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Analysis of the unambiguous state discrimination with unequal a priori probabilities
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In this paper, we study unambiguous state discrimination regarding advanced attack on phase-coded quantum key distribution protocol. We propose
the method of optimal unambiguous state discrimination probability derivation as a function of a priori probabilities for signal states. The expression
obtained as an example in case of two signal states explicitly demonstrates the additional term dependent on small deviations from equal a priori

probabilities that may take place in real quantum key distribution implementations. Precise estimation of optimal unambiguous state discrimination
probability is significant for complete evaluation of quantum key distribution security.
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1. Introduction

Throughout the last few decades the field of quantum cryptography has been rapidly developing and advancing.
It has emerged with the first papers [1, 2] dedicated to the descriptions of protocols which allow secure distribution
of a finite bit sequence between legitimate partners, and it is still in the focus of research groups, for instance [3–5].
Not only the protocols are of special interest, but also different types of attacks are studied in order to find successful
countermeasures.

In this work we would like to concentrate on zero-error unambiguous state discrimination (USD) attack that is a
considerable threat for protocols utilizing weak coherent states. USD attack requires eavesdropper (Eve) tapping into
quantum channel of legitimate parties (Alice and Bob), errorlessly measuring the states and resending the modified
states to Bob in order to preserve detection statistics [6]. We explore the phase-coded protocol which utilizes several
pairs weak coherent states sent with unequal a priori probability. Imperfect state preparation that can result in the
sending probabilities’ inequality is the immanent part of every practical set-up. For example, quantum random number
generator may cause unequal probability of state preparation [7–9]. Hence we examine the influence of unequal a
priori probability on the discrimination probability.

USD measurement is subject of research for almost three decades. General approach to discrimination between
linearly independent states was introduced in [10, 12, 13]. The solution for minimum achievable probability of in-
conclusive outcome for three states was given by [11]. The method of minimizing the probability for N symmetric
states was considered in [12]. The special case of equal a priori probabilities for N states was discussed in [13].
Bounds of unambiguous state discrimination probabilities have been studied for the case of N linearly independent
states in [14–16]. Several approaches to numerical optimization were proposed as well in [16, 17]. Implementations
of USD in field of quantum computations also take place, e.g. for purpose of quantum cloning operation [18] or USD
between oracle operators [19].

2. Method description

To perform unambiguous discrimination of the N signal states |fi〉 Eve determines special positive-operator
valued measure (POVM). It consists of projection operators Âi which are related to probabilities of successful state
discrimination Pi (for each state) and operator Â0 that is related to obtaining inconclusive result which is always
present due to the nonorthogonality of the states and introduced in order to make the sum of the projection operators
satisfy the decomposition of the identity:

N∑
i=0

Âi = Î . (1)
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Extracted from (1) the operator Â0 is expressed as:

Â0 = Î −
N∑
i=1

Âi, (2)

and according to [11] Â0 is subject to condition:

det[Â0] = 0. (3)

The latter provides maximal allowed values for probabilities Pi. We specify operators Âi as follows:

Âi = Pi |vi〉 〈v1| , (4)

where |vi〉 is state that forms biorthogonal basis with the signal states |fi〉 (i.e. 〈vi|fj〉 = δij , where δij is Kronecker
delta).

Thus one needs to optimize the average probability of USD:

P =

N∑
i=1

piPi, (5)

where pi is a priori probability of sending each state. One may use Lagrange multiplier method in order to do so.
Hence, the function to be optimized is P from expression (5) and the following expression is bound [11]:

det Â0 = det

(
Î −

2N∑
i=1

Pi|vi〉〈vi|

)
= 0. (6)

Let us introduce orthogonal basis |ui〉 obtained by, for instance, Gram–Schmidt process. For simplicity let us de-
note matrix of the operator Â0 (inconclusive result) as A in this orthonormal basis, and operators |vk〉〈vk| as V (k)

respectively.
Thus system of equations is as follows:

d

dPn

N∑
k=1

pkPk − λ
d

dPn
detA = 0, (7)

detA = 0,

where λ is Lagrange multiplier. Insofar as

d

dPn
det(A) = Tr

(
adj(A)

d

dPn

(
I −

N∑
k=1

PkV
(k)

))
= Tr

(
− adj(A)V (n)

)
, (8)

where, Tr(X) =
∑
i

Xii is trace of arbitrary matrix X , adj(A) is adjoint matrix of matrix A, I is identity matrix,

hence

pn + λTr
(

adj(A)V (n)
)

= 0, (9)

detA = 0.

