. [6, 7, 9]. The PDNLS
model was also derived for coupled arrays of nonlinear resonators in micro and nano-electromechanical systems [8,10].
The same equation also applies to the study of Bose–Einstein condensates and long bosonic Josephson junctions [11,
12]. Dynamics of the parametrically driven NLS solitons beyond the onset of the oscillatory instability was studied by
N. V. Alexeeva et al. [13]. Bright and dark solitons in optical media with intensity-dependent non-linear response as
well as two-component solitary waves supported by parametric wave mixing in quadratic or cubic media was studied
by Yu. S. Kivshar [14]. Theory of stationary solitary waves generated by optical parametric interactions in the presence
of Kerr-type nonlinearities and dissipations was studied by K. Hayata and M. Koshiba [15].

In this study, the existence and stability of the fundamental intersite dark solitons in the defocusing PDNLS
is examined analytically and numerically. The method of perturbation theory for small C is adopted in analytical
calculation. Numerical comparisons are made by solving a corresponding eigenvalue problem.

Stationary solution of system (1) is in the form of ϕn = Zn, where Zn is a real-valued and time independent,
satisfy the following stationary equation:

−C∆2Zn + Z3
n − ωZn − γZn = 0. (2)

The solution of Eq. (1) is the form of solitonic and its linear stability is determined by solving a corresponding
eigenvalue problem. A linearization ansatz is introduced as follows

ϕn = Zn + δρn,

where δ � 1, and substitute this into the defocusing Eq. (1), to yield the following linearized equation at O(δ):

iρ̇n = −C∆2ρn − 2 |Zn|2 ρn − Z2
nρ̄n + ωρn + γρ̄n, (3)
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by writing ρn = ηn + iζn, equation (3) can be transformed into the eigenvalue problem: η̇n

ζ̇n

 = M

 ηn

ζn

 , (4)

where:

M =

 0 L+(C)

L−(C) 0

 , (5)

and the operators L+(C) and L−(C) are defined by

L+(C) ≡ −C∆2 + (3Z2
n − ω − γ),

L−(C) ≡ −C∆2 − (Z2
n − ω + γ).

By the eigenvalues of M the stability of Zn is determined. Let the eigenvalues of M is denoted by id, which
implies that Zn is stable if Im(d) = 0. Because the Eq. (5) is linear then one of the ‘eigenvectors’, for instance ζn,
can be eliminated, from which following eigenvalue problem is obtained

L+(C)L−(C)ηn ≡ d2ηn = Ωηn. (6)

2. Analytical calculations

To perform analytical calculations of the existence and stability of the intersite dark solitons for small coupling
constant C, a perturbation analysis is used. By expanding Zn in powers of C, the O(1) and O(C) equations are
obtained, which give the solutions Zn at order C as:

Z(1)
n =

∆2Z
(0)
n

3
(
Z

(0)
n

)2
− (ω + γ)

. (7)

Using a perturbative expansion, the configuration of intersite dark soliton in AC limit C = 0 is given by:

Z(0)
n =

{
−
√
ω + γ, n = 0,−1, ...,

√
ω + γ, n = 1, 2, ....

(8)

To study the eigenvalue(s) analytically, ηn and ω are expanded in power of C as

ηn = η(0)n + Cη(1)n +O(C2), (9)

ω = ω(0) + Cω(1) +O(C2). (10)

Then equation (6) can be written at O(1) and O(C) as[
L+(0)L−(0)− Ω(0)

]
η(0)n = 0, (11)

and [
L+(0)L−(0)− Ω(0)

]
η(1)n = fn, (12)

where
fn =

[
(∆2 − 2Z(0)

n Z(1)
n )L− (0) + L+ (0) (∆2 − 6Z(0)

n Z(1)
n ) + Ω(1)

]
η(0)n . (13)

To perform a stability analysis, firstly the significance of continuous spectrum for a intersite dark soliton is inves-
tigated by substituting a plane-wave expansion:

ηn = aeikn + be−ikn. (14)

From this, the dispersion relation for an intersite dark soliton is obtained as

Ω = [2C(cos k − 1)− (ω + 2γ)]
2 − ω2, (15)

thus the continuous band lies between
ΩL = 4(ω + γ)γ, (16)

when k = 0, and
ΩU = 4(ω + γ)γ + 8C(ω + 2γ) +O(C2), (17)

when k = π.
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It is shown from above analysis that there are only three possibilities for parameter values γ and ω in the contin-
uous spectrum above, i.e., either ω ≥ γ > 0, γ > ω > 0 or γ > −ω ≥ 0. However, this paper is restricted to the first
case only.

