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We consider quantum graphs providing reflectionless wave transmission at the vertices. Imposing Kuska’s version of so-called absorbing boundary
conditions we derive the constraints, which make usual continuity and Kirchhoff conditions equivalent to transparent boundary conditions.
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1. Introduction

The problem of wave propagation in absorbing or transparent media is of importance for different practical ap-
plications in optics, acoustics, fluid dynamics and condensed matter physics. An effective way for modeling of wave
dynamics in transparent media is describing them in terms of a wave equation, for which so-called transparent bound-
ary conditions are imposed. The problem of wave equation with transparent boundary conditions has attracted much
attention in mathematical physics (see, e.g., papers [1–10] for review). Such boundary conditions describe absorption
or reflectionless motion of waves in their transmission from one domain to a different one. Therefore, one uses similar
terminology for the boundary conditions of both types of processes, calling them absorbing or transparent boundary
conditions. The problem of transparent boundary conditions (TBC) for linear partial differential equations (PDEs)
was first introduced in the Refs. [1, 2] and has become a well developed topic in mathematical and theoretical physics
now (see, e.g., [3–18] for review). For both (absorbing and transparent transmission) processes, the boundary condi-
tions can be derived by factorization of the differential operator corresponding to a wave equation, which, in general,
leads to complicated equations for the boundary conditions. Explicit form of such boundary conditions are much
complicated than those of Dirichlet, Neumann and Robin conditions.

For transparent (absorbing) boundary conditions, the wave equation cannot be solved analytically and always
requires using highly accurate numerical methods. In other words, numerical implementation of transparent boundary
conditions is a complicated problem, which requires finding effective discretization schemes. Therefore, some authors
proposed different simplifications of TBC for the linear Schrödinger equation. Shibata derived such TBC from disper-
sion relations for the linear Schrödinger equation [19]. Further simplification of TBC obtained by approximating such
dispersion relations has been derived by Kuska [20]. Here, we use Kuska’s approach for the derivation of simplified
vertex boundary conditions for quantum graphs. The latter represent system of quantum wires connected to each other
through some rule and are described in terms of the Schrödinger equation on metric graphs [21–25]. Strict mathemat-
ical derivation of TBC for quantum graphs has been presented recently in [26]. However, the explicit form of TBC
derived in that paper are quite complicated for numerical implementation. Here, we derive a rather simplified version
of TBC using the above mentioned Kuska’s approach. The explicit form of boundary conditions obtained within such
approach is much simpler than those derived in the Ref. [26].

2. Absorbing boundary conditions on interval

Following the Ref. [20], we briefly recall the derivation of the approximate transparent boundary conditions for the
one-dimensional Schrödinger equation on a finite interval. Consider the one-dimensional time-dependent Schrödinger
equation (in the units m = ~ = 1):

i
∂ψ

∂t
(x, t) = −1

2

∂2ψ

∂x2
(x, t) + V (x)ψ(x, t), (1)
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which describes the motion of a quantum particle in the interval x ∈ (−∞,+∞) under the influence of the space-
dependent potential V . Taking a plane wave of the form

ψ(x, t) = exp
[
−i(ωt− kx)

]
, (2)

from Eqs.(1) and (2), one obtains the dispersion relation for the wave vector k, cf. [20]

k2 = 2[ω − V ]. (3)

This dispersion relation can be solved for k and yields

k = ±
√

2[ω − V ], (4)

where the plus sign describes waves moving to x = +∞ and the minus sign means waves moving to x = −∞. The
left boundary has to be transparent for left-propagating waves and the right boundary must be transparent for right
propagating waves. The main idea used in the Refs. [19, 20] for the derivation of absorbing (transparent) boundary
conditions was the requirement that plane wave should remain as plane on both sides of the boundary.

The square root function can be approximated using the rational function approximation method following [20]:
√
z ≈ 1 + 3z

3 + z
. (5)

With this approximation (5) for the square root in the dispersion relation (4), one obtains

k = ±k0

√
2(ω − V )

k20
≈ ±k0

1 + 3z

3 + z
, with z =

2(ω − V )

k20
. (6)

Then, we write (6) as k(3 + z) ≈ ±k0(1 + 3z) and inserting expression for z into this equation, one obtains:

k

(
3
k20
2

+ ω − V
)
≈ ±k0

(
k20
2

+ 3ω − 3V

)
.

Now by requiring that the boundaries of a given interval −L < x < L should be transparent (i.e., the boundary does
not break profile of the plane wave) and using the correspondence between quantities k and ω with their operator
definitions

k ↔ −i∂/∂x and ω ↔ i∂/∂t

we obtain the TBC at the boundaries x = ±L:

−i
(

3
k20
2
− V

)
∂ψ

∂x
(x, t)|x=±L+

∂2ψ(x, t)

∂x∂t
|x=±L =

=± k0
(
k20
2
− 3V

)
ψ(x, t)|x=±L ± 3ik0

∂ψ(x, t)

∂t
|x=±L. (7)

Plus and minus signs in Eq.(7) corresponds to the boundary conditions for the right and left walls, respectively. Eq.(1)
together with the boundary condition (7) present the problem of absorbing boundary conditions for 1D box.

3. Absorbing boundary conditions for quantum graph

In this section, we extend the treatment of the previous section to the case of quantum graphs. To do so, we start
from the simplest, star-shaped graph presented in Fig. 1. The Schrödinger equation on such graph can be written as

∂Ψj

∂t
(x, t) =

[
−1

2

d2

d2x
+ Vj

]
Ψj(x, t), (8)

where j = 1, 2, 3 denotes the bond index, Vj is the external potential on jth bond. The coordinates are chosen
as −L1 < x < 0 for j = 1 and 0 < x < Lj for j = 1, 2. In order to solve Eq.(8), one needs to impose boundary
conditions at the (internal) vertex and at the edges (external vertices) of each bond. In this work we focus on the internal
vertex, therefore the choice of boundary conditions at external vertices are not essential. Here they are imposed as
Dirichlet BC, while the vertex boundary conditions are imposed as continuity condition of the wave function weights
at the graph vertex:

α1Ψ1(x, t)|x=0 = α2Ψ2(x, t)|x=0 = α3Ψ3(x, t)|x=0, (9)
where αj , (j = 1, 2, 3) are the arbitrary constant, which will be determined below. The second boundary condition is
imposed as the “current conservation” at the internal vertex

1

α1

dΨ1(x, t)

dx

∣∣∣∣
x=0

=
1

α2

dΨ2(x, t)

dx

∣∣∣∣
x=0

+
1

α3

dΨ3(x, t)

dx

∣∣∣∣
x=0

. (10)
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FIG. 1. Sketch of a metric star graph. Lj is the length of the jth bond with j = 1, 2, 3

Now we apply for such graph prescription for the derivation of absorbing BC used in the previous section. The
dispersion relation for this case can be written as

kj = ±
√

2[ωj − Vj ]. (11)

Applying the Eqs.(5) and (11), we derive the absorbing vertex boundary conditions (AVBCs) for quantum graph:

−i

(
3
k20j
2
− Vj

)
∂ψj

∂x
(x, t)|x=0+

∂2ψj(x, t)

∂x∂t
|x=0 =

− k0j

(
k20j
2
− 3Vj

)
ψj(x, t)|x=0 − 3ik0j

∂ψj(x, t)

∂t
|x=0, (12)

Under weak assumptions k0j = k0, Vj = V0 =const, from (9) and (10), we get the following constraint

1

α2
1

=
1

α2
2

+
1

α2
3

. (13)

Eq.(13) is the condition that makes possible fulfilling the boundary conditions given by Eq.(12) with the plane
wave solutions of Eq.(8).

It should be noted here that for other two choices, when the second or third bonds are incoming, such constraints
can be derived analogously. Thus, for the incoming second bond and outgoing first and third bonds, the constraint is

1

α2
2

=
1

α2
1

+
1

α2
3

,

and for the incoming third bond and outgoing first and second bonds the constraint is
1

α2
3

=
1

α2
1

+
1

α2
2

.

4. Numerical experiment

In this section, we show numerically that fulfilling the constraint (13) allows reflectionless transmission of the
Gaussian wave packet (GWP) through the vertex (branching point) of a graph with boundary conditions in the form
of (9) and (10). The configuration of the experimental set-up consists of star graph with three bonds (see Fig. 1) of
lengths L1 = L2 = L3 = 10. We consider the wave going from the first bond to the second and the third ones, i.e.,
the initial condition is compactly supported in the first bond. The initial state of the wave function is given by the
following Gaussian function

ΨI(x) = (2π)−1/4 exp(5ix− (x− 5)2/4). (14)
To solve Eq.(8) numerically, we use Crank-Nicolson finite difference scheme with the space discretization ∆x =

0.016 and the time step ∆t = 5 · 10−5. We consider time interval [0, 1.1], which is enough for complete splitting of
GWP into the second and the third bonds.

Firstly, we simulate GWP dynamics in a quantum star graph with “natural” vertex boundary conditions, i.e.
boundary conditions given by (9) and (10) with α1 = α2 = α3 = 1. For this case we have reflection of GWP with
“mass” of fraction N1 = 1/9 (see, Ref. [21]). Other 8/9 part of mass is transmits through the vertex and splits into
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FIG. 2. Contour plot of the probability density for the GWP initially located on the first bond and
given by (14). The imposed vertex boundary conditions are “natural” ones, i.e. α1 = α2 = α3 = 1.
Each column corresponds to a bond, numbering from left to right

FIG. 3. Partial norms of GWP for the case shown in Fig. 2

FIG. 4. Contour plot of the probability density for the GWP initially located on the first bond and
given by (14). The imposed vertex boundary conditions are Kirchhoff-type ones with α1 = 2.4,
α2 = 3 and α3 = 4. Each column corresponds to a bond, numbering from left to right
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FIG. 5. Partial norms of the GWP for the case shown in Fig. 4. The masses of transmitted fractions
are N2 = 0.64 and N3 = 0.36, which confirm Nj = α2

j/(α
2
2 + α2

3), j = 1, 2

two identical fractions. Fig. 2 demonstrates this dynamics and in the Fig. 3 one can see the time-dependence of partial
norms.

Now, we choose parameters αj so that they fulfill the constraint (13): α1 = 2.4, α2 = 3 and α3 = 4. The GWP
dynamics for this set-up is shown in Fig. 4 and Fig. 5. Here we note that it is easy to show the possibility of controlling
of the GWP transition through the vertex by choosing proper parameters α2,3 so that the “masses” of fractions will be
N2 = α2

2/(α
2
2 + α2

3) and N3 = α2
3/(α

2
2 + α2

3), accordingly.

5. Conclusions

We have studied reflectionless wave transport in quantum graphs using simplified version of transparent boundary
conditions concept (so-called Kuska’s approach). It is shown that within such simplification, under certain constraints,
usual continuity condition and Kirchhoff rules imposed at the graph vertex become equivalent to transparent boundary
conditions. Reflectionless transmission of quantum particle through the graph branching point is shown by numerical
solution of the time-dependent Schrödinger equation on a graph. Although the problem is solved for simple star graph,
extension of the approach for other graph (branching) topologies is rather trivial.
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1. Introduction

In statistical physics [1], solid-state physics [2] and the theory of quantum fields [3], one considers systems, where
the number of quasi-particles is not fixed. Their number can be unbounded, as in the case of full spin-boson models
(infinite operator matrix) [4] or bounded, as in the case of “truncated” spin-boson models (finite operator matrix)
[1, 5–8]. Often, the number of particles can be arbitrarily large as in cases involving photons, in other cases, such as
scattering of spin waves on defects, scattering massive particles and chemical reactions, there are only participants at
any given time, though their number can be changed.

Recall that the study of systems describing N particles in interaction, without conservation of the number of
particles is reduced to the investigation of the spectral properties of self-adjoint operators, acting in the cut subspace
H(N) of Fock space, consisting of n ≤ N particles [1–3, 9].

The essential spectrum of the Hamiltonians (matrix operators) in the Fock space are the most actively studied
objects in operator theory. One of the important problems in the spectral analysis of these operators is to describe
the location of the essential spectrum. One of the well-known methods for the investigating the location of essential
spectra of operator matrices are Weyl criterion and the Hunziker-van Winter-Zhislin (HWZ) theorem. Using these
methods, in many works, the essential spectrum of the 3 × 3 and 4 × 4 lattice operator matrices are studied, see
e.g., [10–13]. In particular, in [13] it is described the essential spectrum of 4 × 4 operator matrix by the spectrum of
the corresponding channel operators and proved the HWZ theorem. In [9], geometric and commutator techniques have
been developed in order to find the location of the spectrum and to prove absence of singular continuous spectrum for
Hamiltonians without conservation of the particle number.

In the present paper, we consider the family of 3× 3 operator matrices H(K), K ∈ Td associated with the lattice
systems describing two identical bosons and one particle, another nature in interactions, without conservation of the
number of particles. This operator acts in the direct sum of zero-, one- and two-particle subspaces of the bosonic
Fock space and it is a lattice analog of the spin-boson Hamiltonian [1]. In order to study the location of the essential
spectrum of H(K), we first introduce the notion of channel operator Hch(K) corresponding to H(K). Using the
theorem on the spectrum of decomposable operators we describe the spectrum of Hch(K) via the spectrum of a
family of generalized Friedrichs models h(K, k), K, k ∈ Td. Then, we prove that the essential spectrum of H(K)
is coincide with the spectrum of Hch(K) and show that the set σess(H(K)) consists the union of at most 3 bounded
closed intervals. Further, we define the new so-called two- and three-particle branches of σess(H(K)).

We point out that the operator H(K) has been considered before in [14, 15] for a fixed K ∈ Td and studied its
essential and discrete spectrum. In this paper, we investigate the essential spectrum of H(K) depending on K ∈ Td.
It is remarkable that, the essential spectrum and the number of the eigenvalues of a slightly simpler version of H(K)
were studied in [16] and the result for the location of the essential spectrum were announced without proof.

The present paper is organized as follows. Section 1 is an introduction to the whole work. In Section 2, the
operator matrices H(K), K ∈ Td are described as the family of bounded self-adjoint operators in the direct sum of
zero-, one- and two-particle subspaces of the bosonic Fock space and the main aims of the paper are stated. The family
of generalized Friedrichs model is introduced and its spectrum is established in Section 3. In Section 4, we determine
the channel operator Hch(K) corresponding to H(K) and define its spectrum. The next Section is devoted to the
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derivation of the Faddeev equation for the eigenvectors of H(K). In Section 6, we investigate the essential spectrum
of H(K) and its new branches.

Throughout this paper, we use the following notation. If A is a linear bounded self-adjoint operator from one
Hilbert space to another, then σ(A) denotes its spectrum, σess(A) its essential spectrum and σdisc(A) its discrete
spectrum.

2. Family of 3×3 operator matrices and its relation with spin-boson models

Let us introduce some notations used in this work. Let Td be the d-dimensional torus, the cube (−π, π]d with
appropriately identified sides equipped with its Haar measure. LetH0 := C be the field of complex numbers (channel
1), H1 := L2(Td) be the Hilbert space of square integrable (complex) functions defined on Td (channel 2) and
H2 := L2

sym((Td)2) stands for the subspace of L2((Td)2) consisting of symmetric functions (with respect to the two
variables) (channel 3). We denote by H the direct sum of spaces H0, H1 and H2, that is, H = H0 ⊕H1 ⊕H2. The
spaces H0, H1 and H2 are called zero-, one- and two-particle subspaces of a bosonic Fock space Fs(L

2(Td)) over
L2(Td), respectively, and the Hilbert spaceH is called the truncated Fock space or the three-particle cut subspace of
the Fock space. We write elements f of the space H in the form, f = (f0, f1, f2), fi ∈ Hi, i = 0, 1, 2 and for any
two elements f = (f0, f1, f2), g = (g0, g1, g2) ∈ H their scalar product is defined by:

(f, g) := f0g0 +

∫
Td

f1(t)g1(t)dt+

∫
(Td)2

f2(s, t)g2(s, t)dsdt.

In the present paper we study the essential spectrum of the family of 3× 3 tridiagonal operator matrices:

H(K) :=

 H00(K) H01 0

H∗01 H11(K) H12

0 H∗12 H22(K)

 , K ∈ Td (2.1)

in the Hilbert space H. The matrix entries Hii(K) : Hi → Hi, i = 0, 1, 2 and Hij : Hj → Hi, i < j, i, j = 0, 1, 2
are given by:

H00(K)f0 = w0(K)f0, H01f1 =

∫
Td

v0(t)f1(t)dt,

(H11(K)f1)(p) = w1(K; p)f1(p), (H12f2)(p) =

∫
Td

v1(t)f2(p, t)dt,

(H22(K)f2)(p, q) = w2(K; p, q)f2(p, q), fi ∈ Hi, i = 0, 1, 2.

Throughout the paper, we assume that the parameter functions w0(·), vi(·), i = 0, 1; w1(·; ·) and w2(·; ·, ·) are
real-valued continuous functions on Td; (Td)2 and (Td)3, respectively. In addition, for any fixed K ∈ Td the function
w2(K; ·, ·) is a symmetric; that is, the equality w2(K; p, q) = w2(K; q, p) holds for any p, q ∈ Td.

Under these assumptions the operator H(K) is bounded and self-adjoint.
We remark that the operators H01 and H12 resp. H∗01 and H∗12 are called annihilation resp. creation operators,

respectively. A trivial verification shows that:

H∗01 : H0 → H1, (H∗01f0)(p) = v0(p)f0, f0 ∈ H0;

H∗12 : H1 → H2, (H∗12f1)(p, q) =
1

2
(v1(p)f1(q) + v1(q)f1(p)), f1 ∈ H1.

These operators have widespread applications in quantum mechanics, notably in the study of quantum harmonic
oscillators and many-particle systems [17]. An annihilation operator lowers the number of particles in a given state
by one. A creation operator increases the number of particles in a given state by one, and it is the adjoint of the
annihilation operator. In many subfields of physics and chemistry, the use of these operators instead of wavefunctions
is known as second quantization. In this paper we consider the case, where the number of annihilations and creations
of the particles of the considering system is equal to 1. This means that Hij ≡ 0 for all |i− j| > 1.

The family of operator matrices of this form plays a key role for the study of the energy operator of the spin-
boson model with two bosons on the torus. In fact, the latter is a 6× 6 operator matrix which is unitary equivalent to
a 2× 2 block diagonal operator with two copies of a particular case of H(K) on the diagonal, see [6]. Consequently,
the essential spectrum and finiteness of discrete eigenvalues of the spin-boson Hamiltonian are determined by the
corresponding spectral information on the operator matrix H(K) in (2.1).