Since sum of pi is equal to unit than Lagrange multiplier is as follows:

λ = − 1

Tr
(
adj(A)

∑
k V

(k)
) , (10)

and consequently pi is expressed as

pi =
Tr
(
adj(A)V (i)

)
Tr
(
adj(A)

∑
k V

(k)
) . (11)

One needs to derive Pi as function pi in order to obtain expression of optimal USD as function of pi.
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3. Example

As an example let us consider two signal states. Their overlapping is denoted as B. Thus signal states can be
described in terms of orthonormal basis (obtained by Gram–Schmidt process) as follows:

|f1〉 =

1

0

 , |f2〉 =


−B√

1−B2

1√
1−B2

 . (12)

Considering

|v1〉 =

 1
−B√

1−B2

 , |v2〉 =

 0
1√

1−B2

 , (13)

condition (6) may be derived in the following form:

det Â0 = det

(1 0

0 1

−
 1

−B√
1−B2

−B√
1−B2

B2

1−B2

P1 −

0 0

0
1

1−B2

P2

)

= det

 1− P1
BP1√
1−B2

BP1√
1−B2

1−B2 −B2P1 − P2

1−B2

 =
1−B2 − P1 − P2 + P1P2

1−B2
= 0, (14)

thereby the probability P1 can be denoted as

P1 =
1−B2 − P2

1− P2
. (15)

Lagrange multiplier is as follows:

λ =
1−B2

(P1 + P2)− 2
, (16)

and probabilities p1 and p2 are as

p1 =
1− P2

2− (P1 + P2)
, (17)

p2 =
1− P1

2− (P1 + P2)
. (18)

By substituting expression (15) in expression (17) we find

p1 =
(1− P2)2

(1− P2)2 +B2
, (19)

and consequently:

P2 = 1−B
√

p1
1− p1

= 1−B
√
p1
p2
. (20)

Taking into account symmetry of expressions (15), (17), (18) with respect to P1 and P2 following expression for P1 is
derived analogously:

P1 = 1−B
√
p2
p1
. (21)

By substituting expressions (20) and (21) in (5) we obtain optimized USD probability:

P = p1

(
1−B

√
p2
p1

)
+ p2

(
1−B

√
p1
p2

)
= 1− 2B

√
p1p2. (22)

This result has well-known form [11] if p = p1 = p2 =
1

2
. Defining p1 =

1

2
+ ∆p and p2 =

1

2
−∆p, where ∆p is

considerably small deviation from equal a priori probabilities, we get
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P = 1− 2B

√(
1

2
+ ∆p

)(
1

2
−∆p

)
≈ 1−B + 2B(∆p)2. (23)

Therefore, the value of P has quadratic term dependent on small deviations from equal a priori probabilities.

4. Discussion and conclusion

In this work we analyze the probability of unambiguous discrimination for arbitrary number of states with unequal
a priori probabilities. The proposed method provides system of equations (expressions (11) and (3)) that can be solved
in order to find optimized USD probability as function of a priori probabilities. We consider rather simple and well-
studied example for two states; the result is the same as in [20]. However, the authors of that paper obtain result
only for two states. Concerning the method described in this paper it is unfortunate that the amount of calculations
for higher number of states grows rapidly so it might be rather difficult to obtain analytical expressions similar to
expression (22).

The results are important mostly in the field of quantum key distribution. In order to achieve certain level of
security, one should consider various attacks, estimate probabilities of their success, and apply corresponding counter-
measures to them. Thus estimation of optimal USD probability is crucial for bounding Eve’s information during, for
instance, advanced USD attack [6]. However consideration of an ideal case is not enough in this instance since there is
an additional quadratic term related to slightly unequal (e.g. due to the bias in quantum random number generator) a
priori probabilities in expression (23) that might provide additional information to Eve. Precise estimation of optimal
USD probability is a significant step towards complete evaluation of quantum key distribution security.
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