In this case, the leading order solution is given by the configuration (8) and the next correction can be obtained
from Eq. (7) resulting

u(1)n =



0, n = −2,−3, ...,
1√
ω + γ

, n = −1,

− 1√
ω + γ

, n = 0,

0, n = 1, 2, ....

(18)

Thus the intersite discrete dark soliton is given, with errors of O(C2), by

un =



−
√
ω + γ, n = −2,−3, ...,

−
√
ω + γ +

C√
ω + γ

, n = −1,

√
ω + γ − C√

ω + γ
, n = 0,

√
ω + γ, n = 1, 2, ...,

(19)

and for this configuration Eq. (6) can be written as

L+(0)L−(0) = 4ωγ + 4γ2 for all n, (20)

from which it is concluded that there is a single leading order eigenvalue, given by Ω(0) = 4ωγ + 4γ2, with infinite
multiplicity. Then a continuous spectrum for nonzero C is formed by the expansion of that eigenvalue.

From the fact of a single eigenvalue above, nothing can be said about the discrete eigenvalue(s) yet. However,
its continuation still can be calculated as the coupling constant is turned on, which can be carried out from Eq. (12).
Because

L+(0)L−(0)− Ω(0) = 0 for all n, (21)

the solvability condition for Eq. (12) has required fn = 0 for all n. Then after a simple calculation:

fn =


[
4ω + 16γ + 2(ω + 2γ)∆2 + Ω(1)

]
η(0)n , n = −1, 0,[

2(ω + 2γ)∆2 + Ω(1)
]
η(0)n , n 6= −1, 0.

(22)

Notice that the eigenvector for a localized mode in which there is only one eigenvalue with infinite multiplicity is
also localized and decaying exponentially (see, e.g., Baesens et al. [16] for a justification). Thus, a suitable ansatz for
η(0)n can be chosen as

η(0)n =


Pec(n+1.5), n ≤ −2,

P0, n = −1,

Q0, n = 0,

Qe−c(n+1.5), n ≥ 1,

(23)

for P , P0, Q, Q0 6= 0 and c > 0. Substituting Eq. (23) in Eq. (22) and after applying solvability condition fn = 0 for
all n, following Eqs. are obtained:

Pe−0.5c
[
2(ω + 2γ)(e−c − 2) + Ω(1)

]
+ 2P0(ω + 2γ) = 0, n = −2,

P0(8γ + Ω(1)) + 2Q0(ω + 2γ) + 2P (ω + 2γ)e−0.5c = 0, n = −1,

Q0(8γ + Ω(1)) + 2P0(ω + 2γ) + 2Q(ω + 2γ)e−2.5c = 0, n = 0,

Qe−2.5c
[
2(ω + 2γ)(e−c − 2) + Ω(1)

]
+ 2Q0(ω + 2γ) = 0, n = 1,

2(ω + 2γ)(ec − 2 + e−c) + Ω(1) = 0, n 6= −2,−1, 1, 0.

(24)
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It is clear from above first four equations that either P0 = Q0 or P0 = −Q0. From which it is obtained respec-
tively, either

c = ln

(
3ω + 10γ

ω + 2γ

)
, Ω(1) =

−8(ω + 4γ)2

3ω + 10γ
, (25)

or

c = ln

(
ω + 6γ

ω + 2γ

)
, Ω(1) =

−32γ2

ω + 6γ
. (26)

Therefore, the bifurcating discrete eigenvalues of an intersite dark soliton for small C are respectively given by

ΩE,1 = 4γω + 4γ2 − 8(ω + 4γ)2

3ω + 10γ
C +O(C)2, (27)

ΩE,2 = 4γω + 4γ2 − 32γ2

ω + 6γ
C +O(C)2. (28)

In the AC limit C = 0, the above eigenvalues correspond, respectively, to the following normalized eigenvectors

η(0)n =



2
√

(ω + 3γ)(ω + 4γ)

ω + 2γ

(
3ω + 10γ

ω + 2γ

)n

, n ≤ −2,

2
√

(ω + 3γ)(ω + 4γ)

3ω + 10γ
, n = −1,

2
√

(ω + 3γ)(ω + 4γ)

3ω + 10γ
, n = 0,

2
√

(ω + 3γ)(ω + 4γ)

3ω + 10γ

(
3ω + 10γ

ω + 2γ

)−n

, n ≥ 1,

(29)

and

η(0)n =



2
√
γ(ω + 4γ)

ω + 2γ

(
ω + 6γ

ω + 2γ

)n

, n ≤ −2,

2
√
γ(ω + 4γ)

ω + 6γ
, n = −1,

−
2
√
γ(ω + 4γ)

ω + 6γ
, n = 0,

−
2
√
γ(ω + 4γ)

ω + 6γ

(
ω + 6γ

ω + 2γ

)−n

, n ≥ 1.