Independently of whether the underlying domain is a torus or the whole space or the whole space Rd, the full spin-
boson Hamiltonian is an infinite operator matrix in Fock space for which rigorous results are very hard to obtain. One
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line of attack is to consider the compression to the truncated Fock space with a finite N of bosons, and in fact, most
of the existing literature concentrates on the case N ≤ 2. For the case of Rd, there some exceptions, see e.g. [4, 5] for
arbitrary finite N and [8] for N = 3, where a rigorous scattering theory was developed for small coupling constants.

For the case when the underlying domain is a torus, the spectral properties H(K) for a fixed K were investigated
in [6, 10, 13–15], see also the references therein. The results obtained in this paper for all K will play important role
when we study the problem of finding subset Λ ⊂ Td, such that the operator matrices H(K) have a finite number of
or infinitely many eigenvalues for all K ∈ Λ.

It is well-known that the three-particle discrete Schrödinger operator Ĥ in the momentum representation is the
bounded self-adjoint operator on the Hilbert space L2((Td)3). Introducing the total quasimomentum K ∈ Td of
the system, it is easy to see that the operator Ĥ can undergo decomposition to give the direct integral of the family
{Ĥ(K), K ∈ Td} of self-adjoint operators [18, 19]:

Ĥ =

∫
Td

⊕Ĥ(K)dK,

where the operator Ĥ(K) acts on the Hilbert space L2(ΓK) (ΓK ⊂ (Td)2 is some manifold).
Observe that H(K) enjoys the main spectral properties of the three-particle discrete Schrödinger operator Ĥ(K)

(see [18, 19]), and the generalized Friedrichs model plays the role of the two-particle discrete Schrödinger operator.
For this reason, the Hilbert space H is called the three-particle cut subspace of the Fock space, while the operator
matrix H(K) the Hamiltonian of the system with at most three particles on a lattice.

The main aims of the present paper are as follows:
(i) to investigate the spectrum of a family of generalized Friedrichs model;
(ii) to introduce the channel operator Hch(K) corresponding to H(K) and describe its spectrum;
(iii) to obtain an analog of the Faddeev equation for eigenvectors of H(K);
(iv) to show that the essential spectrum of H(K) is coincident with the spectrum of Hch(K);
(v) to prove that the essential spectrum of H(K) consists at most three bounded closed intervals;
(vi) to define the new branches of σess(H(K)).
The next sections are devoted to the discussion of these problems.

3. Family of generalized Friedrichs models and its spectrum

To study the spectral properties of the operator H(K), we introduce a family of bounded self-adjoint operators
(generalized Friedrichs models) h(K, k), K, k ∈ Td, which acts in the Hilbert space H0 ⊕ H1 as 2 × 2 operator
matrices:

h(K, k) :=

(
h00(K, k) h01

h∗01 h11(K, k)

)
, (3.1)

with matrix elements:

h00(K, k)f0 = w1(K, k)f0, h01f1 =
1√
2

∫
Td

v1(s)f1(s)ds,

(h11(K, k)f1)(q) = w2(K; k, q)f1(q), fi ∈ Hi, i = 0, 1.

Here,
h∗01 : H0 → H1, (h∗01f0)(p) = v1(p)f0, f0 ∈ H0.

Next we study some spectral properties of the family h(K, k), given by (3.1), which plays a crucial role in the
study of the essential spectrum of H(K). We notice that the spectrum, usual eigenvalues, threshold eigenvalues and
virtual levels of the typical models for a fixedK, k ∈ Td have been studied in many works, see for example [14,15,20].

Let the operator h0(K, k), K, k ∈ Td acts inH0 ⊕H1 as:

h0(K, k) :=

(
0 0

0 h11(K, k)

)
.

The perturbation h(K, k) − h0(K, k) of the operator h0(K, k) is a self-adjoint operator of rank 2, and thus,
according to the Weyl theorem, the essential spectrum of the operator h(K, k) coincides with the essential spectrum
of h0(K, k). It is evident that:

σess(h0(K, k)) = [Emin(K, k);Emax(K, k)],
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where the numbers Emin(K, k) and Emax(K, k) are defined by:

Emin(K, k) := min
q∈Td

w2(K; k, q) and Emax(K, k) := max
q∈Td

w2(K; k, q).

This yields σess(h(K, k)) = [Emin(K, k);Emax(K, k)].

Remark 3.1. We remark that for some K, k ∈ Td the essential spectrum of h(K, k) may degenerate to the set
consisting of the unique point [Emin(K, k);Emin(K, k)] and hence we can not state that the essential spectrum of
h(K, k) is absolutely continuous for any K, k ∈ Td. For example, this is the case if the function w2(·; ·, ·) is of the
form:

w2(K; k, q) = ε(k) + ε(q) + ε(K − k − q),
K = 0̄ := (0, . . . , 0), k = π̄ := (π, . . . , π) ∈ Td and

ε(q) =

d∑
i=1

(1− cos qi), q = (q1, . . . , qd) ∈ Td.

Then σess(h(0̄, π̄)) = {4d}.

For any fixed K, k ∈ Td we define an analytic function ∆K(k ; ·) (the Fredholm determinant associated with the
operator h(K, k)) in C \ [Emin(K, k);Emax(K, k)] by:

∆K(k ; z) := w1(K; k)− z − 1

2

∫
Td

v2
1(t)dt

w2(K; k, t)− z
.

The following lemma [14] is a simple consequence of the Birman-Schwinger principle and the Fredholm theorem.

Lemma 3.2. For any K, k ∈ Td the operator h(K, k) has an eigenvalue z(K, k) ∈ C \ [Emin(K, k);Emax(K, k)] if
and only if ∆K(k ; z(K, k)) = 0.

From Lemma 3.2 it follows that for the discrete spectrum of h(K, k) the equality:

σdisc(h(K, k)) = {z ∈ C \ [Emin(K, k);Emax(K, k)] : ∆K(k ; z) = 0}
holds.

The following lemma describes the number and location of the eigenvalues of h(K, k).

Lemma 3.3. For any fixed K, k ∈ Td the operator h(K, k) has no more than one simple eigenvalue lying on the l.h.s.
(resp. r.h.s.) of Emin(K, k) (resp. Emax(K, k)).

The proof of Lemma 3.3 is an elementary and it follows from the fact that for any fixed K, k ∈ Td the function
∆K(k ; ·) is a monotonically decreasing on (−∞;Emin(K, k)) and (Emax(K, k); +∞).

4. The spectrum of channel operator corresponding to H(K)

In this section, we define the channel operator Hch(K) corresponding to H(K) and describe its spectrum by the
spectrum of the family of operators h(K, k), K, k ∈ Td, defined by (3.1).

We introduce so-called channel operator Hch(K) acting in L2(Td) ⊕ L2((Td)2) as a family of 2 × 2 operator
matrices:

Hch(K) :=

(
H11(K) 1√

2
H12

1√
2
H∗12 H22(K)

)
, K ∈ Td. (4.1)

It is important that for this case the operator H∗12 is defined as follows:

H∗12 : L2(Td)→ L2((Td)2), (H∗12f1)(p, q) = v1(q)f1(p), f1 ∈ L2(Td).

Under these assumptions the operator Hch(K) is bounded and self-adjoint.
We set:

mK := min
p,q∈Td

w2(K; p, q), MK := max
p,q∈Td

w2(K; p, q),

ΛK :=
⋃
k∈Td

σdisc(h(K, k)), ΣK := [mK ;MK ] ∪ ΛK .

Here, by Lemma 3.2, we may define the set ΛK as the set of all complex numbers z ∈ C \ [Emin(K, k);Emax(K, k)]
such that the equality ∆K(k ; z) = 0 holds for some k ∈ Td.

The spectrum of the operator Hch(K) can be precisely described by the spectrum of the family h(K, k) of gener-
alized Friedrichs models as well as in the following assertion.
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Theorem 4.1. The operator Hch(K) has a purely essential spectrum and for its spectrum the equality σ(Hch(K)) =
ΣK holds.

Proof. It is clear that the operator Hch(K) commutes with any multiplication operator Uα by the bounded function
α(·) on Td:

Uα

(
g1(p)

g2(p, q)

)
=

(
α(p)g1(p)

α(p)g2(p, q)

)
,

(
g1

g2

)
∈ L2(Td)⊕ L2((Td)2).

Therefore the decomposition of the space L2(Td)⊕ L2((Td)2) into the direct integral:

L2(Td)⊕ L2((Td)2) =

∫
Td

⊕ (H0 ⊕H1)dk (4.2)

yields the decomposition into the direct integral:

Hch(K) =

∫
Td

⊕h(K, k)dk, (4.3)

where the fiber operators (a family of the generalized Friedrichs models) h(K, k) are defined by (3.1). We note that
identical fibers appear in the direct integral in decomposition (4.2). Then the theorem on the spectrum of decomposable
operators [21] gives the equality:

σ(Hch(K)) =
⋃
k∈Td

σ(h(K, k)). (4.4)

The definition of the set ΛK and the equality:⋃
k∈Td

[Emin(K, k);Emax(K, k)] = [mK ;MK ]

imply the equality: ⋃
k∈Td

σ(h(K, k)) = ΣK . (4.5)

Now, the equalities (4.4) and (4.5) complete the proof. �

5. The Faddeev equation and main property

In this section, we derive an analog of the Faddeev type system of integral equations for the eigenvectors corre-
sponding to the discrete eigenvalues (isolated eigenvalues with finite multiplicity) of H(K), which plays a crucial role
in our analysis of the spectrum of H(K).

For any fixed K ∈ Td and z ∈ C \ΣK we introduce a 2× 2 block operator matrix T (K, z) acting inH0⊕H1 as:

T (K, z) :=

(
T00(K, z) T01(K, z)

T10(K, z) T11(K, z)

)
,

where the entries Tij(K, z) : Hj → Hi, i, j = 0, 1 are defined by:

T00(K, z)g0 = (1 + w0(K)− z)g0, T01(K, z)g1 =

∫
Td

v0(t)g1(t)dt;

(T10(K, z)g0)(p) = − v0(p)g0

∆K(p ; z)
, (T11(K, z)g1)(p) =

v1(p)

2∆K(p ; z)

∫
Td

v1(t)g1(t)dt

w2(K; p, t)− z
.

Here, gi ∈ Hi, i = 0, 1.We note that for eachK ∈ Td and z ∈ C\ΣK the entries T00(K, z), T01(K, z) and T10(K, z)
are rank 1 operators, the integral operator T11(K, z) belongs to the Hilbert-Schmidt class and therefore, T (K, z) is a
compact operator.

The following theorem is an analog of the well-known Faddeev’s result for the operator H(K) and establishes a
connection between eigenvalues of H(K) and T (K, z).

Theorem 5.1. The number z ∈ C \ ΣK is an eigenvalue of the operator H(K) if and only if the number λ = 1 is an
eigenvalue of the operator T (K, z). Moreover the eigenvalues z and 1 have the same multiplicities.
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Proof. Let z ∈ C \
∑
K be an eigenvalue of the operator H(K) and f = (f0, f1, f2) ∈ H be the corresponding

eigenvector. Then f0, f1 and f2 satisfy the system of equations:

(w0(K)− z)f0 +

∫
Td

v0(t)f1(t)dt = 0;

v0(p)f0 + (w1(K; p)− z)f1(p) +

∫
Td

v1(t)f2(p, t)dt = 0; (5.1)

1

2
(v1(p)f1(q) + v1(q)f1(p)) + (w2(K; p, q)− z)f2(p, q) = 0.

The condition z 6∈ [mK ,MK ] yields that the inequality w2(K; p, q) − z 6= 0 holds for all p, q ∈ Td. Then, from the
third equation of the system (5.1) for f2 we have:

f2(p, q) = −v1(q)f1(p) + v1(p)f1(q)

2(w2(K; p, q)− z)
. (5.2)

Substituting the expression (5.2) for f2 into the second equation of the system (5.1), we obtain that the system of
equations:

(w0(K)− z)f0 +

∫
Td

v0(t)f1(t)dt = 0;

v0(p)f0 + ∆K(p ; z)f1(p)− v1(p)

2

∫
Td

v1(t)f1(t)dt

w2(K; p, t)− z
= 0 (5.3)

has a nontrivial solution and this system of equations has a nontrivial solution if and only if the system of equations
(5.1) has a nontrivial solution.

By the definition of the set ΛK the inequality ∆K(p ; z) 6= 0 holds for all z 6∈ ΛK and p ∈ Td. Therefore, the
system of equations (5.3) has a nontrivial solution if and only if the following system of equations:

f0 = (1 + w0(K)− z)f0 +

∫
Td

v0(t)f1(t)dt;

f1(p) = − v0(p)f0

∆K(p ; z)
+

v1(p)

2∆K(p ; z)

∫
Td

v1(t)f1(t)dt

w2(K; p, t)− z

or 2× 2 matrix equation:
g = T (z)g, g = (f0, f1) ∈ H0 ⊕H1 (5.4)

has a nontrivial solution and the linear subspaces of solutions of (5.1) and (5.4) have the same dimension. �

Remark 5.2. We point out that the matrix equation 5.4 is an analog of the Faddeev type system of integral equations
for eigenfunctions of the operator H(K) and it is played crucial role in the analysis of the spectrum of H(K).

6. Essential spectrum and its new branches

In this section, applying the statements of Sections 3–5, the Weyl criterion [21] we investigate the essential
spectrum of H(K).

We denote by ‖ · ‖ and (·, ·) the norm and scalar product in the corresponding Hilbert spaces.
For the convenience of the reader we formulate Weyl’s criterion for the essential spectrum of H(K) as follows.

First, a number λ is in the spectrum of H(K) if and only if there exists a sequence {Fn(K)} in the spaceH such that
||Fn(K)|| = 1 and:

lim
n→∞

‖(H(K)− z0(K)E)Fn(K)‖ = 0. (6.1)

Here, E is an identity operator on H. Furthermore, λ is in the essential spectrum if there is a sequence satisfying
this condition, but such that it contains no convergent subsequence (this is the case if, for example {Fn(K)} is an
orthonormal sequence); such a sequence is called a singular sequence.

The following theorem describes the location of the essential spectrum of H(K).

Theorem 6.1. The essential spectrum of H(K) is coincide with the spectrum of Hch(K), that is, σess(H(K)) =
σ(Hch(K)). Moreover the set σess(H(K)) consists no more than three bounded closed intervals.
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Proof. By the Theorem 4.1, we have σ(Hch(K)) = ΣK . Therefore, we must to show that σess(H(K)) = ΣK .
We begin by proving ΣK ⊂ σess(H(K)). Since, the set ΣK has form ΣK = ΛK ∪ [mK ;MK ] first we show that
[mK ;MK ] ⊂ σess(H(K)). Let z0(K) ∈ [mK ;MK ] be an arbitrary point. We prove that z0(K) ∈ σess(H(K)). To
this end it is suffices to construct a sequence of orthonormal vector-functions {Fn(K)} ⊂ H satisfying (6.1).

From continuity of the function w2(K; ·, ·) on the compact set (Td)2 it follows that there exists some point
(p0(K), q0(K)) ∈ (Td)2 such that z0(K) = w2(K; p0(K), q0(K)).

For n ∈ N we consider the following vicinity of the point (p0(K), q0(K)) ∈ (Td)2 :

Wn(K) := Vn(p0(K))× Vn(q0(K)),

where:
Vn(p0(K)) :=

{
p ∈ Td :

1

n+ n′ + 1
< |p− p0(K)| < 1

n+ n′

}
is the punctured neighborhood of the point p0(K) ∈ Td and n′ ∈ N is chosen in such way that Vn(p0(K)) ∩
Vn(q0(K)) = ∅ for all n ∈ N (provided that p0(K) 6= q0(K)).

Let µ(Ω) be the Lebesgue measure of the set Ω and χΩ(·) be the characteristic function of the set Ω. We choose
the sequence of functions {Fn(K)} ⊂ H as follows:

Fn(K) :=
1√

2µ(Wn(K))

 0

0

χWn(K)(p, q) + χWn(K)(q, p)

 .

It is clear that {Fn(K)} is an orthonormal sequence.
For any n ∈ N let us consider an element (H(K)− z0(K)E)Fn(K) and estimate its norm:

‖(H(K)− z0(K)E)Fn(K)‖2 ≤ sup
(p,q)∈Wn(K)

|w2(K; p, q)− z0(K)|2 + µ(Vn(p0(K))) max
p∈Td

|v1(p)|2.

The construction of the set Vn(p0(K)) and the continuity of the function w2(K; ·, ·) implies
‖(H(K) − z0(K)E)Fn(K)‖ → 0 as n → ∞, i.e. z0(K) ∈ σess(H(K)). Since the point z0(K) is an arbitrary we
have [mK ;MK ] ⊂ σess(H(K)).

Now, let us prove that ΛK ⊂ σess(H(K)). Taking an arbitrary point z1(K) ∈ ΛK we show that z1(K) ∈
σess(H(K)). Two cases are possible: z1(K) ∈ [mK ;MK ] or z1(K) 6∈ [mK ;MK ]. If z1(K) ∈ [mK ;MK ], then it is
already proven above that z1(K) ∈ σess(H(K)). Let z1(K) ∈ ΛK \ [mK ;MK ]. Definition of the set ΛK and Lemma
3.2 imply that there exists a point p1(K) ∈ Td such that ∆K(p1(K) ; z1(K)) = 0.

We choose a sequence of orthogonal vector-functions {Φn(K)} as

Φn(K) :=

 0

φ
(n)
1 (K; p)

φ
(n)
2 (K; p, q)

 , where φ
(n)
1 (K; p) :=

cn(K; p)χVn(p1(K))(p)√
µ(Vn(p1(K)))

,

φ
(n)
2 (K; p, q) := −v1(p)φ

(n)
1 (K; q) + v1(q)φ

(n)
1 (K; p)

2(w2(K; p, q)− z1(K))
.

Here, cn(K; p) ∈ L2(Td) is chosen from the orthonormality condition for {Φn(K)}, that is, from the condition:

(Φn(K),Φm(K)) =
1

2
√
µ(Vn(p1(K)))

√
µ(Vm(p1(K)))

(6.2)

×
∫

Vn(p1(K))

∫
Vm(p1(K))

v1(p)v1(q)cn(K; p)cm(K; q)

(w2(K; p, q)− z1(K))2
dpdq = 0

for n 6= m. The existence of {cn(K; ·)} is a consequence of the following proposition.

