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On a possibility to develop a full-potential orbital-free modeling approach
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We studied a principal opportunity to develop a full–potential orbital–free method for modeling of multi–atomic systems using results of Kohn–
Sham calculations for single atoms. We have obtained equilibrium bond lengths and binding energies for homoatomic dimers Li2, Be2, B2, C2, N2,
O2, F2, Na2, Mg2, Al2, Si2, P2, S2, and Cl2 as well as for heteroatomic dimers CSi, CB, CN, CO, SiO, NO, AlO, AlC, and NaCl. We analyzed our
results and concluded that they are coordinated with experimental data not worse, than the results received by means of full-electrons calculations
by the Kohn–Sham method.
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1. Introduction

Modern technologies – nanotechnologies, bio-engineering, drug production and so on – need powerful tools
to predict properties of systems containing hundreds of thousands and millions of atoms. Traditional quantum–
mechanical approaches, such as Hartree–Fock theory, Quantum Chemistry methods and the Kohn–Sham version of
Density Functional Theory (DFT), do not provide an opportunity to operate with large amounts of atoms; their limits
do not exceed thousand atoms, even using pseudopotentials. Methods of empirical potentials and Monte–Carlo allow
operation with large systems but they do not provide reliability of results. On the other hand, opportunities for increa-
seing computer speed are near their physical limit, thus it is useless to hope for solution of the problem by this way. An
imperative need is a new modeling method, which would combine quantum-mechanical accuracy with a possibility of
operating with enormous number of atoms. The idea of such method has arisen in 1964 when Hohenberg and Kohn
formulated the theorem [1] that the ground state energy of any quantum system is completely defined by its electronic
density. In the same work, they have declared that there is a certain universal functional E[ρ], which minimization has
to lead to the equilibrium the electronic density ρ and total electron energy E. The functional E[ρ] has been written
in the following form:

E[ρ] =

∫
ε(ρ)dr =

∫
V (r)ρ(r)dr +

1

2

∫
ϕ(r)ρ(r)dr +

∫
εex−c(ρ)dr +

∫
εkin(ρ)dr, (1)

where ε(ρ) is the density of total electron energy, V (r) is an external potential, ϕ(r) =

∫
ρ(r′)
|r− r′|

dr′ is the electro-

static electron Hartree potential, εex−c(ρ) and εkin(ρ) are exchange-correlation and kinetic energies (per electron).
Minimization of (1) means solution has the following equation:

δE[ρ] =

∫
∂ε(ρ)

∂ρ
δρ(r) = 0, (2)

from where, according to the general variation theory, it follows:

∂ε(ρ)

∂ρ
= V (r) + ϕ(r) + µex−c(ρ) + µkin(ρ) = 0 (3)

with the condition
∫
ρ(r)dr = N, where N is the number of electrons in the system,

µkin(ρ) =
∂εkin(ρ)

∂ρ
, µex−c(ρ) =

∂εex−c(ρ)

∂ρ
(4)

are so called kinetic and exchange-correlation potentials.
The Hartree potential ϕ(r) may be calculated using Fourier transformations or Poisson equations, the external

potential V (r) usually consists of atomic potentials or pseudopotentials. There are some realistic approximations
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for the exchange-correlation potential µex−c(ρ) (for example [2–4]). The only real problem is the kinetic potential
µkin(ρ), or the kinetic energy εkin(ρ).

There were attempts to use the Thomas and Fermi (TF) approximation [5,6] based on the free electron approach:

εTF
kin(ρ) =

3

10

(
3π2
)2/3

ρ5/3, µTF
kin(ρ) =

1

2

(
3π2
)2/3

ρ1/3. (5)

This functional was found to be absolutely inadequate (all molecules were unstable); the von Weizsacker (vW) cor-
rection ∆εWkin(ρ) [7] added to the TF:

∆εWkin(ρ) =
1

8

∫
|∇ρ(r)|2

ρ(r)
dr (6)

also did not solve the problem (binding energies were incorrect).
There were no other serious innovations in this area therefore Kohn and Sham have offered a compromise ap-

proach [8]. They have proposed to find the kinetic energy Ekin by solving some one-electron equation, the Hamilton-
ian of which depended only on the electronic density:

−1

2
∆ψi(r) + Veff (r)ψi(r) = εiψi(r), (7)