(30)

It is clear from Eq. (28) that when C > 0 the eigenvalue ΩE,2 is always less than ΩL. As C is increased,
both ΩE,1 and ΩE,2 are decreased to zero but ΩE,2 > ΩE,1 (note that ΩE,2 is decreased more slowly than ΩE,1).
Therefore, it is concluded that the instability may occur due to ΩE,1 becoming negative as illustrated in Fig. 1. The
critical value of C can be found by equating ΩE,1 = 0 as

Ccr =
γ(3ω + 10γ)(ω + γ)

(ω + 4γ)2
, (31)

which approximate the onset of instability.

FIG. 1. A sketch of the dynamics of the eigenvalues and the continuous spectrum of a stable intersite
dark soliton in the (Re(Ω), Im(Ω))-plane. The arrows indicate the direction of movement as the
coupling constant C increases. Note that a soliton is unstable if there is some Ω with either Ω < 0
or Im(Ω) 6= 0
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3. Comparison with numerical computations

In this section, the numerical results are compared with the analytical calculation for previous section. The
steady-state equation (2) is solved numerically by using Newton–Rapson method. Stability of this numerical solution
is analyzed by solving the eigenvalue problem (4). ω is taken 0.9 in all the examples.

The comparisons between analytical predictions for the critical eigenvalues, given by equations (27)–(28) and
corresponding numerical results are presented in Fig. 2. One should not be surprised by the appearance of the branch-
ing curves in the figure as they reveal the bifurcation of the critical eigenvalues from the inner edge of the continuous
spectrum as soon as C is turned on from which they then split into two distinct eigenvalues. It is seen that the
approximations given by Eqs. (27)–(28) are in good agreement with the numerics. The range of validity of these
approximations is wider for the upper branches in each branching curve.

FIG. 2. Comparisons between the critical eigenvalue of intersite dark solitons obtained numerically
(solid lines) and analytically (red dots) for two values of γ. The upper branching curves correspond
to γ = 0.8 while the lower ones to γ = 0.1. The analytical approximations for the lower-upper
branches in each branching curve are given by Eqs. (27)–(28)

The eigenvalue structures and corresponding soliton profiles of two values of γ = 0.1, 0.8 are plotted in Fig. 3.
For γ = 0.1, when C = 0.04 the eigenvalues d lie in the gap between the two parts of the continuous spectrum,
therefore no instability is obtained (Fig. 3(a)). For γ = 0.1, when C = 0.5 the instability is caused by a collision
between one of the critical eigenvalues and its twin at the origin (Fig. 3(b)) (in Fig. 2, this eigen-value corresponds to
the lower branch of the lower branching curves). If the value of C is taken greater than 0.05 (taking γ = 0.1 constant)
the intersite dark solitons are remained always stable. It is interesting to note that the oscillatory instability can be
fully suppressed by the presence of parametric driving, which has been appeared in onsite dark soliton [8]. As shown
in the bottom panels of Fig. 3, there are values of the parameter γ for which no instability-inducing collision ever
occurs. The (in)stability region of this configuration as well as the analytical prediction for the onset of instability are
summarised in Fig. 4. It is seen from the figure that for any C and γ > 0.31 an intersite dark soliton is remained
always stable. By contrast, it is also seen that the intersite dark soliton is remaining always unstable for γ < 0. The
instability, in this case, is caused by the fact that the lower band of the continuous spectrum (d =

√
ΩL) lies on the

imaginary axis.

4. Conclusions

In this paper, analytical and numerical calculations are performed to determine the existence and stability of
intersite dark discrete solitons in the parametrically driven discrete nonlinear Schrödinger equation. It has been shown
that the presence of a parametric driving can stabilize intersite dark discrete solitons. An interval has been found in γ
for which a discrete dark soliton is stable for any value of the coupling constant, i.e., a parametric driving can suppress
oscillatory instabilities. Stability windows for all the fundamental solitons have been presented and approximations
using perturbation theory have been derived to accompany the numerical results.
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(a) (b)

(c) (d)

FIG. 3. The eigenvalue structures and soliton profiles of intersite dark solitons with parameter val-
ues as indicated in the caption for each panel. γ = 0.1, C = 0.04 (a); γ = 0.1, C = 0.5 (b);
γ = 0.8, C = 0.5 (c); γ = 0.8, C = 1.7 (d)

FIG. 4. The (in)stability region of intersite dark solitons in (C, γ)-space. For each value of C and
γ, the corresponding colour indicates the maximum value of | Im(d)| (over all eigenvalues d) for the
steady-state solution at that point. Stability is therefore indicated by the region in which Im(d) = 0,
namely the black region. Analytical approximation of Eq. (31) is given by white line.
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