Proposition 6.2. There exists an orthonormal system {cn(K; ·)} ⊂ L2(Td) satisfying the conditions supp cn(K; ·) ⊂
Vn(p1(K)) and (6.2).

Proof of Proposition 6.2. We construct the sequence {cn(K; ·)} by the induction method. Suppose that c1(K; p) :=

χV1(p1(K))(p)
(√

µ(V1(p1(K)))
)−1

. Now, we choose the function c̃2(K; ·) ∈ L2(V2(p1(K))) so that ‖c̃2(K; ·)‖ =

1 and (c̃2(K; ·), ε(2)
1 (K; ·)) = 0, where

ε
(2)
1 (K; p) := v1(p)χV2(p1(K))(p)

∫
Td

v1(q)c1(K; q)dq

(w2(K; p, q)− z1(K))2
.
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We set c2(K; p) := c̃2(K; p)χV1(p1(K))(p). We continue this process. Suppose that c1(K; p), . . . , cn(K; p) are
constructed. Then the function c̃n+1(K; ·) ∈ L2(Vn+1(p1(K))) is chosen so that it is orthogonal to all functions:

ε(n+1)
m (K; p) := v1(p)χVn+1(p1(K))(p)

∫
Td

v1(q)cm(K; q)dq

(w2(K; p, q)− z1(K))2
, m = 1, . . . , n

and ‖c̃n+1(K; ·)‖ = 1. Let cn+1(K; p) := c̃n+1(K; p)χVn+1(p1(K))(p). Thus, we have constructed the orthonormal
system of functions {cn(K; ·)} satisfying the assumptions of the proposition. Proposition 6.2 is proved. �

We continue the proof of Theorem 6.1. Now for n ∈ N we consider (H(K) − z1(K)E)Φn(K) and estimate its
norm as:

‖(H(K)− z1(K)E)Φn(K)‖2 ≤ C(K) max
p∈Td

v2
1(p)µ(Vn(p1(K)))

+ 2 sup
p∈Vn(p1(K))

|∆K(p; z1(K))|2 (6.3)

for some C(K) > 0.
Since µ(Vn(p1(K))) → 0 and sup

p∈Vn(p1(K))

|∆K(p; z1(K))|2 → 0 as n → ∞, from the (6.3) it follows that

‖(H(K) − z1(K)E)Φn(K)‖ → 0 as n → ∞. This implies z1(K) ∈ σess(H(K)). Since the point z1(K) is an
arbitrary, we have ΛK ⊂ σess(H(K)). Therefore, we proved that ΣK ⊂ σess(H).

Now, we prove the inverse inclusion, i.e. σess(H(K)) ⊂ ΣK . Since for each z ∈ C \ΣK the operator T (K; z) is
a compact-operator-valued function on C\ΣK , from the self-adjointness of H(K) and Theorem 5.1 it follows that the
operator (I − T (K, z))−1 exists if z is real and has a large absolute value. The analytic Fredholm theorem (see, e.g.,
Theorem VI.14 in [21]) implies that there is a discrete set SK ⊂ C\ΣK such that the function (I−T (K, z))−1 exists
and is analytic on C \ (SK ∪ ΣK) and is meromorphic on C \ ΣK with finite-rank residues. This implies that the set
σ(H(K)) \ ΣK consists of isolated points, and the only possible accumulation points of ΣK can be on the boundary.
Thus:

σ(H(K)) \ ΣK ⊂ σdisc(H(K)) = σ(H(K)) \ σess(H(K)).

Therefore, the inclusion σess(H(K)) ⊂ ΣK holds. Finally we obtain the equality σess(H(K)) = ΣK .
By Lemma 3.3 for anyK, k ∈ Td the operator h(K, k) has no more than one simple eigenvalue on the l.h.s. (resp.

r.h.s) of Emin(K, k) (resp. Emax(K, k)). Then, by the theorem on the spectrum of decomposable operators [21] and
by the definition of the set ΛK it follows that the set ΛK consists of the union of no more than two bounded closed
intervals. Therefore, the set ΣK consists of the union of no more than three bounded closed intervals. Theorem 6.1 is
completely proved. �

In the following we introduce the new subsets of the essential spectrum of H(K).

Definition 6.3. The sets ΛK and [mK ;MK ] are called two- and three-particle branches of the essential spectrum of
H(K), respectively.

It is obvious that for a given H(K), the operator Hch(K) is uniquely selected by the property of decomposability
into a direct integral.

According to Theorem 6.1, the operator Hch(K) have the characteristic property of a channel operator of the cor-
responding discrete Schrödinger operator, see [18,19]. Therefore, we call this operator the channel operator associated
with H(K). We note that the channel operator Hch(K) have a more simple structure than the operator H(K), and
hence, Theorem 6.1 plays an important role in the subsequent investigations of the essential spectrum of H(K).

Since for any K ∈ Td and z ∈ C \ ΣK the operators T00(K, z), T01(K, z) and T10(K, z) are one dimensional
and the kernel of T11(K, z) is a continuous function on (Td)2, the Fredholm determinant ΩK(z) of the operator
I − T (K, z), where I is the identity operator inH0 ⊕H1, exists and is a real-analytic function on C \ ΣK .

According to Fredholm’s theorem [21] and Theorem 5.1 the number z ∈ C \ΣK is an eigenvalue of H(K) if and
only if ΩK(z) = 0, that is:

σdisc(H(K)) = {z ∈ C \ ΣK : ΩK(z) = 0}.

References
[1] Minlos R.A., Spohn H. The three-body problem in radioactive decay: the case of one atom and at most two photons. Topics in Statistical and

Theoretical Physics. Amer. Math. Soc. Transl., Ser. 2, 177, AMS, Providence, RI, 1996, P. 159–193.
[2] Mogilner A.I. Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results. Advances in Sov. Math.,

1991, 5, P. 139–194.
[3] Friedrichs K.O. Perturbation of spectra in Hilbert space. Amer. Math. Soc. Providence, Rhole Island, 1965.



Analytic description of the essential spectrum... 519
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The effect of an external magnetic field on the binding energy of a hole in an impurity complex A+ + e in a spherically symmetric quantum dot, as
well as frequency dependence of the spectral intensity of recombination radiation of the quasi-zero-dimensional structure with impurity complexes
A+ + e have been investigated. It is shown that in an external magnetic field there is a spatial anisotropy for the binding energy of A+-state due
to hybrid quantization in the quantum dot radial plane and dimensional quantization in the direction of an external magnetic field. It is shown that
in an external magnetic field the spectral intensity curve of the recombination radiation shifts to the short-wavelength region of the spectrum and
probability of the radiative transition of an electron to the level of A+-center increases, which is caused by increase in the overlap integral of the
envelope wave functions of a hole bound at the A+-center and of an electron localized in the ground state of quantum dot.
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1. Introduction

In recent years, interest in studying an external magnetic field’s influence on the photoluminescence (PL) of
structures with quantum wells (QWs) and quantum dots (QDs) has not been weakened [1–15]. This is due, first of all,
to modification of the optical spectrum of nanostructures, impurity and exciton states, which leads to new interesting
effects in the photoluminescence and optical absorption spectra under application of external magnetic field conditions.
For example, circular polarization of the PL peak associated with A+-centers was first measured in the case of the
QWs of GaAs/ AlGaAs, and analysis of which has made it possible to determine the fine, spin and energy structure of
the A+-center [1]. In [5], PL spectra were studied in an external magnetic field of an ensemble of QD-InAs grown by
method of the molecular-beam epitaxy on a (001) GaAs substrate disoriented in the (010)-direction. It was established
in [5] that in an external magnetic field, the capture of the photo-borne carriers in an array of QDs, which have been
formed as a result of coalescence, is suppressed, and as a result, an increase in the PL intensity has been observed.
A magnetic field also exerts an influence on the kinetics of the QD-photoluminescence. Thus, in [3], an acceleration
of the photoluminescence kinetics of the QD-InAs in the AlAs matrix in an external 5 T – magnetic field has been
observed. The obtained results are explained in the framework of a model that takes into account the exchange and
Zeeman splitting of the QD exciton levels in an external magnetic field [3].

The present work is devoted to the theoretical study of an external magnetic field’s influence on the binding energy
of a hole in an impurity complex A+ + e in a spherically symmetric QD, as well as on the frequency dependence of
the recombination radiation spectral intensity (SIRI) of a quasi-zero-dimensional structure with impurity complexes
A+ + e.

2. Model

Let us consider the problem of the hole bound states in an impurity complexA++e of a semiconductor spherically
symmetric QD in an external magnetic field. The potential of an infinitely deep spherically symmetric well has been
used as a model of the QD confinement potential:

U (ρ) =

{
0, if ρ ≤ R0;

∞, if ρ ≥ R0,
(1)
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where R0 – the QD radius. Interaction of an electron in the ground state of QD with a hole localized at the A0-center
will be considered in the framework of the adiabatic approximation [4]. In this case, the electron potential, Vn,l,m (r),
acting on the hole, can be considered as averaged one over the electron motion [4]:

Vn,l,m (~r) = − e2

4πε0ε

R0∫
0

|Ψn,l,m (~re)|2

|~r − ~re|
d~re, (2)

Where e – the electron charge; ε – dielectric constant of the QD material; ε0 – the electric constant; Ψn,l,m (~r) –
the electron wave function in QD; m = 0, ±1, ±2 . . . – the magnetic quantum number; l = 0, 1, 2 . . . – the orbital
quantum number.

In the first order of perturbation theory, for the ground state of an electron (m = 0, l = 0), potential (2) can be
written in the next form:

Vn,0,0 (ρ) = − e2βn
4πε0εR0

+
m∗h
2

(
ω2
n +

ω2
B

2

)
ρ2 +

m∗hz
2

2
ω2
n, (3)

where βn = γ0−Ci (2πn)+ln (2πn); ~ωn =
[(

2~2π2n2e2
)
/
(
3m∗hR

3
04πε0ε

)]1/2
; ρ, ϕ, z – cylindrical coordinates;

γ0 = 1.781 – the Euler constant; Ci (x) – the integral cosine; n – the electron radial quantum number; m∗h – the hole
effective mass; ωB = |e|B/m∗ – the cyclotron frequency.

It can be shown that the wave function and energy spectrum corresponding to potential (3) have the next form:

Ψn1,m,n2
(ρ, ϕ, z) =

1

a21

(
n1!

2n2+1π3/2n2! (n1 + |m|)! an

)1/2(
ρ2

2a21

)|m|/2
×

exp

[
−
(
ρ2

4a21
+

z2

2a2n

)]
Hn2

(
z

an

)
L|m|n1

(
ρ2

2a21

)
exp (imϕ) , (4)

where n1, n2 = 0, 1, 2, . . . – quantum numbers corresponding to Landau levels and to energy levels of an oscillat-

ing spherically symmetric well; a21 = a2n/

(
2
√

1 + a4n/ (4a4B)

)
; an =

√
~/ (m∗hωn) – the characteristic oscillator

length; aB =
√

~/ (m∗ωB) – the magnetic length; Hn (x), Lcn (x) – the Hermite and Lagger polynomials, respec-
tively.

En,0,0n1,m,n2
= − e2

4πε0εR0
βn + ~ωn

(
n2 +

1

2

)
+ ~ωn (2n1 + |m|+ 1)

√
1 +

ω2
B

8ω2
n

+
~ωBm

2
. (5)

The short-range impurity potential is described in terms of the zero-radius potential model:

Vδ (ρ, ϕ, z; ρa, ϕa, za) = γ
δ (ρ− ρa)

ρ
δ (ϕ− ϕa) δ (z − za)

[
1 + (ρ− ρa)

∂

∂ρ
+ (z − za)

∂

∂z

]
, (6)

where γ = 2π~2/ (αm∗h) – the zero radius potential power; α is determined by the bound state energy Ei of the same
A+-center in a bulk semiconductor; ρa, za – coordinates of the A+-center in QD.

The one-hole Green function G (ρ, ϕ, z, ρa, ϕa, za, Eλh) to the Schrödinger equation, corresponding to the
source at the point ~r1 = (ρ1, ϕ1, z1) and to the energy Eλh, can be written as

G (ρ, ϕ, z, ρa, ϕa, za, En) = −
∑

n1,m,n2

Ψ
(n)∗
n1,m,n2 (ρ1, ϕ1, z1) Ψ

(n)
n1,m,n2 (ρ, ϕ, z)

|Eλh|+ En,0,0n1,m,n2

, (7)

where Eλh – the hole binding energy, measured from the bottom of the electron adiabatic potential.
Using the expressions for the single-particle wave functions (4) and for the energy spectrum (5), for the Green

function G (ρ, ϕ, z, ρa, ϕa, za, En) in units of the effective Bohr energy Eh = ~2/
(
2m∗ha

2
h

)
and the effective Bohr
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radius of the hole ah = 4πε0ε~2/
(
m∗h |e|

2
)

, we obtain

G (ρ, ϕ, z, ρa, ϕa, za, Eλh) =
−βh

2π3/2a3nEh
exp

[
−
(
ρ2 + ρ2a

4a21
+
z2 + z2a

2a2n

)]
×

+∞∫
0

dt exp
[
−
(
η2λhβh − β0 + w + 1

)
t
] ∞∑
n2=0

(
e−t

2

)n2 Hn2

(
za
an

)
Hn2

(
z
an

)
n2!

×

+∞∑
m=−∞

exp (−w |m| t)
(
ρ2ρ2a
2a21

)|m|
exp

(
im
(

(ϕ− ϕa)− βh (a∗)
−2
t
))
×

+∞∑
n1=0

n1!

(n1 + |m|)!
L|m|n1

(
ρ2

2a21

)
L|m|n1

(
ρ2a
2a21

)
exp [−2n1wt] , (8)

here η2λh = |Eλh| /Eh; β0 = βsne
2/ (4πε0εR

∗
0ahEh); R∗0 = R0/ah; βh = Eh/~ωn; a∗ = aB/ah ; w =√

1 + β2
h (a∗)

−4
/2.

Summation over a quantum number n2 can be performed using the Mehler formula:

∞∑
n2=0

(
e−t

2

)n2 Hn2

(
za
an

)
Hn2

(
z
an

)
n2!

=
1√

1− e−2t
exp

{
2zaz e

−t −
(
z2a + z2

)
e−2t

a2n (1− e−2t)

}
. (9)

Using the Hille–Hardy formula for the bilinear generating function of the Laguerre polynomials, it is possible to
sum the series over the quantum number n1:

∞∑
n1=0

n1!

(n1 + |m|)!
L|m|n1

(
ρ2a
2a21

)
L|m|n1

(
ρ2

2a21

)
exp (−2n1wt) =

(
ρaρ

2a21

)−|m|
exp [|m|wt]× (1− exp (−2wt))

−1
exp

(
− exp (−2wt)

(
ρ2a + ρ2

)
2a2n (1− exp (−2wt))

)
×

I|m|

(
ρaρ exp (−wt)

2a21 (1− exp (−2wt))

)
. (10)

Summation over the magnetic quantum number m gives:

+∞∑
m=−∞

exp
[(
i (ϕ− ϕa)− βh (a∗)

−2
t
)
m
]
I|m|

(
ρaρ exp (−wt)

2a21 (1− exp (−2wt))

)
=

exp

[(
exp

[
i (ϕ− ϕa)− βh (a∗)

−2
t
]

+ exp
[
−i (ϕ− ϕa) + βh (a∗)

−2
t
])
× ρaρ exp (−wt)

2a21 (1− exp (−2wt))

]
. (11)

Taking into account (9) – (11), after separation of the diverging part, we obtain:

G (ρ, ϕ, z, ρa, ϕa, za;Eλh) =
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− 1

(2π)
3/2√

βhEha3h

{
exp

[
−
(
ρ2a + ρ2

)
w + z2a + z2

4βha2h

]
×

+∞∫
0

dt exp
[
−
(
βhη

2
λh − β0 + w + 1/2

)
t
]
×

[
w
(
1− e−2t

)−1/2
(1− exp [−2wt])× exp

{
2zaz e

−t −
(
z2a + z2

)
e−2t

2βha2h (1− e−2t)

}
×

exp

[
− exp (−2wt)

(
ρ2a + ρ2

)
w

2βha2h (1− exp [−2wt])

]
×

exp

[
1

2

(
exp

[
i (ϕ− ϕa)− βh (a∗)

−2
t
]

+ exp
[
−i (ϕ− ϕa) + βh (a∗)

−2
t
])
× wρaρ exp (−wt)
βha2h (1− exp (−2wt))

]
−

t−3/2 exp

[
− (ρ− ρa)

2
w + (z − za)

2

4βha2ht

]]
+ 2
√
πβhah

exp

[
−
√

(2βhη2λh−2β0+2w+1)((ρ−ρa)2w+(z−za)2)
2βha2h

]
√

(ρ− ρa)
2
w + (z − za)

2

}
. (12)

The bound state energy of a hole in the total field (including the zero radius well located at a point ~Ra = (~ρa, za))
is the pole of the Green’s function, i.e. the equation solution:

α =
2π~2

m∗
(TG) (ρa, ϕa, za, ρa, ϕa, za;Eλh) , (13)

where

(TG) (ρa, ϕa, za, ρa, ϕa, za;Eλh) = lim
ρ→ρa
ϕ→ϕa
z→za

[1 + (ρ− ρa) ∂/∂ρ+ (z − za) ∂/∂z]×G (ρ, ϕ, z, ρa, ϕa, za;Eλh) .

Substituting (12) into (13), we obtain the dispersion equation for a hole, localized at the QD A+-center in a
magnetic field:

√
η2λh − β0β

−1
h + (2βh)

−1
+ wβ−1h = ηi −

√
2

πβh

+∞∫
0

dt exp
[
−
(
βhη

2
λh − β0 + w + 1/2

)
t
]
×

[
1

2t
√

2t
− w

(
1− e−2t

)−1/2
(1− exp (−2wt))

−1
exp

[
− (z∗a)

2

2βh
cot

(
t

2

)]
×

exp

[
− w (ρ∗a)

2

2βh (1− exp (−2wt))

(
1 + exp (−2wt)− 2 exp (−wt) cosh

(
βh (a∗)

−2
t
))]]

, (14)

where η2i = |Ei| /Eh; Ei – the bound state energy of a hole localized at the same A+-center in a bulk semiconductor;
z∗a = za/ah; ρ∗a = ρa/ah.