Veff (r) = V (r) + ϕ(r) + µex−c(ρ), (8)

Ekin = −1

2

∫ ∑
i

ψi(r)∆ψi(r)dr =
∑
i

εi −
∫ ∑

i

ψi(r)Veff (r)ψi(r)dr, (9)

where ρ(r) =
∑
i

|ψi(r|2, ψi(r) are wave functions, or orbitals, εi – energy of i−state. Equation (7) is called the

Kohn–Sham (KS) equation.
The KS equation has become widely known, on its basis, many effective computing programs were created, many

tasks of modeling of polyatomic systems were solved; however, as has been mentioned above, its opportunities are
currently exhausted. The orbital-free (OF) approach as a version of the density functional theory could present an
alternative to the KS method. It is a consecutive development of the idea of Hohenberg–Kohn [1] that the basic state
of a quantum system can be completely described by means of electronic density. The advantage of this approach is
obvious: operating only with an electronic density instead of numerous wave functions, it allows to increase sharply
the speed of calculations and to include in consideration huge number of atoms.

The first attempts to develop an OF method of modeling began about 20 years ago. Those were simulations of
liquid metals in the jellium approximation [9, 10]. Then works of other researchers (see for example reviews and
original articles [11–14]) were applied to some simple molecules and solids. All of these were based on the use of
special pseudopotentials, with most of them trying to use the TF and vW approximations for the kinetic energy in
different combinations. However, these attempts did not have a large degree of success and were not widely adopted.
It seems to us that the main reason for their inadequate efficiency is that they try to use some universal functional of
kinetic energy for all systems. However, it was recently shown [15, 16], the Hohenberg–Kohn idea about existence
of the universal density functional leading to the energy minimum was not strictly proved. Therefore, the search of
specific types of kinetic potentials is necessary and justified.

In our recent works [17–21], we described an orbital-free pseudopotential approach for modeling of nanosystems
containing atoms with s, p and d electrons. The key point of the approach was finding of the kinetic energy using some
functions special for each type of atoms. This approach was tested on clusters contained C, Al, Si, O, Ti, and Cu atoms
and demonstrated good agreement with Kohn–Sham method and experimental data. However, construction of pseu-
dopotentials is a rather ambiguous operation and brings this method closer to the category of semi-empirical ones. In
our present work, we describe an attempt of the orbital-free full-potential approach working without pseudopotentials.

2. General points of the approach

First, let us consider a single atom of any type A, which equilibrium total electron density ρ(r) may be calculated
easily by the KS method. According to (3), we can write an equation for finding the single-atom kinetic potential
µ
(1)
kin :

µ
(1)
kin(r;A) = − Z(A)

|r− R|
− ϕ(r)− µex−c(r), (10)

where Z(A) is the total nuclear charge, R is an atomic position. If we know µ
(1)
kin as a function of r and ρ as a

function of r we can find r(ρ), substitute it into µ(1)
kin(r) and obtain µ(1)

kin(ρ). Using ρ(r) obtained from total potential
KS calculations (FHI98pp [22]), we constructed kinetic potentials for B, C, N, O. They are plotted in Fig. 1.
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FIG. 1. Kinetic potentials calculated for equilibrium single-atomic full-electrons densities. The top
panel demonstrates the total view of µ(1)

kin(ρ) for different atoms; the down panel shows µ(1)
kin(ρ) for

small densities

One can see that plotted curves differ from each other’s very much. In accordance with works [15, 16], there is
no universal kinetic potential for different quantum systems. However, a question arises: If we have the single-atomic
kinetic potentials for an each kind of atoms why we cannot use them for polyatomic systems? What is the difference
between a single atom and for example a dimer?

Let us consider a dimer consisted of two boron atoms using the full-potential KS code Elk [23]. The equilibrium
electron density of this dimer is plotted in Fig. 2.

FIG. 2. The equilibrium electron density of the boron dimer. The interatomic distance is 3.0 Å

The kinetic potential isn’t calculated in the KS approach. But we can determine it. Because we have the equilib-
rium KS density, we can find the two-atomic kinetic potential µB2−KS

kin (r) for the boron dimer, according to (3):

µB2−KS
kin (r) = −Z(boron)

|r− R1|
− Z(boron)

|r− R2|
− ϕ(r)− µex−c(r), (11)

where Z(boron) = 5; R1, R2 are coordinates of 1 and 2 atoms of a dimer; ϕ(r), µex−c(r) are calculated using the
equilibrium KS density.