Let us consider the process of the radiative transition of an excited electron to theA+-center level. To calculate the
frequency dependence of the recombination radiation spectral intensity (SIRR), it is necessary to obtain an expression
for the wave function of an electron localized in the ground state of a spherically symmetric QD in a magnetic field. In
the second order of perturbation theory, the energy spectrum of an electron in an external magnetic field can be written
as

E = E(0) + Vn,l,m;n,l,m +
∑

n′ l′ m′

(R∗0)
2 |Vn,l,m;n′,l′,m′ |2

π2 − X̃2
n′,l′

, (15)

here X̃n′,l′ – the root of the Bessel function of a half-integer order l + 1/2, E(0) = X̃2
n,lEh/ (R∗0)

2 – zero approach
to electron energy in the size-quantized band, Vn,l,m;n′,l′,m′ – matrix element of the perturbation operator, which in
spherical coordinates has the form:

V̂n,l,m;n′,l′,m′ = − i~ωB
2

∂

∂ϕ
+
m∗hω

2
B

2
r2 sin2 θ. (16)
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In the second order of perturbation theory, the electron wave function is given by an expression of the form:

Ψn,l,m (r, θ, ϕ) = Ψ
(0)
n,l,m (r, θ, ϕ) +

∑
n′l′m′

(R∗0)
2
Vn,l,m;n′,l′,m′

π2 − X̃2
n′,l′

Ψ
(0)
n′,l′,m′ (r, θ, ϕ) , (17)

where Ψ
(0)
n,l,m (r, θ, ϕ) – the zero approximation wave function:

Ψ
(0)
n,l,m (r, θ, ϕ) = Yl,m (θ, ϕ)

Jl+3/2

(
X̃n,l
R∗0

r∗
)

a
3/2
h

√
2πR∗0

√
r∗Jl+3/2

(
X̃n,l

) . (18)

The matrix element Vn,l,m;n′,l′,m′ of the perturbation operator, taking into account (18), can be written as:

Vn,l,m;n′,l′,m′ =

R∗0∫
0

π∫
0

2π∫
0

Y ∗l,m (θ, ϕ) Jl+3/2

(
X̃n,l
R∗0

r∗
)
V̂n,l,m;n′,l′,m′Yl′,m′ (θ, ϕ) Jl′+3/2

(
X̃n′,l′

R∗0
r∗
)
r∗dr∗dθdϕ

2πR∗0Jl+3/2

(
X̃n,l

)
Jl′+3/2

(
X̃n′,l′

) .

(19)
Using the recurrence relations between the spherical functions and the properties of their orthogonality, the integrals
over the variables θ and ϕ can be written as

π∫
0

2π∫
0

Y ∗l,m (θ, ϕ)Yl′,m′ (θ, ϕ) sin θdθdϕ = δll′δmm′ , (20)

π∫
0

2π∫
0

Y ∗l,m (θ, ϕ)Yl′,m′ (θ, ϕ) sin3 θdθdϕ =

√
(l −m+ 4) (l −m+ 3) (l −m+ 2) (l −m+ 1)

(2l + 1) (2l − 1)
2

(2l − 3)
δl,l′+2δm,m′−2 −

2

(2l + 3) (2l − 1)

√
(l −m) (l −m− 1) (l +m+ 2) (l +m+ 1)δll′δm,m′−2 +√

(l +m+ 4) (l +m+ 3) (l +m+ 2) (l +m+ 1)

(2l + 5) (2l + 3)
2

(2l + 1)
δl,l′−2δm,m′−2. (21)

Integration over a variable r∗ gives

R∗0∫
0

Jl+3/2

(
X̃n,l

R∗0
r∗

)
Jl′+3/2

(
X̃n′,l′

R∗0
r∗

)
r∗dr∗ =

R∗0(
X̃2
n,l − X̃2

n′,l

)×
[
R∗0X̃n′,lJl+1/2

(
R∗0X̃n′,l

)
Jl+3/2

(
R∗0X̃n,l

)
−R∗0X̃n,lJl+1/2

(
R∗0X̃n,l

)
Jl+3/2

(
R∗0X̃n′,l

)]
(22)

and

R∗0∫
0

Jl+3/2

(
X̃n,l

R∗0
r∗

)
Jl′+3/2

(
X̃n′,l′

R∗0
r∗

)
r∗3dr∗ =

X̃
l+3/2
n,l X̃

l′+3/2
n′,l′

2l+l′+3Γ (l′ + 5/2)

∞∑
k=0

(−1)
k

k!Γ (l + k + 5/2)

(
X̃
l+3/2
n,l

2R∗0

)2k F

(
−k,−l − k − 3/2, l + 5/2,

X̃2
n′,l′

X̃2
n,l

)
l + l′ + 2k + 4

, (23)

where F (α, β, x) – the degenerate hypergeometric function.
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Taking into account (20) – (23), the matrix element of the considered optical transition can be represented as

Vn,l,m;n′,l′,m′ =

∞∑
n′=0

 ~ωBm

4π
(
X̃2
n,l − X̃2

n′,l

)
Jl+3/2

(
X̃n,l

)
Jl+3/2

(
X̃n′,l

) [R∗0X̃n′,lJl+1/2

(
R∗0X̃n′,l

)
Jl+3/2

(
R∗0X̃n,l

)
−

R∗0X̃n′,lJl+1/2

(
R∗0X̃n,l

)
Jl+3/2

(
R∗0X̃n′,l

)]
+

∞∑
k=0

(−1)
k
m∗hω

2
BR
∗
0

(
X̃
l+3/2
n,l

)2k+1

k!Γ (l + k + 5/2) 2l+4+2k
×

[√
(l −m+ 4) (l −m+ 3) (l −m+ 2) (l −m+ 1)

(2l + 1) (2l − 1)
2

(2l − 3)

F

(
−k,−l − k − 3/2, l + 5/2,

X̃2
n′,l−2

X̃2
n,l

)
(2l + 2k + 2) Γ (l + 1/2)

−

2F

(
−k,−l − k − 3/2, l + 5/2,

X̃2
n′,l

X̃2
n,l

)
(2l + 3) (2l − 1) (2l + 2k + 4)

√
(l −m) (l −m− 1) (l +m+ 2) (l +m+ 1)+

F

(
−k,−l − k − 3/2, l + 5/2,

X̃2
n′,l+2

X̃2
n,l

)
2l + 2k + 6

√
(l +m+ 4) (l +m+ 3) (l +m+ 2) (l +m+ 1)

(2l + 5) (2l + 3)
2

(2l + 1)


 . (24)

SIRR, taking into account the QD size dispersion, is determined by the expression of the next form:

Φ (ω) =

4ω2
√
εe2

c3V

∣∣∣∣Pehe0m0

∣∣∣∣ ∫ ∑
n

∣∣∣∣∫ Ψ∗n,l,m (ρ, ϕ, z) Ψλ (ρ, ϕ, z) dρdϕdz

∣∣∣∣2 × P (u) δ (Ei − Ef − ~ω) du, (25)

where m0 – the free electron mass; Peh – matrix element of the momentum operator on the band carriers Bloch
amplitudes; ω – frequency of radiated electromagnetic wave with polarization e0; V – the QD volume; P (u) – the
Lifshitz–Slezov function.

The wave function of the A+-state, as is known, differs only by a constant factor from the one-particle Green
function:

Ψλh (ρ, ϕ, z) = C exp

(
−wρ

2 + z2

4βha2h

)
×

∞∫
0

dt exp

[
−
(
βhη

2
λh − β0 + w +

1

2

)
t

] (
1− e−2t

)− 1
2 (1− exp [−2wt])

−1×

exp

{
− z2 exp [−2t]

2βha2h (1− exp [−2t])

}
exp

[
− exp [−2wt]

wρ2

4βha2h (1− exp [−2wt])

]
, (26)

where C – the normalization factor determined by an expression of the next form:

C =

[
−2−1/2π−3/2β

3/2
h a3hwΓ

(
1

2
− w

) Γ
(
βhη

2
hλ+w
2 + 5

4

)
(
βhη2hλ+w

2 + 1
4

)2
Γ
(
βhη2hλ−w

2 + 3
4

)×
[(

βhη
2
hλ + w

2
+

1

4

)[
Ψ

(
βhη

2
hλ + w

2
+

5

4

)
−Ψ

(
βhη

2
hλ − w
2

+
3

4

)]
− 1

]]−1/2
. (27)

Taking into account (18), (24) and (26), the matrix element of the radiative recombination transition of an electron
from the ground state of the size-quantized band to the level of the QD A+-center in a magnetic field can be written
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as:

M1,λ =
C (2βh)

5/4
a2h

2πR∗20 J3/2

(
X̃n,1

) +∞∫
0

+∞∫
−∞

2π∫
0

ρ∗dρ∗dz∗dϕ×

+∞∫
0

dt exp

[
−
(
βhη

2
λh − β0 + w +

1

2

)
t

] (
1− e−2t

)−1/2
(1− exp [−2wt])

−1×

exp

[
−
(
z∗2 (1 + exp [−2t])

2βh (1− exp [−2t])
+
p∗2w (1 + exp [−2wt])

2βh (1− exp [−2wt])

)]
×

ρ∗

(ρ∗2 + z∗2)
3/4

J5/2
(
X̃n,1
R∗0

√
ρ∗2 + z∗2

)
J5/2

(
X̃n,1

) +

∞∑
n′=1

R∗20 V n,1,−1;n′,1,−1J5/2

(
X̃n′,1
R∗0

√
ρ∗2 + z∗2

)
(
π2 − X̃2

n′,1

)
J5/2

(
X̃n′,1

)
 , (28)

where R∗0 = R0/a
2
h.

Performing integration in (28), we obtain

M1,λ =
C (2βh)

5/4
a2h

2πR∗20 J3/2

(
X̃n,1

) +∞∫
0

dt exp

[
−
(
βhη

2
λh − β0 + w +

1

2

)
t

] (
1− e−2t

)−1/2×
(1− exp [−2wt])

−1
∞∑
j=0

(−1)
j

(
1− exp [−2wt]

1 + exp [−2wt]

)2j+5/2

×

[√
π

2
Γ

(
2j +

5

2

)(
X̃n,1

√
2βh

2R∗0

)2j+3/2(
1 + exp [−2t]

1− exp [−2t]
− 1 + exp [−2wt]

1− exp [−2wt]

)−1/2
−

R∗20

∞∑
n′=0

(−1)
n′

(2j + 3)!

2n!
(
2j + 5

2 + n′
) (X̃n′,1

√
2βh

2R∗0

)2j+3/2

×

Vn,1,−1;n′,1,−1

π2 − X̃2
n′,1

(
1 + exp [−2wt]

1− exp [−2wt]

)2j+5/2+n′ (
1 + exp [−2t]

1− exp [−2t]
− 1 + exp [−2wt]

1− exp [−2wt]

)−2j−3 ]
. (29)

After integration in (29), we finally obtain:

Φ (X) = Φ0
X2β̄4

hu1w̄(
J3/2

(
X̃n,0

))2
R̄∗50

×
Γ
(
1
2 − w̄

)
Γ (∆ + 1)

∆2Γ
(
∆− w̄ + 1

2

) ×
[
∆

[
Ψ (∆ + 1)−Ψ

(
∆− w̄ +

1

2

)]
− 1

]
P (u1)×∣∣∣∣∣∣

∞∫
0

dt exp

[
−
(
β̄hη

2
λhu

3/2
1 − β̄0u−11 + w̄ +

1

2

)
t

] (
1− e−2t

)−1/2
(1− exp [−2w̄t])

−1 ×

∞∑
j=0

(−1)
j

(
1− exp [−2w̄t]

1 + exp [−2w̄t]

)2j+5/2

×

√π
2

Γ

(
2j +

5

2

)(
X̃n,1

√
2βh

2R̄∗0

)2j+3/2(
1 + exp [−2t]

1− exp [−2t]
− 1 + exp [−2wt]

1− exp [−2wt]

)−1/2
−

R̄∗20

∞∑
n′=0

(−1)
n′

(2j + 3)!

2n′!
(
2j + 5

2 + n′
) (X̃n′,1

√
2βh

2R̄∗0

)2j+3/2

×

Vn,1,−1;n′,1,−1

π2 − X̃2
n′,1

(
1 + exp [−2wt]

1− exp [−2wt]

)2j+5/2+n′ (
1 + exp [−2t]

1− exp [−2t]
− 1 + exp [−2wt]

1− exp [−2wt]

)−2j−3]∣∣∣∣∣
2

, (30)
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where Φ0 = 6
√
εe222a3hπ

−3/2 |Pehe0| /π2c3m0; ∆ =
(
β̄hη

2
hλu

3/2 + w̄
)
/2 + 1/4; w̄ =

√
1 + β̄2

hu
3a∗−4/2;

β̄0 = βne
2/4πε0εahR̄

∗
0; β̄h =

(
3EhahR̄

∗3
0 πε0ε

)1/2
/
(
π2e2

)1/2
; X = ~ω/Ed; u – is the root of a transcenden-

tal equation of the form:

π2/R∗20 u+

∞∑
nn′=1

R∗20 u (V1n′ (u))
2
/
(
π2 −X2

n′,1

)
= η2λh +X.

3. Dependence of the spectral intensity of recombination radiation on the energy of emitted photon and on
the magnitude of an external magnetic field

Figure 1 shows the frequency dependence of the spectral intensity of recombination radiation, as well as its
dependence on the magnitude of an external magnetic field. The spectral intensity of recombination radiation in an
external magnetic field increases, which is associated with an increase in the overlap integral of the envelope wave
functions of a hole bound at the A+-center and of an electron localized in the ground state of quantum dot. Fig. 2(a,b)
shows the coordinate dependence of the wave function modulus square, for the A+-state and for the electronic wave
function of the ground state, respectively, for different values of the magnitude of an external magnetic field “B”. It
can be seen that as the value of B increases, the degree of localization both as for the hole (see Fig. 2a) and as for the
electron wave functions increases, and accordingly the overlap integral increases.

FIG. 1. Dependence of the spectral intensity of recombination radiation (in relative units) on the
emitted photon energy and on the magnitude of an external magnetic field B, for the quasi-zero-
dimensional structure of InSb–QD at R0 = 55 nm

4. Conclusions

Dependence of the binding energy of a hole in the A+ + e complex on the magnitude of an external magnetic
field has been investigated by the zero-range potential method in the adiabatic approximation. It is shown that in an
external magnetic field there is a spatial anisotropy of the binding energy for A+-state due to hybrid quantization in
the QD radial plane and due to dimensional quantization in the direction of an external magnetic field. In the dipole
approximation, the frequency dependence calculation of the spectral intensity of recombination radiation for a quasi-
zero-dimensional structure in an external magnetic field has been performed, taking into account dispersion of the QDs
radius. It is shown that in an external magnetic field the spectral intensity of recombination radiation curve shifts to the
short-wave region of the spectrum and probability of the electron radiative transition to the A+-center level increases,
which is associated with an increase in the overlap integral of the envelope wave functions of a hole bound at the
A+-center and of an electron localized in the ground state of quantum dot. The obtained results can be used in the
development of IR sources or terahertz radiation (depending on the QD radius), on the basis of quasi-zero-dimensional
structures with impurity complexes, with parameters controlled in an external magnetic field.
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FIG. 2. The coordinate dependence of the wave function modulus square: (a) for A+-state and
(b) for the electronic wave function for various values of the magnetic field intensity B. 1: B = 0;
2: B = 2T ; 3: B = 5T , at R0 = 20 nm
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The heat capacity of two interacting electrons confined in a quantum dot presented in a magnetic field has been calculated by solving the Hamiltonian
using the exact diagonalization method. The statistical average energies for confined and interacting electrons have been computed for various values
of magnetic fields, confining frequency and temperature. We had investigated the dependence of the heat capacity on quantum dot Hamiltonian’s
parameters and temperature. The singlettriplet transitions in the ground state of the quantum dot spectra and the corresponding jumps in the heat
capacity curves had been shown. The comparisons show that our results are in very good agreement with theoretical reported works.
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1. Introduction

Semiconductor quantum dots (QDs) have been the subject of interest and hot research area due to their physical
properties and significant electronic device applications such as quantum dot lasers, quantum memories, solar cells,
single electron transistors, light emitting diodes, biological markers and quantum computers [1–5] The application of a
magnetic field perpendicular to the dot plane will introduce an additional structure on the energy levels and correlation
effects, of the interacting electrons confined in a quantum dot.

Many authors have used different numerical methods and computational techniques to solve the two electrons QD
Hamiltonian, including the effect of an applied magnetic field, and obtain the eigenenergies [6–12]. The energy levels
of the interacting electrons show transitions in the angular momentum of the ground states. Computed energies have
been used to calculate the statistical average energies of the QD and then, to investigate theoretically the magneto-
thermodynamic properties of the two-interacting electron in a quantum dot [13–25].

In this work, we had calculated the heat capacity as a thermodynamic quantity for a quantum dot helium atom in
which both the magnetic field and the electron-electron interaction are fully taken into account. Since, the eigenvalues
of the electrons in the QD are the starting point to calculate the physical properties of the QD system, we had, first,
applied the exact diagonalization method to solve the QD Hamiltonian and obtain the eigenenergies. Second, we had
used the computed eigenenergies spectra to display theoretically the heat capacity behavior of the QD as a function of
magnetic field strength, confining frequency and temperature.

The rest of this paper is organized as follows: the Hamiltonian formalism, computation exact diagonalization
technique and how to calculate the heat capacity from the mean energy expression are presented in Section 2. The
final section will be devoted for numerical results and conclusions.

2. Theory

In this section we will describe in detail the main three parts which consist the theory, namely: quantum dot
Hamiltonian, exact diagonalization method and the heat capacity.

2.1. Quantum dot Hamiltonian

The effective mass Hamiltonian for two interacting electrons confined in a QD by a parabolic potential in a
uniform magnetic field of strength B, applied along z direction is given by:

Ĥ =

2∑
j=1

(
1

2m∗
(~p(~rj) +

e

c
~A(~rj))

2 +
1

2
m∗ω2

0r
2
j ) +

e2

ε |−→r1 −−→r2 |
(1)

where m∗ is the effective mass of electron, e is the electron charge, c is the speed of light, ω0 and ε are defined as
the confining frequency and the dielectric constant for the GaAs medium, respectively. Here, r1 and r2 describe the
positions of the first and second electron in the xy plane; ωc is the cyclotron frequency and the symmetric gauge
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A =
1

2
B× r has been used for the vector potential. The complete two electron QD Hamiltonian can be separated into

center of mass Hamiltonian HCM and relative Hamiltonian part H , as shown below:

H = HCM +Hr (2)

HCM =
1

2M
(
−→
P R +

Q

c
~A(R))2 +

1

2
Mω2

0R
2 (3)

Hr =
1

2µ
(−→p r +

q

c
~A(r))2 +

1

2
µω2

0r
2 +

e2

ε |r|
(4)

where M is the total mass 2m∗, Q is the total charge= 2e, µ is reduce mass=
m∗

2
, and q is the reduce charge =

e

2
.

The corresponding energy of this Hamiltonian equation (1) is

Etotal = ECM + Er (5)

The center of mass Hamiltonian given by equation (3) is a harmonic oscillator type with well-known eigenenergies:

ECM = (2nCM + |mCM |+ 1)~
√
ω2
c

4
+ ω2

0 +mCM
~ωc
2

(6)

where nCM , mCM are the radial and angular quantum numbers, respectively.
However, the relative motion Hamiltonian part (Hr), given by equation (4) does not have an analytical solution

for all ranges of ω0 and ωc. In this work, an exact diagonalization method will be applied to solve the relative part of
the Hamiltonian and obtain the corresponding eigenenergies, Er.

2.2. Exact diagonalization method

For non-interacting case the relative Hamiltonian in equation (4) can be reduced to a single particle problem with
eigenstates |nr,mr〉 known as Fock-Darwin states [9] given by the following form:

|nr,mr〉 = Nnr,mr
eimrϕ√

2π
(αr)|mr|e−α

2r2/2L|mr|nr (α2r2) (7)

where the functions L|mr|nr (α2r2) are the standard associated Laguerre polynomials. The normalization constant
Nnr,mr can be calculated from the normalization condition of the basis, 〈nr,mr |nr,mr〉 = 1, to give:

Nnr,mr =

√
2nr!α

2

(nr + |mr|)!
(8)

α =

√
mω

h
, is a constant which has the dimensionality of an inverse length.

The eigenenergies of the QD Hamiltonian which are given by equation (5), consist of the sum of the energies
for the center of mass Hamiltonian, and the eigenenergies obtained by direct diagonalization to the relative Hamil-
tonian part. For the interacting case, we shall apply exact diagonalization method to solve equation (4) and find the
corresponding exact eigenenergies for arbitrary values of ω0 and ωc.

The matrix element of the relative Hamiltonian part using the basis can be expressed as:

hnn′ = 〈nr,mr |Hr|nr,mr〉 = 〈nr,mr| −
~2

2µ
∇2 +

1

2
µω2r2 |nr,mr〉+ 〈nr,mr|

e2

εr
|nr,mr〉 (9)

The corresponding relative dimensionless energies are:

Er
~ω0

=
hnn′

~ω0
= ((2n+ |mz|+ 1)

√
1 +

γ2

4
− γ

2
|mz|)δnn′ +

λ√
2

√
n′!n!

(n′ + |mz|)!(n+ |mz|)!
× Inn′ |mz| (10)

where γ =
ωc
ω0

, λ =
e2α

~ω0
are dimensionless parameters and ω2 =

ω2
c

4
+ ω2

0 is the effective confining frequency.

Inn′ is the coulomb energy matrix element that can be evaluated in a closed form by using the following Laguerre
relation [17]:
∞∫
0

tα−1e−ptLλm(at)Lβn(bt)dt =
Γ(α)(λ+ 1)m(β + 1)np

−α

m!n!

m∑
j=0

(−m)j(α)j
(λ+ 1)jj!

(
a

p

)j n∑
k=0

(−n)k(α+ j)k
(β + 1)kk!

(
b

p

)k
.

(11)
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This closed form result of the coulomb energy reduces greatly the computation time needed in the diagonalization
process.

In our calculation, we had used the basis, |nr,mr〉 defined by equation (16) to diagonalize the relative QD Hamil-
tonian and obtained its corresponding eigenenergies Er.

2.3. Heat Capacity

The heat capacity Cv of the QD system is evaluated as the temperature derivative of the mean energy of the QD:

Cv(T, ωc, ω0) =
∂ 〈E(T, ωc, ω0)〉

∂T
(12)

where the statistical average energy is calculated as:

〈E(T, ωc, ω0)〉 =

N∑
α=1

Eαe
−Eα/KBT

N∑
α=1

e−Eα/KBT
(13)

and the sum is taken over energy levels of the QD.
The dependence of the computed heat capacity Cv on the magnetic field ωc, confining frequency ω0 and temper-

ature are displayed in the next section.

3. Results and conclusions

Our computed results for two interacting electrons in a quantum dot made from GaAs material (R∗ = 5.825 meV)
are presented in Fig. 1 to 4 and Table 1. We tested the calculated energy against different works. In Table 1, we listed
the calculated energy results by the exact diagonalization method for different number of single particle basis sp against
Ciftja’s work [9]. The comparison clearly shows excellent agreement between both works. In Fig. 1 we plotted the

computed energy results of this work against the strength of the magnetic field for ω0 =
2

3
R∗. The present results also

show very good agreement compared with Dyblaski [18], where the authors had used the variational method.

FIG. 1. The computed eigenenergy spectra of two electron quantum dot against the strength of the

magnetic field for ω0 =
2

3
R∗ , and angular momentum mr = 0,±1,±2,±3

Fig. 1 shows clearly the transition in the angular momentum of the ground state of the QD system as the magnetic
field increases. The origin of these transitions is due to the effect of coulomb interaction energy in the QD Hamiltonian.
These transitions in the angular momentum of the QD system correspond to the (S-T) transitions are expected to
manifest themselves as cusps in the heat capacity curve of the QD.
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FIG. 2. The computed ground state energy of a two-electron quantum dot in zero magnetic field
and λ = 3, against the inverse of the number of basis taken in diagonalization process

FIG. 3. The dependence of the heat capacity on the temperature for fixed value of magnetic field
and various confinement frequencies: ω0 = 0.5R∗ and ω0 = 0.67R∗
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FIG. 4. The heat capacity as function of magnetic field strength for fixed value of temperature

(0.01 K) and confinement frequency (ω0 =
2

3
R∗)

TABLE 1. Ground state energies in units of ~ω0 of exact diagonalization method at zero magnetic

field for different values of dimensionless parameter λ =
e2α

~ω0
. The computed results are shown for

various number of basis (sp) against the result which are taken from [9]

Energy ~ω0

λ
Ref. [9]

Present work
sp = 5 sp = 50 sp = 60

0 2.00000 2.00000 2.00000 2.00000
1 3.00097 3.00122 3.00097 3.00080
2 3.72143 3.72166 3.72143 3.72128
3 4.31872 4.31885 4.31872 4.31863
4 4.84780 4.84787 4.84780 4.84775
5 5.33224 5.33227 5.33224 5.33222
6 5.78429 5.78431 5.78429 5.78428
7 6.21129 6.21129 6.21129 6.21128
8 6.61804 6.61805 6.61804 6.61804
9 7.00795 7.00795 7.00795 7.00795

10 7.38351 7.38351 7.38351 7.38351

In all steps of calculations, we had ensured the issue of convergence. For example, the ground state energy is

plotted in Fig. 2 against the inverse of number of basis
(

1

sp

)
, which clearly shows the numerical stability of the

ground state energy as the number of basis increased. The diagonalization scheme was found to be very efficient in
reproducing the exact energies of the QD system. For example, at λ = 10, we had found that only five bases are

sufficient to reproduce the exact energy value,
E

~ω0
= 7.38351 as shown in the table.

In Fig. 3 we showed the behavior of the heat capacity Cv against the temperature for different values of the
confining frequency ω0, while keeping ωc unchanged. For particular confining frequency, the heat capacity curve
shows a peak value at low temperature, while keeping ωc unchanged. For particular confining frequency, the heat
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capacity curve shows a peak value at low temperature, while at high temperature, the heat capacity saturate. These
peaks are attributed to the Schottky anomaly. This behavior for the heat capacity is in agreement with the findings
of [19, 20]. As the confining frequency increases, the peak of the heat capacity shifts to a higher temperature.

In Fig. 4 we had shown the dependence of the heat capacity on the magnetic field strength for fixed values of the
confining frequency and temperature. The heat capacity shows a peak structure which is a result of the transition in
the angular momentum of the ground state energy as shown and discussed previously in Fig. 1. For example, the first
peak corresponds to the transition in the angular momentum of the ground state from mr = 0 to mr = 1.

In conclusion, we have applied the exact diagonalization method as a theoretical approach to solve the Hamil-
tonian for interacting electrons confined parabolically in a quantum dot subjected to a magnetic field. We had used
the Fock Darwin states as bases to evaluate the coulomb matrix element and to give the result in a closed form. In
addition, we had shown the angular momentum transitions in the ground state of GaAs quantum dot spectra. These
level crossings cause oscillations in the heat capacity curve of the quantum dot. The results of both, the eigenenergies
and the heat capacity, calculated by exact diagonalization method show very good agreement comparable with other
recent works.
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1. Introduction

In recent years, monolayers of black phosphorus (phosphorene) have been intensively studied. In [1], the Landau
levels (LLs) and magneto-transport (MT) properties of phosphorene under a perpendicular magnetic field were studied.
Owing to the anisotropic energy dispersions, i.e., the effective masses, the Landau splittings of conduction and valence
band are different for a fixed magnetic field, and the wavefunctions corresponding to the LLs show strong anisotropic
behavior.

In [2], the magneto-optical transport properties of a phosphorene monolayer subjected to an external perpen-
dicular magnetic field were studied, the magneto-optical Hall and longitudinal optical conductivities as functions of
temperature, a magnetic field, and Fermi energy were evaluated, and it was shown that they were strongly influenced
by the magnetic field.

In [3], continuum descriptions of single layer and bilayer black phosphorus, starting from a tight binding model
that reproduces the results of first-principles calculations, have been presented; also, the spectra of electrons and holes
in the vicinity of the Fermi level at the Γ point were obtained and the Landau-level spectra for both systems were
calculated.

In [4], the electronic properties of 2D electron gas in black phosphorus multilayers due to the presence of a
perpendicular magnetic field have been examined. Authors found that resonant structures in the ac conductivity
exhibit a redshift with increasing doping due to interband coupling,suggesting possible electric modulation of light
absorption and Faraday rotation.

In [5], the linear, the third-order nonlinear, and the total magneto-optical absorption coefficients have been studied,
as well as the relative refractive index changes in monolayer phosphorene in the presence of an external perpendicular
magnetic field.

In [6], the authors review recent experimental and theoretical work addressing the quantum oscillatory magneti-
zation M(B) in 2DESs subject to SOI. They first introduce a theoretical model that describes M(B) by numerically
solving the Hamiltonian including Rashba-SOI and Dresselhaus-SOI and the Zeeman term in an arbitrarily tilted
magnetic field. Both EF (B) and M(B) show pronounced beating patterns in low magnetic fields. This pattern is a
consequence of the nonlinear LL dispersion induced by the SOI, leading to an uneven spacing of levels at EF .

In [7], the authors investigated the optical responses of monolayer phosphorene subjected to a circular electro-
magnetic wave. Band structures for the monolayer phosphorene in the absence and presence of perpendicular electric
field were plotted. With the aid of the tight-binding model and Kubo formalism implemented in the linear response
theory, the anisotropic optical conductivity of phosphorene is being calculated. They have evaluated the reflected,
transmitted and absorbed waves as a function of the electric field at optical frequencies beneath, near and above the
band gap.

The microscopic mechanism of magnetization and polarization resulting from strong spin-orbital coupling of the
electron gas in multiferroics was examined in [8]. Explicit analytic expressions were obtained for the magnetization
and polarization of the electron gas in multiferroics.

The magnetic response of a quantum wire of elliptical cross section was investigated in [9]. An explicit analytic
expression was found for the spectrum and wave functions of an electron in the wire. Using an approach based on
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classical partition function finding, an expression was obtained for the magnetic response of the electron gas in the
wire. The dependence of the response on the magnitude and direction of the magnetic field was found.

The magnetic moment of single layer graphene rings is investigated in [10]. An analytical expression for the
magnetic moment as a function of the magnetic field flux through the one-dimensional quantum rings was obtained.
This expression has the oscillation character. The oscillation period is equal to one flux quanta.

The absorption coefficient of the electromagnetic radiation in a phosphorene single layer placed in a magnetic
field was found in [11]. A degenerate and nondegenerate electron gas is being considered. The resonant dependences
of the absorptance on the radiation frequency and applied magnetic field were found.

Let us consider a quasi-one-dimensional electron gas in a phosphorene monolayer. An analytical expression for
the LLs in low energy regime is obtained via solving the decoupled Hamiltonian, which agrees well with the numerical
calculations [1, 2]. The Hamiltonian of such a system is defined by the expression [1, 2]:

H =

Ec + (α′Π2
x + βΠ2

y)/2 0

0 Ev − (λ′Π2
x − ηΠ2

y)/2

 , (1)

where Ec corresponds to the boundary of the conduction band, Ev corresponds to the boundary of the valence band,
α′ = α + γ2/Eg , λ′ = λ + γ2/Eg , γ = 8.5 · 105m/s, α = 1/mcx, β = 1/mcy , λ = 1/mvx, η = 1/mvy ,
mcx = 0.793me, mcy = 0.848me, mvx = 0.1.363me, mvy = 1.142me, me is the free electron mass, Eg =

Ec − Ev = 1.52 eV, Π = p +
e

c
A is a generalized momentum operator.

The energy spectrum of the eigenstates of electrons in a magnetic field can be written as follows [1, 2]:

En,s = Es + s

(
n+

1

2

)
~ωs, (2)

where s ± 1 corresponds to the boundary of the conduction and valence band, formula universally describes the
Landau levels of the conduction band and the valence band, Es = E+ = Ec for conduction band, n = 0, 1, 2, 3....,
ω+ = ω′c = eB/(m′cxmcy)1/2c = 2.657ωe is modified cyclotron frequency,m′cx = 0.167me, ωe = eB/mec.

The article is organized as follows: The magnetic moment is being calculated by two methods and the results are
being discussed.

2. Magnetic moment

The classical expression of the thermodynamic potential has the form [13]:

Ω = −T
∞∑
n=0

ln

(
1 + exp

(
µ− En,+

T

))
, (3)

here µB is the Bohr magneton, µ is chemical potential. Then for the magnetic moment we get:

−M =

∞∑
n=0

dEn,+
dB

(
1 + exp

(
En,+ − µ

T

))−1
, (4)

where
dEn,+
dB

= a

(
n+

1

2

)
µB , (5)

where a = 5.314. Finally we can obtain:

−M(T )|T 6=0

µB
=

∞∑
n=0

a

(
n+

1

2

)
1

1 + exp(En,+ − µ)/T
. (6)

In the second method thermodynamic potential Ω can be obtained from the dependence Ω(Z) [8,10]. This method
is applied in [12] for three-dimensional electron gas Then we obtain:

Ω =
E+

2πi

α+i∞∫
α−i∞

Z(ξ)dξ

ξ2

∞∫
0

exp(Eξ)
∂f0
∂E

dE, (7)

where f0(E) is the Fermi distribution function and α ≤ 1/T .
The statistical sum has the form:

Z(ξ) =

∞∑
n=0

exp(−ξεn), ξ = E+/T. (8)
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We use the approach [8, 10] in order to find Ω. Let us introduce the notation z(εF ):

z(ε) =
1

2πi

α+i∞∫
α−i∞

exp(εξ)Z(ξ)dξ

ξ2
. (9)

As is clear from (7) Ω0 = Ω(T = 0) = −z(εF )E0, where εF = EF /E+ and EF is Fermi energy. We can represent
(9) in the form:

z(εF ) =
1

2πi

α+i∞∫
α−i∞

∞∑
n=0

exp[(εF − εn)ξ]
dξ

ξ2
. (10)

We rewrite magnetic moment of the phosphorene monolayer M = −∂Ω/∂B in the convenient form:

M = −∂ω+

∂B

∂Ω

∂ω+
= −2.657

e

m0c

∂Ω

∂ω+
. (11)

It should be noted that from the formula (9) one must get the expression for ∂z/∂ω+:

dz(ε)

dω+
=

1

2πi

α+i∞∫
α−i∞

exp(εξ)
1

ξ2
dZ

dω+
dξ, (12)

where

dZ

dω+
= −ξ

∞∑
n=0

exp(−εnξ)
~(n+ 1/2)

E+
. (13)

As it follows from (13),(12) dz/dω+ has the form:

dz(ε)

dω+
= − 1

2πi

α+i∞∫
α−i∞

∞∑
n=0

exp((ε− εn)ξ)

ξ

~(n+ 1/2)

E+
dξ. (14)

To take the integral in (14), we need to use [14]:

1

2πi

α+i∞∫
α−i∞

zγ−1e−pzdz =

0, p > 0;
1

(−p)γΓ(1− γ)
, p < 0.

(15)

In the case T 6= 0 we obtain from (11):

−M(T )|T 6=0

µB
=

∞∑
n=0

a

(
n+

1

2

)
1

1 + exp(En,+ − µ)/T
, (16)

here µB is the Bohr magneton, µ is chemical potential , m0 is the free electron mass, a = 5.314.

3. Conclusion

The expression of the magnetic moment of phosphorus electrons was obtained by two methods. The first method
is to calculate the classical expression of the thermodynamic potential and then obtain the magnetic moment; the
second method is to calculate the thermodynamic potential through the contour integral and then obtain the magnetic
moment. Both methods leads to the same expression for the magnetic moment. Note that the second method also
makes it easy to go to the T → 0 case. The derivative of the Fermi distribution function is equal to the Dirac delta
function. This makes it easy to take the second integral in (7).