It is clear from Fig. 2 that in the case of the dimer the two different types of regions exist. In the first one (I)
the density grows from zero at the large distance from the atom to the maximum value at the atomic nuclear. The
second region type (II) means the space between the atoms. Our calculations showed (Fig. 3) that in the I region the
two-atomic kinetic potential behaves identically the one-atomic potential. It is naturally because an electron in this
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region is far from the atom 2 and interacts with the atom 1 only. In the II region an electron interacts with the both
atoms; the kinetic potential decreases, and the level of the decreasing depends on the interatomic distance: less the
distance less the kinetic potential.

FIG. 3. Behavior of the kinetic potential in different regions of the boron dimer

Obviously, the direct way to provide correct results for orbital-free calculations is to fulfill KS calculations for
different atomic positions, to find the kinetic potential in the each space points, and to use it for OF calculations.
However, such way is very expensive and has no sense. It seems to us, the optimal method is to find some regularities
from the KS calculations on the dimer level and extend them to polyatomic systems in the OF approach. The simplest
way is to introduce some median kinetic potential acting in the multi-atomic system, leading to the correct binding
energy and atomic configuration. We constructed the following fitting expression for the kinetic potentials for any
homoatomic dimers :

µhomo dimer
kin (r;A) = µ

(1)
kin(r;A) ·

[
1.0− α

d
exp(−β · Z2

val(A))

]
, (12)

where A is the type atoms, d is the dimer length, α and β are fitting constants, Zval(A) is the number of valence
electrons in the dimer atom. Parameters α and β control values of the binding energy and the bond length. If they are
fitted for one system (for B2 for example) and are satisfied then for other dimers, this stage of our approach will be
successful and we can pass to modeling more complicated systems.

As different atoms have different functions for kinetic energy, some procedure to calculate the total kinetic func-
tions in the space of the atomic system has to be developed. Near each atom it has to be approximately equal to its
specific function, but it has to be equal to mixture of the specific atomic functions between atoms. It seems that, in
the case of a heteroatomic dimer, the simple way to construct the total function µhetero dimer

kin (r) is to summarize the
specific atomic kinetic functions with some weights:

µhetero dimer
kin (r) = W1(r) · µhomo dimer

kin (r;A1) +W2(r) · µhomo dimer
kin (r;A2), (13)

W1(r) =
exp

(
− (r−R1)

2

B1

)
exp

(
− (r−R1)2

B1

)
+ exp

(
− (r−R2)2

B2

) , (14)

W2(r) =
exp

(
− (r−R2)

2

B2

)
exp

(
− (r−R1)2

B1

)
+ exp

(
− (r−R2)2

B2

) , (15)

where A1, A2 are the types of atoms in the dimer, R1, R2 are coordinates of 1 and 2 atoms, B1, B2 are parame-
ters, with which the Gauss functions limit areas of valence electrons, and the equilibrium values of d are used for
µhomo dimer
kin (r;A1) and µhomo dimer

kin (r;A2) here.

3. Details of calculations

The full-electrons consideration of atoms meets some peculiarities, which makes it rather difficult. One of them
is a sharp intensive peak of the electron density centered on the atomic nucleus. These peaks correspond to localized
core states, which do not participate in interatomic interactions and usually are considered as “frozen” (for example
in the package Elk [23]. Such dividing of electron density helps to avoid awful operations with intensive sharp peaks
and to construct realistic computer codes. Here, we also follow that technique and divide the atomic density to core
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and valent components. In particularly, we consider that the B atom has two core electrons and three valence ones and
their densities distributions are shown in Fig. 4.

FIG. 4. Electron density of a single boron atom. The solid line (Total) demonstrates the total atomic
density, the dashed line presents the density of the 2s22p1 electrons, the Valent-OF line shows the
valent density used in our OF approach

Let us introduce a function F12(r) for a homoatomic dimer:

F12(r) =
Z(A)

|r− R1|
+

Z(A)

|r− R2|
+ ϕ12(r) + µ

(2)
kin(ρ12) + µex−c(ρ12), (16)

where Z(A) is an atomic nuclear charge, ρ12(r) = ρcore1 (r) + ρcore2 (r) + ρval12 (r),

ϕ12(r) =

∫
ϕ12(r′)
|r− r′|

, µex−c(ρ12) is calculated using some well-known approaches (LDA in our case).

Because we started with equilibrium states for single atoms 1 and 2 we can, according (10), write

Z(A)

|r− R1|
= −ϕa

1(r)− µ(1)
kin(ρa1)− µex−c(ρ

a
1), (17)

Z(A)

|r− R2|
= −ϕa

2(r)− µ(1)
kin(ρa2)− µex−c(ρ

a
2), (18)

where ρa1 and ρa2 are equilibrium electron densities of the 1 and 2 atoms, ϕa
1 and ϕa

2 are electrostatic potentials formed
by these densities.

Substituting (17) and (18) into (16) we obtain

F12(r) = ϕ12(r)−ϕa
1(r)−ϕa

2(r)+µ
(2)
kin(ρ12)−µ(1)

kin(ρa1)−µ(1)
kin(ρa2)+µex−c(ρ12)−µex−c(ρ

a
1)−µex−c(ρ

a
2). (19)

Our purpose is to find such density ρ12, which would turn (19) into zero.
Taking into account that the core densities do not change due to the interatomic interactions, we can write the

iteration equation for valent density ρval12 in any point r.

ρval12 (r; i) = ρval12 (r; i− 1) +Kiter · F12(r; i− 1)ρval12 (r; i− 1), (20)

where Kiter is an iteration parameter controlling the procedure convergence. The start step (i = 0) means that the
density ρval12 (r; 0) is a sum of equilibrium atomic valence densities: ρval12 (r; 0) = (ρval1 (|r-R1|))a + (ρval1 (|r-R2|))a.

If we have found the equilibrium electron density we can calculate all components of the total energy. Let us
remind that the total energy of the dimer (Etot)12 is a sum of the nuclear-nuclear repulsive energy (Erep)12, the
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Coulomb energy (EC)12, the Hartree energy (EH)12, the exchange-correlation energy (Eex−c)12 and the kinetic
energy (Ekin)12 :

(Erep)12 =
Z(A) · Z(A)

|R1 − R2|
, (21)

(EC)12 = −
∫ (

Z(A)

|r− R1|
+

Z(A)

|r− R2|

)
· ρ12(r)dr, (22)

(EH)12 =
1

2

∫
ϕ(ρ12) · ρ12(r)dr, (23)

(Eex−c)12 =

∫
εex−c(ρ12)dr, εex−c(ρ12) =

∫
µex−c(ρ12)dρ12, (24)

(Ekin)12 =

∫
ε
(2)
kin(ρ12)dr, ε(2)kin(ρ12) =

∫
µ
(2)
kin(ρ12)dρ12. (25)

4. Calculations and discussions

4.1. Homoatomic dimers

Let us not foorget that we chose theB2 dimer as a test object. We have found for it the binding energyEb = 1.8 eV
and the equilibrium length d = 1.59 Å taking parameters α = 1.08, and β = 0.13. Then we used these values for
all dimers of the Li–F and the Na–Cl rows. Results for binding energies are shown in Fig. 5; the dimer lengths are
collected in Table 1. Experimental data are taken from the book [24]. The cited book contains experimental data taken
from different sources; they often differ from each other very significantly. In these cases we averaged them and gave
average values with two numbers after a decimal point. Our results are yielded with one number after a decimal point,
because now we cannot guarantee higher precision for technical reasons. First of all, it is connected with the fact that
the equilibrium states of the modeled systems are found by “manual” change of distance between atoms. In this work,
we changed interatomic distances by the increments of 0.01 Å and we observed that we cannot guarantee the energy
accuracy more than 0.1 eV. We supposed that such accuracy is sufficient for comparing our results with experimental
data and the KS results.

We calculated mean absolute energy and distance deviations of OF and KS approaches with respect to reference
experimental data. They are 0.6 eV, 1.2 eV and 0.09 Å, 0.03 Å for OF and KS, respectively. Thus we see that our
approach provides better energy accuracy than the KS approach, however it is less accurate when finding interatomic
distances.