Figure 1 shows the oscillatory dependence of the magnetic moment on the inverse magnetic field. Oscillation
peaks are smoothed by temperature. The effect should be observed at high magnetic fields, oscillation attenuation
occurs in weak fields. This corresponds to de Haas van Alphen oscillations. It should be noted that similar oscillations
were also observed in other low-dimensional structures [15].
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FIG. 1. Dependence of the magnetic moment on the reverse magnetic field, µ/T = 1000, s = +1
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The zero-range potential method has been generalized to the case of two-electron impurity centers with an effective nuclear charge equal to zero in
a spherically symmetric quantum dot (QD), and on the basis of this method the first ionization potential has been calculated by variational method.
It is shown that as the radius of QD decreases, the threshold value of the second ionization potential also decreases, beginning with which the
existence of the two-electron bound state is possible due to an increase in the size-quantization energy accompanied by suppression of mutual
electron repulsion. The light impurity absorption coefficient has been calculated using the dipole approximation for double ionization of the two-
electron impurity center by a single photon in a quasi-zero-dimensional structure, which is the transparent dielectric matrix with semiconductor
QDs synthesized in it. It is shown that characteristic feature of the double photoionization spectrum is a two-humped profile of the spectral curve
due to electron correlations.
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1. Introduction

A large number of impurities in semiconductors in the bound state can possess not only one, but also two electrons,
i.e. these impurities are the helium-like impurity centers [1–14]. Difficulties in the theoretical study of the two-electron
impurity states are due to the complex character of the interaction between electrons from the outer shell of the impurity
center with valence electrons of the nearest lattice atoms [1]. As a result, it turns out to be impossible to predict not
only the position of the multiply charged centers levels, but also their possible charge states. In [1], a variational
method has been used to calculate the ground state of the two-electron impurity center. Simulation of the two-electron
impurity was based on generalization to the case of two electrons for the Lukovsky model [2]. As is known within
the framework of this model, it is assumed that there is a short-range potential of zero radius which determines the
ionization energy of a singly ionized impurity, i.e. the second ionization potential, E2. The authors [1] succeeded in
calculating of the first ionization potential E1 as a function of the nucleus charge Z for the impurity center, with the
second ionization potential being taken as the empirical parameter. The process of double photoionization for two-
electron impurity centers by a single photon is of special interest. This reaction is one of the fundamental reactions
involving several particles. The present paper is devoted to calculation of the first ionization potential for the two-
electron impurity center in QD by the variational method, as well as the theoretical study of features of the double
photoionization spectra of two-electron impurity centers in a quasi-zero-dimensional structure.

2. Relationship between the first and second ionization potentials of the two-electron impurity center in
quantum dot. Comparison with the bulk semiconductor case

We use the semi-empirical model of two-electron impurity centers developed in [1]. The short-range potential in
this model is approximated by a potential well of depth V0, radius of d which is much smaller than the radius of the
localized state. As an empirical parameter, we take the energy of a doubly ionized impurity, i.e. the second ionization
potential E2.

Thus, the task is to calculate the first ionization potential E1. The value E1 can be found by the variational
method with wave functions taken in the form of the product of one-electron wave functions Ψ (ρi) with a variational
parameter η, which is associated with the variable energy of the one-electron state.

As units of length and energy, we choose, respectively ad = ε~2/
(
m∗e2

)
– the effective Bohr radius and Ed =

~2/
(
2m∗a2d

)
– the effective Bohr energy. In this case, we take into account that the power of the short-range potential

V0d
2 at d→ 0 remains finite. The two-electron wave function satisfies the Schrödinger equation:

H (ρ1, ρ2) Ψ (ρ1, ρ2) = EΨ (ρ1, ρ2) , (1)
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where

H (ρ1, ρ2) = H (ρ1) + H (ρ2) + ~2/
(
m∗a2d |~ρ1 − ~ρ2|

)
,

H (ρi) = −~2∆i/
(
2m∗a2d

)
− ~2V (ρi) /

(
2m∗a2d

)
,

ρd = d/ad, V (ρi) =

{
V ∗0 , ρi ≤ ρd;
0, ρi > ρd,

, V ∗0 = V0/Ed, ρi = ri/ad,

ri – electron coordinates at i = 1, 2, m∗ – effective electron mass.

Usually, the simplest form of a two-electron wave function Ψ (ρ1, ρ2) leading to a satisfactory approximation in
problems of helium-like centers is the product of one-electron wave functions:

Ψ (ρ1, ρ2) = Ψ (ρ1) Ψ (ρ2) . (2)

Using the results of [5], where in the framework of the spherically symmetric potential well model (the “hard
wall” model), an expression is obtained for the wave function of an electron localized at a short-range potential in a
quantum dot, and for the one-electron wave function Ψ (ρi) we have:

Ψ (ρi) =
B

ρi


sinh

(
R∗0η

−1 − ρdη−1
)

sinh (R∗0η
−1)

sin (χ0ρi)

sin (χ0ρd)
, ρi ≤ ρd;

sinh
(
R∗0η

−1 − ρiη−1
)

sinh (R∗0η
−1)

, ρi ≥ ρd,
(3)

here, χ0 =
√
V ∗0 − η−2, V ∗0 = V0/Ed, η =

√
Ed/ |E2|, R∗0 = R0/ad, R0 – the QD radius,

B =

√
2η−1

tanh (R∗0η
−1)−R∗0η−1 csc (R∗0η

−1)
.

Taking into account (3), the test two-electron wave function is written in the next form:

Ψ (ρ1, ρ2) =
B2

ρ1ρ2


sinh2

(
R∗0η

−1 − ρdη−1
)

sinh2 (R∗0η
−1)

sin (χ0ρ1) sin (χ0ρ2)

sin2 (χ0ρd)
, ρi ≤ ρd;

sinh
(
R∗0η

−1 − ρ1η−1
)

sinh
(
R∗0η

−1 − ρ2η−1
)

sinh2 (R∗0η
−1)

, ρi ≥ ρd.
(4)

The energy of a two-electron impurity center ε (R∗0, η) is determined by the minimum of the average value of the
Hamiltonian:

ε (R∗0, η)

Ed
=

〈
Ψ (ρ1, ρ2) |H (ρ1, ρ2)|Ψ (ρ1, ρ2)

〉
〈
|Ψ (ρ1, ρ2)|2

〉 . (5)

Expression (5), taking into account (4), can be represented in the form:
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ε (R∗0, η)

Ed
=

− 26η−2π2

sinh4 (R∗0η
−1) (tanh (R∗0η

−1)−R∗0η−1 csc (R∗0η
−1))

2

{
sinh4

(
R∗0η

−1 − ρdη−1
)

sin4 (χ0ρd)
×[

η−2

16χ2
0

(
sin (2χ0ρd)− 2χ0ρd

)2
− (4χ0ρd − 2 sin (2χ0ρd)− 2 Si (2χ0ρd) + Si (4χ0ρd))

2

4χ0

]
+

2−4
(

2η−1 (R∗0 − ρd)− sinh
(
2η−1 (R∗0 − ρ2)

) )2
−

η

23

{
4η−1 (R∗0 − ρd)− 4η−1ρd ln

(
R∗0
ρd

)
− sinh

(
4R∗0η

−1) [Chi
(
4R∗0η

−1)− Chi
(
4ρdη

−1) ]−
sinh

(
4η−1 (R∗0 − ρd)

)
− 2 sinh

(
4η−1 (R∗0 − ρd)

)
ln

(
R∗0
ρd

)
+ 2
[

Chi
(
4η−1R∗0

)
− Chi

(
4η−1ρd

) ]
×[

sinh
(
2η−1R∗0

)
+ cosh

(
2η−1R∗0

) (
2η−1ρd + sinh

(
2η−1 (R∗0 − ρd)

) )]
−

cosh
(
2η−1R∗0

) [
Shi
(
2η−1R∗0

)
− Shi

(
2η−1ρd

) ]
+ cosh

(
2η−1ρd

)
×[

Shi
(
2η−1R∗0

)
− Shi

(
2η−1ρd

) ]
− cosh

(
2η−1 (2R∗0 − ρd)

) [
Shi
(
2η−1R∗0

)
− Shi

(
2η−1ρd

) ]
−

4η−1ρd sinh
(
2η−1R∗0

) [
Shi
(
2η−1R∗0

)
− Shi

(
2η−1ρd

) ]
+

cosh
(
4η−1R∗0

)
×
[

Shi
(
4η−1R∗0

)
− Shi

(
4η−1ρd

) ]}}
, (6)

where Chi (x) and Shi (x) – integral hyperbolic cosine and sine, respectively.
To perform transition to the limit, it is necessary to study the behavior of the short-range potential power γ = ρ2dχ

2
0

at d → 0. For this purpose, we use the continuity of the derivative of the one-electron wave function (3) at ρi = ρd.
Elementary calculations lead to the following:

cos (ρdχ0) = 0. (7)

In the limit d→ 0, we have:

γ =
(
ρ2dχ

2
0

)
d→0

=
[π

2
(2n+ 1)

]2
, n = 0, 1, 2 . . . . (8)

Thus, the value γ can take only discrete values defined by the expression (8).
Condition (8) allows one to obtain the limiting values of some trigonometric and integral functions that are nec-

essary for the transition to the limit:

sin (χ0ρd) = 0, sin (2χ0ρd) = 0, Si (2χ0ρd) = 0,

Si (4χ0ρd) = 0, Chi
(
4ρdη

−1) = 1, Shi
(
2η−1ρd

)
= 0. (9)

Having made the transition to the limit (d→ 0) in (6), taking into account (9), for ε (R∗0, η) /Ed we obtain:

ε (R∗0, η)

Ed
=

− 23η−2π2 sinh−4
(
R∗0η

−1) ( tanh
(
R∗0η

−1)−R∗0η−1 csc
(
R∗0η

−1) )−2×{
2−1

(
2η−1R∗0 − sinh

(
2η−1R∗0

))2
+ η

[
−4η−1R∗0 − 8 cosh3

(
η−1R∗0

)
sinh

(
η−1R∗0

)
Chi

(
2η−1R∗0

)
+

2η−1R∗0 + 2 ln
(
2 exp (1 + C) η−1R∗0

)
sinh

(
2η−1R∗0

)
+
(
Chi

(
4η−1R∗0

)
− ln 2

)
sinh

(
4η−1R∗0

)
−

Shi
(
2η−1R∗0

) (
1− 2 cosh

(
2η−1R∗0

)
− cosh

(
4η−1R∗0

))
+ cosh

(
4η−1R∗0

)
Shi
(
4η−1R∗0

)]}
, (10)

here, C = 0.577 – the Euler constant.
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Minimization with respect to the parameter η leads to a transcendental equation for finding the extreme value η̃:

∂ε (R∗0, η)

∂η
= 0. (11)

The explicit expression for (11) has the following:{
27π2η̃−2

sinh4 (R∗0η̃
−1) (tanh (R∗0η̃

−1)−R∗0η̃−1 csc (R∗0η̃
−1))

3×[
R∗0η̃

−2 csc
(
2η−1R∗0

)
−R∗0η̃−3 cot

(
2η̃−1R∗0

)
csc
(
2η̃−1R∗0

)
−R∗0η̃−2 sech

(
2η̃−1R∗0

) ]
+

27π2η̃−3 − 28π2η̃−4 coth
(
R∗0η̃

−1)
sinh4 (R∗0η̃

−1) (tanh (R∗0η̃
−1)−R∗0η̃−1 csc (R∗0η̃

−1))
2

}
×{

1

16

(
2R∗0η̃

−1 − sinh
(
2η̃−1R∗0

))2
+

1

8
η̃

[
−4R∗0η̃

−1 − 8 cosh3
(
2η̃−1R∗0

)
Ci
(
2η̃−1R∗0

)
sinh

(
η̃−1R∗0

)
+

2 ln
(
η̃−1R∗0e

1+γ
)

sinh
(
2η̃−1R∗0

)
+
(
Ci
(
4η̃−1R∗0

)
− ln 2

)
sinh

(
4η̃−1R∗0

)
− Si

(
2η̃−1R∗0

)
×(

1− 2 cosh
(
2η̃−1R∗0

)
− cosh

(
4η̃−1R∗0

) )
− Si

(
4η̃−1R∗0

)
+ cosh

(
4η̃−1R∗0

)
Si
(
4η̃−1R∗0

)]}
−

26π2η̃−2

sinh4 (R∗0η̃
−1) (tanh (R∗0η̃

−1)−R∗0η̃−1 csc (R∗0η̃
−1))

2×{[
1

8

(
2R∗0η̃

−2 − 2η̃−2 cosh
(
2η̃−1R∗0

) )2(
2R∗0η̃

−1 − sinh
(
2η̃−1R∗0

) )
+

η̃

8

[
4R∗0η̃

−2 + 8η̃−2R∗0 cosh4
(
η̃−1R∗0

)
Ci
(
2η̃−1R∗0

)
+ 4η̃−2R∗0 cosh4

(
4η̃−1R∗0

)
+

2 ln
(
η̃−1R∗0e

1+γ
)

sinh
(
2η̃−1R∗0

)
+
(
Ci
(
4η̃−1R∗0

)
− ln 2

)
sinh

(
4η̃−1R∗0

)
− Si

(
2η̃−1R∗0

)
×(

1− 2 cosh
(
2η̃−1R∗0

)
− cosh

(
4η̃−1R∗0

) )
− Si

(
4η̃−1R∗0

)
+ cosh

(
4η̃−1R∗0

)
Si
(
4η̃−1R∗0

)]]
+

1

8

[
−4R∗0η̃

−1 − 8 cosh3
(
2η̃−1R∗0

)
Ci
(
2η̃−1R∗0

)
sinh

(
η̃−1R∗0

)
×(

Ci
(
2η̃−1R∗0

)
− ln 2

)
− 4η̃−2R∗0 ln

(
η̃−1R∗0e

1+γ
)

cosh
(
2η̃−1R∗0

)
+ 8η̃−1 cosh3

(
η̃−1R∗0

)
×

cosh
(
2η̃−1R∗0

)
sinh

(
η̃−1R∗0

)
+ 24η̃−1R∗0 cosh2

(
η̃−1R∗0

)
Ci
(
2η̃−1R∗0

)
sinh2

(
η̃−1R∗0

)
−

2η̃−1 sinh
(
2η̃−1R∗0

)
− η̃−1 sinh

(
2η̃−1R∗0

) (
1− 2 cosh

(
2η̃−1R∗0

)
− cosh

(
4η̃−1R∗0

))
+

η̃−1 sinh
(
4η̃−1R∗0

)
− 2η̃−1 cosh

(
4η̃−1R∗0

)
sinh

(
4η̃−1R∗0

)
− 4η̃−1R∗0 Si

(
2η̃−1R∗0

)
×(

sinh
(
4η̃−1R∗0

)
+ sinh

(
4η̃−1R∗0

) )
− 4η̃−1R∗0 sinh

(
4η̃−1R∗0

)
Si
(
4η̃−1R∗0

)]}
= 0. (12)

Taking into account that the minimum value of the functional ε (R∗0, η) /Ed achieved with the extreme value of
the parameter η = η̃ is the sum:

ε (R∗0, η)

Ed
= −E1

Ed
− E2

Ed
, (13)

one can find the first ionization potential E1 as a function of the second ionization potential E2 taken from the experi-
ment:

E1

Ed
= −ε (R∗0, η)

Ed
− E2

Ed
. (14)

Figure 1 shows relationship between the first and second ionization potentials of the two-electron impurity center
with the nucleus zero charge (Z = 0) in a semiconductor QD in the Bohr energy units, obtained by numerical
calculations (curves 1, 2, 3), and also in the bulk semiconductor case (curves 4, 5, 6) [1].
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FIG. 1. Connection between the first and second ionization potentials of the two-electron impurity
center with the nucleus zero charge (Z = 0) (curves 1, 2, 3) in a semiconductor QD and for the bulk
semiconductor case [1] (curves 4, 5, 6), for different values of R∗0:
1: R∗0 = 0.5; 2: R∗0 = 1; 3: R∗0 = 3 and for different values of the nucleus charges Z for the
two-electron impurity center: 4: Z = 1; 5: Z = 2; 6: Z = 3

It can be seen that as the QD radiusR∗0 increases, the threshold energyE2/Ed, beginning with which the existence
of the two-electron bound state is possible, also increases. This is due to the fact that energy of the electrons’ mutual
repulsion is not compensated for by the corresponding Coulomb attraction to the nucleus, since Z = 0. Indeed, the
action of the short-range potential is sharply attenuated due to an increase in the electrons’ localization effective radius
because of their repulsion. With decreasing R∗0, the size quantization energy increases, which is accompanied by a
suppression of the electrons’ mutual repulsion and accordingly by decrease in the threshold value of E2/Ed. Thus, in
QD with R∗0 ≤ 1, the condition for emergence of the two-electron bound state is much more favorable in comparison
with the bulk semiconductor case (compare curves 3 and 4 in Fig. 1).

3. Coefficient of the light absorption under photoionization of the two-electron impurity centers in a
quasi-zero-dimensional structure

Atoms of helium and helium-like ions in the ground state are the simplest systems in which double photoionization
by a single photon can be observed. The double photoionization process under consideration is an optical transition
of two electrons from bound states to the dimensionally – quantized QD states due to absorption of a photon by an
impurity atom. The fundamental role of this process consists in the possibility of the theoretical study of an electron’s
correlations in the double photoionization spectra. Study of such reaction in semiconductive nanostructures is of
particular interest in connection with the new physical situation due to dimensional quantization. In this section, the
photoionization process of the two-electron impurity center, located in the semiconductive QD ground state, has been
considered [5].

In this section, we consider the process of photoionization of a two-electron impurity center in the ground state in
a semiconductor QD [5]:

Ψ (ρ1, ρ2) =
22η−2

(tanh (R∗0η
−1)−R∗0η−1 csc (R∗0η

−1))
2

sinh
(
R∗0η

−1 − ρ1η−1
)

sinh
(
R∗0η

−1 − ρ2η−1
)

ρ1ρ2 sinh2 (R∗0η
−1)

. (15)

The wave function of the final state will be determined by the product of the wave functions of electrons in a
spherical QD:

Φ (ρ1, ρ2) = Ψn,l,m (ρ1, φ1, θ1) Ψn,l,m (ρ2, φ2, θ2) , (16)
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where

Ψn,l,m (ρi, φi, θi) =

√
2

R0
√
ρi

Jl+1/2 (knlρi)

Jl+3/2 (ξnl)
Ylm (φi, θi) , (17)

here i = 1, 2; Yl,m – normalized ball functions; l, m – orbital and magnetic quantum numbers; Jν(x) – the first-kind
Bessel function of the ν-th order; knl = ξnl/R0; ξnl – n-th root of the Bessel function with l-th order.

The energy of one-electron states, unperturbed by impurities in a spherical QD, will have the form:

En,l =
~2ξ2nl

2m∗R2
0

. (18)

The effective interaction Hamiltonian with the light wave field with a unit polarization vector eλ and a wave
vector q is determined by the expression

Hint = −iλ0~
(

2π~2α∗

εωm∗2
I0

)1/2

exp (iqr) (eλ∇r) , (19)

where λ0 – the local field coefficient taking into account the difference between the amplitudes of the local and average
macroscopic fields; I0 – the light intensity; ω – the absorbed light frequency; ε – the static dielectric permeability of
the QD material; α∗ – the fine structure constant taking into account dielectric permeability.

The matrix element that determines the magnitude of the oscillator strength for the dipole optical transitions of
electrons from the ground state of the two-electron impurity center (15) to the states Ψn,l,m (ρ, φ, θ) of the discrete
spectrum of quantum dots, is written as follows:

M = iλ0

√
2πα∗

ω
I0

[
(En,l,m − E1)

〈
Ψ∗n,l,m (ρ1, θ1, φ1)ψ∗ (ρ2) |eλ, r1|Ψ (ρ1, ρ2)

〉
+

(En,l,m − E2)
〈

Ψ∗n,l,m (ρ1, θ1, φ1)ψ∗ (ρ2) |eλ, r2|Ψ (ρ1, ρ2)
〉]
. (20)

Taking into account (15) – (18), the expression (20) for the square of the matrix element can be written as:

|M |2 =

λ20
2πα∗

ω
I0

E2
d

sinh6 (R∗0η
−1)

2

a2dR
∗2
0

∣∣Jl+3/2 (ξnl)
∣∣2 23η−3

(tanh (R∗0η
−1)−R∗0η−1 csc (R∗0η

−1))
3×(

2ξ2nl (R
∗
0)
−2

+
|E1|
Ed

+
|E2|
Ed

)2

k−3nl
(
k2nl + η−2

)−2×∣∣∣∣∣
[√

knl + iη−1
(
knl − i2η−1

)
cosh

(
R∗0η

−1) S(√ 2

π
R∗0 (knl − iη−1)

)
+

i
√
knl − iη−1

(
knl + i2η−1

)
cosh

(
R∗0η

−1) Si

(√
2

π
R∗0 (knl + iη−1)

)
+

√
knl + iη−1

(
knl − i2η−1

)
sinh

(
R∗0η

−1)Ci

(√
2

π
R∗0 (knl − iη−1)

)
+

√
knl − iη−1

(
knl + i2η−1

)
sinh

(
R∗0η

−1)Ci

(√
2

π
R∗0 (knl + iη−1)

)] ∣∣∣∣∣
2

×

2

πknl

(
η−2 + k2nl

)−4 ∣∣∣∣∣
{
η−1

[ (
η−2 + k2nl

)
R∗0 cos (knlR

∗
0)−

(
η−2 + 2knl + k2nl

)
R∗0 sin (knlR

∗
0)
]
+

(
η−2 (knl − 1) + k2nl (knl + 1)

)
sinh

(
R∗0η

−1)}∣∣∣∣∣
2

, (21)

here Ci(x) and Si(x) – integral cosine and sine, respectively.
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We assume that the size dispersion of QDs u arises during the phase decay of a supersaturated solid solution and
is satisfactorily described by the Lifshitz–Slezov formula:

P (u) =


34eu2 exp [−1/ (1− 2u/3)]

25/3 (u+ 3)
7/3

(3/2− u)
11/3

, u < 3/2;

0, u > 3/2,

(22)

where u = R0/R̄0, R0 and R̄0 – the QD radius and its mean value, correspondingly; e – base of the natural logarithm.
The light impurity absorption coefficient K(ω), taking into account dispersion of the QD size, is determined by

the expression:

K (ω) =
2πN0

~I0

∑
n

3/2∫
0

duP (u) |M |2 δ (En,0,1 + |E1|+ |E2| − ~ω) , (23)

where N0 – the QD concentration in dielectric matrix; δ(x) – the Dirac Delta function.
Taking into account (21) and performing integration in (23), the light impurity absorption coefficient K (ω) can

be written in the next form:

K (X) =

N∑
n=1

P (un)
23λ20πα

∗

X
×

Ed

(
η−2 + ξ2nl

(
R̄∗0
)−2

u−2n

)−6
a2d
(
R̄∗0
)2
u2n sinh6

(
R̄∗0unη

−1
)
πξnl

(
R̄∗0
)−1

u−1n
∣∣Jl+3/2 (ξnl)

∣∣2×
23η−3(

tanh
(
R̄∗0unη

−1
)
− R̄∗0unη−1 csc

(
−R̄∗0unη−1

))3 (2ξ2nl
(
R̄∗0
)−2

u−2n + |E1| /Ed + |E2| /Ed
)2
ξ3nl
(
R̄∗0
)−3

u−3n ×∣∣∣∣∣
√
ξnlR̄∗0 + iη−1

(
ξnlR̄

∗
0 − i2η−1

)
cosh

(
R̄∗0unη

−1) Si

(√
2

π
R̄∗0un

(
ξnl
(
R̄∗0
)−1

u−1n − iη−1
))

+

i

√
ξnl
(
R̄∗0
)−1

u−1n − iη−1
(
ξnl
(
R̄∗0
)−1

u−1n + i2η−1
)

cosh
(
R̄∗0unη

−1)×
Si

(√
2

π
R̄∗0un

(
ξnl
(
R̄∗0
)−1

u−1n + iη−1
))

+√
ξnl
(
R̄∗0
)−1

u−1n − iη−1
(
ξnl
(
R̄∗0
)−1

u−1n − i2η−1
)

sinh
(
R̄∗0unη

−1)×
Ci

(√
2

π
R̄∗0un

(
ξnl
(
R̄∗0
)−1

u−1n − iη−1
))

+√
ξnl
(
R̄∗0
)−1

u−1n − iη−1
(
ξnl
(
R̄∗0
)−1

u−1n + i2η−1
)

sinh
(
R̄∗0unη

−1)×
Ci

(√
2

π
R̄∗0un

(
ξnl
(
R̄∗0
)−1

u−1n + iη−1
))∣∣∣∣∣

2

×∣∣∣∣∣η−1
[(
η−2 + ξ2nl

(
R̄∗0
)−2

u−2n

)
R̄∗0un cos (ξnl)− R̄∗0un sin (ξnl)

(
η−2 + 2ξnl

(
R̄∗0
)−1

u−1n + ξ2nl
(
R̄∗0
)−2

u−2n

)]
+

(
η−2

(
ξnl
(
R̄∗0
)−1

u−1n − 1
)

+ k2nl

(
ξnl
(
R̄∗0
)−1

u−1n + 1
))

sinh
(
R̄∗0unη

−1)∣∣∣∣∣
2

, (24)

where un = ξ2nl/
((
R̄∗0
)2

(X − |E1| /Ed − |E2| /Ed)
)

; N = [n] – is an integral part of the solution for a transcen-

dental equation of the form: ξ2nl = 3
(
R̄∗0
)2

(X − |E1| /Ed − |E2| /Ed) /2.
Figures 2(a and b) show the calculated double photoionization spectra, the characteristic feature of which (see

curve 1 in Fig. 2(a) and curves 1 – 3 in Fig. 2(b)) is the two-humped profile due to electron correlations. Distance
between the spectral curve maxima is determined by modulus of the difference between the first and second ionization
potentials of the two-electron impurity center. Fig. 2(a) shows that as the second ionization potential increases, the
impurity absorption edge shifts to the spectrum short-wavelength region and the right-hand peak transforms at first to
the step (curve 2 in Fig. 2(a)), and then completely disappears on the spectral curve (see curve 3 in Fig. 2(a)). Fig. 2(b)
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FIG. 2. Spectral dependence of the light absorption coefficient for double photoionization of the
two-electron impurity centers in a quasi-zero-dimensional structure: a) for different values of the
second ionization potential E2:
1: E2 = 0.04 eV; 2: E2 = 0.05 eV; 3: E2 = 0.08 eV;
b) for different values of R∗0: 1 – 3; 2 – 1; 3 – 0.5, with E2 = 0.04 eV

shows transformation of the right peak on the spectral curve with a decrease in the QD mean radius R̄∗0, as a result we
can see, that this peak disappears. This is due to the fact that the dimensionally – quantization energy increases with
decreasing of R̄∗0, as a result of which the electronic correlation is suppressed.

4. Conclusions

Generalization of the zero-range potential method to the case of two-electron impurity centers in a QD has been
carried out. The first ionization potential has been calculated by the variational method, within the semiempirical
model of a two-electron impurity center in the spherically symmetric QD. It is shown, that, unlike the case of a bulk
semiconductor in QD, formation of the two-electron bound states is possible at sufficiently low ionization potential
values, as well as for the nucleus zero charge of an impurity center. Diamagnetic susceptibility of the two-electron and
one-electron impurity centers has been calculated for the semiconductive QD. It is shown that an increase in the QD
radius leads to an increase in the diamagnetic susceptibility value, which is associated with an increase in the localized
state radius. A comparison of the diamagnetic susceptibility for quasi-zero-dimensional two-electron impurity centers
and for D−-centers shows that in case of the two-electron impurity centers, the diamagnetic susceptibility is several
times larger. In the dipole approximation, in the framework of the effective-mass method, the light impurity absorption
coefficient has been calculated for a double ionization of the two-electron impurity center by a single photon. It
is shown that a characteristic feature of the double photoionization spectrum is the spectral curve’s “two-humped”
profile. The distance between the spectral curve maxima is determined by the difference between the first and second
ionization potentials of the two-electron impurity center.
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1. Statement of the problem

The problem, which is solved, is the mathematical description of the kinetics of the emerging, growth and aggre-
gation of nanoparticles by their experimental distribution functions by properties.

The nanodispersed substance is obtained from a highly supersaturated solution or vapor. Significant supersatura-
tion is required to ensure that during formation the particles do not have time to grow to sizes larger than nanometers,
the nanoparticles have emerged in sufficient quantity so that the stage of their aggregation becomes dominant. In this
case, we obtain aggregates of nanoparticles, i.e. a nanodispersed substance.

The experiment is characterized by the time interval, which is needed for the measurement of the distribution
function. It is possible to obtain it only if the variation of the distribution function during this time interval is negligible.
So, we are able to measure distribution functions only when the processes of the integration and the fragmentation
of the particles are rather slow. In the beginning of the process of the forming of a nanodispersed substance the
supersaturation is large and we are not able to measure the distribution function. So we need to reconstruct the
kinetics for the formation of a nanodispersed substance by the experimental distribution functions measured, when the
process become rather slow. One measurement is not sufficient, we should make the set of experiments varying the
parameters of system’s condition: the concentration of initial particles (molecules) and the temperature, in order to
obtain the coefficients for the equations depending on these parameters.

The main idea for mathematical description of the experimental results of, which determines the structure of
the article, is as follows: first, the statement of the problem arises: the parameters of the distribution function are
determined. At this stage, the experimenters suggest which parameters they can measure, i.e. which parameters to
choose for the model. Then, the first step in mathematical modeling is to create an a priori model containing unknown
functions as parameters, which should be determined later. The a priori model consists of writing the correct equations
containing unknown parameters. The model should answer the following questions: what are the conditions of the
experiment, how and in what range they should be varied and what should be determined in the experiment in order
to obtain these unknown functions of the a priori model. On the basis of experiments, these unknown functions are
determined, and the a posteriori model arises. Thus, the mathematical description of the experiments is obtained. After
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that, the investigation is supposed to be repeated, expanding the list and the intervals of variation of the conditions
taken into account. The goal is to predict how to synthesize materials.

In the frameworks of a priori models in the papers of J. C. Maxwell [1], L. Boltzmann [2] and etc. the time
dependent distribution function by velocities and coordinates appears. Now, there is a multi-parameter description,
which is due to the fact that it becomes available for experimental observation. Currently, several methods have been
developed for measuring the size distribution of nanoparticles: electron microscopy, the method of dynamic light
scattering, e.g. [3, 4]. The problem is to write the equations for the distribution function of particles (bodies) by these
many parameters.

In the present paper, we continue the line of works [5–8] and others, devoted to mathematical modeling of emerg-
ing and growth of hierarchical structures of a dispersed substance, using the kinetic approach.

In [6], a model was proposed for nanostructure creation of as a result of growth of particles in a supersaturated
medium with their multistage modification. The multistage modification was done in order to give particles the
desired properties. The aggregation of nanoparticles in agglomerates and the integration of aggregates with each
other was considered and the discrete and continuum balance equations for the number of particles and aggregates,
taking into account the possibility of their growth and fragmentation, were formulated. The continuum equation has
yielded to the evolutionary equation of the Fokker–Planck type, containing frequency functions. They describe the
process of aggregate self-organization by the selection of more stable forms. Moreover, each stage of modification is
characterized by its own frequency functions. They are subject to independent determination. Frequency functions
for all types of impacts used for the creation of nanostructures can form the basis of a methodology for their optimal
synthesis.

Typically, a nanostructure is a hierarchical structure. Molecules coalesce and give the original aggregates of
molecules (clusters). Coalescences of original agglomerates are secondary aggregates. They also may coalesce with
separate molecules. Similarly, the coalescence of secondary aggregates with each other give the tertiary agglomerates,
etc. A particle of given generation (or type, kind) is the body in which the constituent elements of all lower generations
can be identified. Types of bodies distinguishing by the levels of hierarchical structure (generation numbers) will be
denoted by the parameter k: the particles of each k-th generation become larger by attaching particles of all kinds with
the parameter j < k, and the acts of coalescences randomly alternate with the acts of fragmentations. As a result, the
growth process of the particles forms bodies of a dispersed substance, which have a hierarchical structure.

For description of particle formation, it is advisable to distinguish several essential stages of the process: first,
original aggregates emerge and grow, and then the stage of aggregation or the formation of agglomerates of the
original clusters as a result of their collisions with each other comes, and then the formation of their aggregates occurs.
Although all these processes proceed at the same time, but under some conditions, first the process of formation of
original particles dominates, then the process of formation of their aggregates (i.e. secondary agglomerates) prevails,
then the process of formation of aggregates of secondary agglomerates (i.e. tertiary aggregates) is main, etc.

Under such conditions, the formation of dispersed substance occurs incrementally, and each stage contributes to
the nanostructure of the substance.

In order to create a nanostructure (and, generally speaking, some kind of structure) with the desired properties,
the phenomena of the emerging and the disruption of the original subnanoparticles, the growth and the dissolution,
the appearance and the elimination of growth defects, the capture and the release of the captured impurities, the
coalescence and the destruction of agglomerates, recrystallization and the topochemical reactions of sintering and the
ceramization are used [5–9]. For describing these phenomena we take into account the properties X ≡ {X1,X2}
of each particle: X1 ≡ {x1, x2, ..., xi, . . . , xr} are external properties, and X2 ≡ {xr+1, xr+2, ..., xi, . . . , xs} are
internal ones. The external parameters of state of a particle characterize its material and energy interaction with the
medium, and the internal ones characterize the redistribution of the matter and the energy inside the particle [9].

The state of each particle of any level of the hierarchical structure of a nanodispersed substance is characterized
by many parameters. The state of each molecule is characterized by the following external parameters: mass (the
volume), the coordinate and the velocity of its center of mass. In the case of aggregates of the first generation, it is
supplemented by the next external parameters: parameters of the shape, the surface topography and the volume, which
can be more than the sum of the volumes of molecules constituting the given aggregate (the porosity is possible). In
the case of secondary agglomerates, it is complemented by the following internal parameters: the positions of the
center of mass (relative to center of mass of the considered secondary aggregate) of each of the original aggregates
and of the remaining individual molecules constituting it as well as the parameters which define the orientation of the
original clusters composing the given secondary agglomerate.

At all stages of the process, the considered system is heterogeneous, and there are the molecules, aggregates of
molecules, growing by joining molecules, aggregates of second generation, etc. at its every area. As a first approxi-
mation it is appropriate to accept that the mixer provides homogeneity for the medium and the substance forming the



Approaches to determining the kinetics for the formation of a nano-dispersed substance... 551

phase. In the continuum approximation, each part of the system is characterized by its distribution function of parti-
cles by properties: Ψ (X, t) =

∑
k Ψk (X, t), Nk,X =

∫ X
X0

Ψk

(
X′, t

)
dX′. Here, Ψk (X, t) is a distribution function of

particles of the generation k, Nk,X is a number of particles of the type k in the system, for which the state parameters
are smaller than the corresponding component of the vector X, X0 is the minimum possible value of property X. X
does not include the spatial coordinates of the particle, which are identified with the coordinates of the area of the
system. The distribution functions by these properties X depends upon the properties of the medium enveloping the
particles.

The main parameter of the distribution function of particles of each of k kinds is defined as the first parameter in
the decomposition below, and it is advisable to take the number of molecules n constituting the particle as the main
parameter: x1 = n, and then:

Ψk (X, t) = ψk (n, t) · fk,2 (x2|n; t) · . . . · fk,s (xs|n, x2, . . . , xs−1; t) , (1.1)

where ψk (n, t) is the distribution function of particles by the number of molecules which constitute the particle,
fk,i (xi|n, x2, . . . , xi−1; t), where i = 2, . . . , s, are the densities of distributions of particles by the property xi under
the condition that the parameters, which are written after , are fixed:

∫
fk,i (xi|n, x2, ..., xi−1; t) dxi = 1.

The formula (1.1) is sufficient to prove for the case of two variables. Then it is proved by induction.
Lemma. Let a function f (x1, x2, ..., xs) > 0 is such, that

∫
f (x1, ..., xs) dxs−k...dxs (k = 0, ..., s− 2) is finite.

Then the function f may be represented in the unique way as follows:

f (x1, x2, . . . , xs) = g1 (x1) g2 (x1, x2)× . . .× gs (x1, x2, . . . , xs) , (1.2)

where ∫
gi (x1, x2, . . . xi) dxi = 1. (1.3)

The proof. According to the method of mathematical induction, this formula is sufficient to prove for the case

of two variables. Functions g1 (x1) ≡
∫
f (x1, x2) dx2, g2 (x1, x2) ≡ f (x1, x2)

g1 (x1)
satisfy equality (1.2): f (x1, x2) =

g1 (x1) g2 (x1, x2), with condition (1.3):
∫
g2 (x1, x2) dx2 = 1.

This representation leads to the description of the probability theory for the second variable x2 as a random
variable: g2 (x1, x2), which is a distribution function of the x2 under the condition x1, and is written in probability
theory as g2 (x2|x1).