We did not attract the published data to comparison with our results. The matter is that these data, as a rule,
significantly differ from each other because they were obtained by different methods within different approaches and
approximations. Instead of this, we took a modern code (Elk [23]) based on the full-electrons KS–DFT approach and
fulfilled calculations for systems of interest to us using the same approach for the exchange-correlation interaction that
we used in our OF calculations.

Table 1. Equilibrium bond lengths d(Å) for studied dimers

Method Li2 Be2 B2 C2 N2 O2 F2 Na2 Mg2 Al2 Si2 P2 S2 Cl2

OF 3.02 2.43 1.59 1.16 1.00 1.16 1.59 3.02 4.02 2.33 2.16 1.91 1.91 1.85

KS 3.07 2.46 1.63 1.23 1.11 1.18 1.37 3.07 3.89 2.54 2.22 1.83 1.90 1.96

Exp. [24] 3.09 2.47 1.59 1.24 1.10 1.15 1.417 3.07 3.891 2.56 2.32 1.90 1.88 1.99

Notations : ”OF” are our OF calculations,

”KS” means full–potential calculations using the Elk [23]

It is clear from Fig. 5 that our OF energy results are in good agreement with the experimental data in many cases,
they demonstrate even better agreement than KS calculations. The OF dimer lengths (see Table 1) also agree well with
experimental ones, although this agreement is sometimes worse than in the case of the KS calculations. In general, we
can say that our OF approach demonstrates a rather good ability to describe the interaction of atoms, especially taking
into consideration the fact that parameters α and β were fitted only for one type of dimers (B2).
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FIG. 5. Binding energies for studied dimers. “Experiment” [24], “KS-full-potential” means calcu-
lations using the Elk code [23], “OF” are our OF calculations

4.2. Heteroatomic dimers

The dimers CSi, CB, CN, CO, SiO, NO, AlO, AlC, NaCl were taken as heteroatomic pairs interesting for tech-
nical and chemical applications. The Gaussian weight parameters B for corresponding atoms are shown in Table 2.
Calculated equilibrium bond lengths and dissociation energies are collected in Table 3. As in the case of homoatomic
dimers, we compare our results with experimental data and results of KS full-electrons calculations (Elk code [23]).

Table 2. The values of the parameters B for weight functions

C Si B N O Al Na Cl

B (a.u.)2 1.5 3.0 1.6 1.3 1.3 4.0 7.0 2.6

Table 3. Dissociation energies Ed and bond lenghts d for heteroatomic dimers

Source C–Si C–B C–N C–O Si–O N–O Al–O Al–C Na–Cl

Ed, eV OF 5.7 6.4 12.9 12.7 6.7 7.9 4.9 3.9 4.2

KS 5.9 6.32 13.35 14.7 15.55 10.95 2.3 1.69 5.07

Exp. [24] 4.6 4.6 7.7 11.09 8.26 6.5 5.2 2.8 4.23

d, Å OF 1.8 1.4 1.2 1.3 1.7 1.1 1.7 1.9 2.4

KS 1.74 1.43 1.11 1.15 1.53 1.08 1.64 1.90 2.41

Exp. [24] 1.7 1.49 1.15 1.11 1.60 1.15 1.62 1.96 2.36

Analysis of Table 3 shows that our OF approach describes interactions of studied atoms not worse than KS Elk-
code.

5. Conclusions

In this work, we demonstrated that it is possible to design a full-potential orbital-free approach for modeling of
atomic systems using one-atomic kinetic potentials obtained from Kohn–Sham calculations. We proposed a practical
way to construct the two-atomic kinetic potential for the B2 dimer and used successfully this way for dimers from
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Li2 up to Cl2. We have generalized our OF method on heteroatomic systems. For this purpose, we used some weight
functions and calculated equilibrium energies and bond lengths for dimers CSi, CB, CN, CO, SiO, NO, AlO, AlC,
NaCl. The analysis of our results shows that they will be coordinated with experiments not worse than results of
full-electrons KS calculations. Certainly, for development of this method in full, it is necessary to overcome a set
of difficulties: namely, to construct kinetic potentials for multi-atomic systems, to develop a relaxation procedure, to
develop a spin dependent version of the orbital free approach and the OF approach atoms with d-electrons. However,
these problems seems to us surmountable, and an opportunity to model very big nanosystems – of hundreds thousands
atoms and more – will be as a result had as an award.
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