The following formula in probability theory called Bayes formula [10], and the kinetic theory makes sense of the
reduced description, as noted in [5].

Example 1 [1, 2]. If a variable v is considered as a probabilistic one, and the description is reduced as a result of
collisions to the locally Maxwell distribution:

f (x, v, t) = n (x, t)
(

M

2πκBT (x, t)

)3/2

exp

(
−M (v− V (x, t))2

2κBT (x, t)

)
, (1.4)

where f (x, v, t) is a distribution functions of molecules with mass M by space x ∈ R3, velocities v ∈ R3 at a time
t. Here, n (x, t) ≡ ψ1 (x, t) is a concentration of such particles with mass M , T (x, t) is the temperature, κB is the
Boltzmann constant, V (x, t) is the value of the average velocity of particles with mass M .

The example 1 we consider as a classical one. Let us consider another example of distribution (1.1) from [11].
Example 2. [1, 2, 11]. An example of distribution (1.1) is given by the Maxwell distribution function of particles

with mass Mn = nM0, where M0 is the mass of one molecule of a substance forming the solid phase, n is a number
of molecules constituting the particle [11]:

Ψ1(n, x,p, t) = ψ1 (n, x, t)× 1

(2πMnκBT (x, t))3/2
exp

(
− (p−MnV (x, t))2

2MnκBT (x, t)

)
, (1.5)

where p is a momentum of a the particle with the mass Mn.
More strictly, mass Mn in (1.5) should be presented as

Mn = nM0 + nLML, (1.6)

where M0 and ML are the masses of single molecules of the substance forming the solid phase and of the medium of
the system, nL is a number of medium molecules trapped in the volume and on the surface of the particle.

Then:
n =

v − nLv0L
v0

, (1.7)
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where v is a volume of a particle, v0 and v0L are volumes occupied by single molecules of the substance forming
the solid phase and of the medium of the system inside the particle. Within the framework of the evaluation model,
it is advisable to assume that the volume v and surface area s of each particle can be represented as functions of the
effective size l: when

v >> nLv0L, (1.8)
we have:

lM = γ1l, s = γ2l
2, v = γ3l

3, (1.9)
where γ1, γ2 and γ3 are shape factors, lM is maximum distance between points on the particle surface. A number of
regularities in the behavior of a particle can be revealed by assuming that its shape is close to a sphere (γ1 = 1, γ2 = π,
γ3 =

π

6
) or a cube (γ1 =

√
3, γ2 = 6, γ3 = 1). For more accurate modeling, it is necessary to use experimentally

determined shape factors.
If the particle has a plate shape, then it is advisable to assume that its volume is equal to v = hs, where h is an

effective thickness of the particle. If the particle is a chain of molecules, then v = h2lM . Therefore, in the general
case, taking into account (1.7), (1.8) and (1.9), we have:

n =
γδh

3−δlδ

v0
, (1.10)

where v0 is the volume of one molecule, δ = 1 for chains of molecules, δ = 2 for plates, δ = 3 for spheres or cubes.
We also assume that the shape parameters γδ doesn’t depend on l.

The number of molecules n constituting the particle is the main parameter, and so, it is of interest in the first turn
the distribution functions of a dispersed substance by it. In the experiment, we obtain the integral distribution function
depending on the particle’s size l, for which a discrete set of values at points are measured. We denote the integral
distribution function of aggregates of generation k simulating (approximating) the experimental discrete distribution
as θk (l) and the corresponding differential distribution function as φk (l).

We consider the two-component system which consists of the solvent or the carrier gas and the substance forming
the solid phase. The system is restricted by the inert walls, which have the desired properties and transfer impacts
from the system’s surroundings. The number of molecules of the reagent and the number of molecules of the system
medium are fixed: they are constant or vary in a specific manner. The system is considered as a set of homogeneous
areas. The system is characterized by its volume, temperature, concentration of component at each point, pressure
of the gas or of the liquid matter on the walls, and energies of various types is supplied in it. The laws of reflection
of gas from the walls can be found in [12]. The dynamics of an elastic collision of two bodies has been studied by
J. C. Maxwell [13].

The growth process of the aggregates of the type k is determined by the frequency of collisions with particles
of smaller generation than k. The reason for the growth of the particles is a long-ranged attraction between them:
because of this, during the acts of the collision, they coalesce. The repulsion is short-ranged. The fragmentation has
two causes – due to the excited state of the particle itself and because of external collisions with the carrier gas.

The elementary act of the formation of aggregates can be considered as the collision of two particles of any kind
with their subsequent stay in contact for a sufficiently long time. The frequency of such acts can be represented as:

α = α12N1N2 exp
−εA
kT

,

where α12 is a frequency function associated with the probability of particles approaching until the contact, N1 and
N2 are particle concentrations, εA is an activation energy required to overcome the attraction of particles to the
molecules of their environment. The termination of particle contact can be considered as an act of fragmentation
of the aggregate. The fragmentation of aggregates is expediently described by the Arrhenius equation [11, 14, 15],
introducing into consideration the activation energy of fragmentation εF .

The frequency functions of particles, which are volumes of molecules, can be proportional to n1/3, n2/3, or be
independent on n. The first case means that the active centers are one-dimensional structure, in the second one the
number of active centers is proportional to the square of the surface, and in the last case the number of active centers
is a fixed number.

The question about the formation and about the size of the particles, starting from which the particle begins to
grow rapidly, is a separate problem. The experiments demonstrate the existence of such size, and the problem is to
construct a mathematical model which evaluates this size. At a certain particle size, the molecules in it are arranged
due to the mutual attraction, and the probability of the fragmentation decreases. This particle has low porosity and
obtains the certain shape. In the mathematical modeling, as the maximum of simplification, it is necessary to consider
three forms of the particles which are the one-dimensional, two-dimensional and three-dimensional configurations.
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Based on the consideration of the three configurations, we can estimate their stability, which depends on the binding
energy between molecules in the particle.

We’ll consider only two parameters characterizing the particle of a nanodispersed substance: its mass and its
potential energy, which we will account in the equations of the model.

The aim of our investigation is to determine the coefficients of the equations for the distribution function from
ones, which are obtained in experiments. Thus, the first problem is to obtain this equations, the second one is to
consider the classes of distribution functions of particles of a nanodispersed substance, reasonably approximating the
experimental data obtained, and the third is to obtain relationships between the parameters of such functions and the
coefficients of the equations.

The first problem that arises is the obtaining of correct equations describing the kinetic of a nanodispersed sub-
stance, and, hence, the derivation of the equations from each other: the consideration of the connection between the
discrete and continuum equations, the transition from a description with multiple parameters to a reduced one. For
instance, the derivation of equations on the particle size distribution function from the generalized Boltzmann-type
equations for the distribution function of bodies by sizes and velocities of their centers of mass. The second problem
was preliminarily considered in [11]. In the next paragraph, we begin to discuss the first one. A discrete distribution
function is considered, and the equations for it is obtained. For particles consisting of less than 102–103 molecules,
the introduction of the continuum description is not advisable.

In Section 2 it is shown how from the discrete description the continuum equations of the Fokker–Planck type are
obtained. In probability theory, the Fokker–Planck equation is called the differential Einstein–Kolmogorov equation
[16]. Due to the parabolic nature of the obtained equation, it is also called the diffuse approximation.

In Section 3, we determine the coefficients of the considered kinetic equations of a nanodispersed substance by
their stationary solution. However, in experiments, we obtain distribution functions which can’t be the stationary
solutions of the considered equations. They will continue disperse in the space of particles’ sizes. We discuss such
functions in the following paragraphs.

In Sections 4 and 5, we discuss the parameters and the classes of distribution functions of particles of a dispersed
substance, approximating well the data obtained in the experiments.

In Section 6, we consider the exact solution of the diffuse approximation, which coincides with the proposed
new approximating distribution function of particles of a dispersed substance at each moment of time and obtain the
relationships between the parameters of approximating functions and the coefficients of the equations describing the
kinetic of a dispersed substance.

2. The Becker-Doring case and the continuum description of the kinetics of a dispersed substance

Let us write the simplest kinetic equations for the evolution of the distribution function of particles of a dispersed
substance: first, the discrete ones, and then the continuous ones (the equations of the Fokker–Planck type).

The equations for the coalescence of particles were first derived and studied for solutions by Smoluchowski [17]
(without the fragmentation – the Smoluchowski case). If only one molecule can attach to or separate from another
particle, then we have the Becker–Döring system of equations [18]. It describes the first stage of the aggregation
process. During the formation of first generation aggregates, it can be assumed that their number is quite small, and
therefore the formation of the secondary aggregates consisting of them can be neglected. Becker and Döring [18] have
written an infinite system, but in the real physical problem numbers, n is always bounded above: n ≤ m, where m
is some natural number, whose value is determined by the properties of the system. The most rough estimate of m
obviously gives that m ≤ N0, where N0 is the number of all molecules of the forming the phase substance in the
system. In this case for the homogeneous system, we have the following system of equations for the evolution of the
discrete distribution function of aggregates for the case k = 1 and for single molecules N (1, t) [18] (we’ll skip the
index k = 1 in the following equations):

dN (1, t)

dt
= −2

(
α (1)N (1, t)

2 − β (1)N (2, t)
)
−
m−1∑
i=2

(α (i)N (1, t)N (i, t)− β (i+ 1)N (i+ 1, t)) , (2.1)

dN (n, t)

dt
= [(α (n− 1)N (1, t)N (n− 1, t)− β (n)N (n, t)) +

+ (β (n+ 1)N (n+ 1, t)− α (n)N (1, t)N (n, t))] , n = 2, 3, ...,m− 1,
(2.2)

dN (m, t)

dt
= α (m− 1)N (1, t)N (m− 1, t)− β (m)N (m, t) , (2.3)

where N (n, t) is a concentration (or a number) of the aggregates of the first generation consisting of n molecules for
n = 2, 3, ...,m, N (1, t) is a concentration (or a number) of single molecules, α (n) is a frequency function (a cross
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section) of the coalescence of an original aggregate consisting of n molecules with the single molecule, and β (n) is
a frequency of disintegration of a cluster consisting of n molecules into the particle consisting of (n− 1) molecules
and the single molecule.

But experiments and calculations on a computer require the discrete equations with time step, ∆t, so we must

write
∆N (n, t)

∆t
instead of

dN (n, t)

dt
. ∆N (n, t) is a variation of N (n, t) during time interval ∆t. We must give

definition of it throughN (n, t). If ∆N (n, t) ≡ N (n, t+ ∆t)−N (n, t), then we have the explicit time discretization
of the system (2.1)–(2.3). For the system of equation (2.1)–(2.3) the H-theorem is fulfilled, but for the system with
the explicit time discretization the H-theorem is not valid: it is proved in [19, 20] that the H-theorem is not fulfilled
for the case of this system when only single molecules and dimers are considered. Also, it is valid for the implicit
time discretization: when ∆N (n, t) ≡ N (n, t) − N (n, t−∆t) [20, 21], and thus, we can’t use the explicit time
discretization for the computer simulations.

Instead the equation (2.1) one can write the conservation law of the number of all molecules of the forming the
phase substance in the system N0:

m∑
n=1

nN (n, t) ≡ N0, (2.4)

where N0 is constant.
Here, we have considered the discrete distribution function, which is the ordered set of numbers N (n, t), n =

1, 2, ...,m. The equations (2.1), (2.3) are the boundary conditions for equations (2.2).
In the previous section we discuss a more general situation than one which is described by these systems, but in

this case we have equations of the same form:

∆Nk (n, t) =

= ∆t
[∑k−1

p=1

(∑
c≥np,0

αk,p (n− c, c)Np (c, t)Nk (n− c, t)−
∑
d≥np,0

βk,p (n, d)Nk (n, t)
)

+

+
∑k−1
p=1

(∑
d≥np,0

βk,p (n+ d, d)Nk (n+ d, t)−
∑
c≥np,0

αk,p (n, c)Np (c, t)Nk (n, t)
)

+W
] (2.5)

for n ≥ nk,0, where np,0 is a minimum number of molecules in a particle of type p, ∆Nk (n, t) is as before a variation
of the number of particles Nk (n, t) of the type k consisting of n molecules during time interval ∆t, αk,p (n, c) is a
frequency function (a section) of the coalescence of the particle of the generation k consisting of n molecules with
the particle of the type p consisting of c molecules, βk,p (n, d) is a frequency of fragmentation of the particle of the
kind k consisting of n molecules into the particle of the same kind consisting of (n− d) ones and the particle of the
generation p consisting of d molecules. Term W in (2.5) takes into consideration that the number of particles of the
kind k can varies also due to the coalescence of two particles of generation k − 1, because of a result of the reverse
process, due to the coalescence of the particle of the type k with particles of generation more or equal to k and due to
the fragmentation the particle of the kind k from particles of generation more or equal to k.

The histograms, which get the experimenters, as a rule, are replaced by continuous functions. So it is necessary
to use a continuum description. You can transit from a discrete distribution function and the system of equation (2.1)–
(2.3) to the continuum model by the introduction of the continuum distribution functions of particles of a nanodispersed
substance ψk (n, t), for which the accordance to the discrete distribution of particles of a nanodispersed substance is
valid:

n∑
i=nk,0

Nk (i, t) =

n∫
nk,0

ψk (ñ, t) dñ.

Further, we’ll only consider the case k = 1, so we’ll skip the index k = 1. The continuum problem is considered
on the interval [n1, n2]. Here, n1 and n2 are the minimum and maximum number of molecules in the cluster, the
growth of which can be considered as a continuous process. The minimum possible value is n1 ≈ 102 [5], and
n2 ≤ m. The simple continuum analogy of (2.2) has the form:
∂ψ (n, t)

∂t
= (α (n− 1)N (1, t)ψ (n− 1, t)− β (n)ψ (n, t)) + (β (n+ 1)ψ (n+ 1, t)− α (n)N (1, t)ψ (n, t)) ,

(2.6)
where now α (n) and β (n) are continuum functions.

The conservation law of the number of all molecules of the forming the phase substance in the system (2.4) is
rewritten in the form:

n1−1∑
n=1

nN (n, t) +

n2∫
n1

nψ (n, t) dn+

m∑
n=n2+1

nN (n, t) = N0. (2.7)
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The equations (2.6), (2.7) is proved by that the substitution the sum of the δ-functions: ψ (n, t) =
∑nM

i=1N (i, t) ·
δ (n− i), gives (2.2), (2.3). Indeed, the transition from (2.7) to (2.4) is obvious. Substituting in (2.6) the sum of the
δ-functions and integrating for each positive integer n ∈ [n1, n2] the both parts of the obtained equation on the interval
containing only one integer value of n, we obtain (2.2), (2.3) for this n.

Let us decompose the increments of the functions in (2.6) α (n)N (1, t)ψ (n, t) and β (n)ψ (n, t) in the Taylor
series and consider only two terms of the decomposition in the Taylor series. Then we obtain the equation of the
Fokker–Planck type for the function ψ = ψ (n, t), which has the form:

∂ψ

∂t
= − ∂

∂n
J [N (1, t) , ψ] = − ∂

∂n
(G (n, t)ψ) +

∂2

∂n2
(D (n, t)ψ) , (2.8)

where J [N (1, t) , ψ] ≡ G (n, t)ψ − ∂

∂n
(D (n, t)ψ), G (n, t) ≡ α (n, t)N (1, t)− β (n, t),

D (n, t) ≡ α (n, t)N (1, t) + β (n, t)

2
. So, D (n, t) > 0.

Thus, α and β are determined by the functions:

α (n, t) =
G (n, t) + 2D (n, t)

2N (1, t)
, β (n, t) =

2D (n, t)−G (n, t)

2
. (2.9)

The problem (2.8) is solved on the interval [n1, n2], and it is supplemented by the equations (2.2) for 2 ≤ n ≤
n1 − 1 and for n2 + 1 ≤ n ≤ m (if n2 < m), by the conservation law of the number of all molecules of the forming
the phase substance in the system (2.7) and by the boundary conditions.

The boundary conditions will be the relationship of the equality of flows of the continuum distribution function:
J [N (1, t) , ψ (n, t)], and of the discrete one on the left and right bounds of the continuum distribution:

J [N (1, t) , ψ (n, t)]|n=n1
= α (n1 − 1, t)N (1, t)N (n1 − 1, t)− β (n1, t)N (n1, t) , (2.10)

J [N (1, t) , ψ (n, t)]|n=n2
= α (n2, t)N (1, t)N (n2, t)− β (n2 + 1, t)N (n2 + 1, t) , (2.11)

where N (n1, t) ≡ ψ (n1, t), N (n2, t) ≡ ψ (n2, t), if n2 < m, and

J [N (1, t) , ψ (n, t)]|n=n2
= 0, (2.12)

if n2 = m.
If n is not restricted from above m→ +∞, then we have the boundary condition at the infinity:

lim
n→+∞

(
nλ (α (n, t)N (1, t)N (n, t)− β (n+ 1, t)N (n+ 1, t))

)
→ 0, (2.13)

for some λ > 1. In this case the sum in the right side of (2.1) is finite, when m→ +∞. If n2 = m→ +∞, we have:

nλJ [N (1, t) , ψ (n, t)]
∣∣
n→+∞ → 0, (2.14)

The following system of equations is also considered (e.g., [8]): N (n, t) = 0 for 2 ≤ n ≤ n0 − 1 (n0 > 2).
It accords to the simple assumption that besides the single molecules the particles, consisting of smaller than n0
molecules, don’t exist. The particles consisting from n0 molecules give n0 molecules, when they fragmentize. Let
for simplicity n1 = n0, n2 = m → +∞. n0 may depend on time t. Then we have the equation (2.8) on the interval
[n0,+∞) and the conservation law of the number of all molecules of the forming the phase substance in the system,
which has the form:

N (1, t) +

+∞∫
n0(t)

nψ (n, t) dn = N0. (2.15)

In this case, we have the boundary conditions for the equation (2.8) on the right bound (2.14) and one on the left
bound, which is obtained from (2.15).

In (2.1)–(2.3) the coalescence of particles due to pair collisions is assumed. This supposition is valid only for
rarified gases. The experiments are described by the system of equations, which is more general, than (2.1)–(2.3):
instead of terns α (n)N (1, t) we must write some unknown function α̃ (n,N (1, t)), which is a linear function:
α̃ (n,N (1, t)) = α (n)N (1, t), only for rarified gases. The equation of the Fokker–Planck type is obtained similarly.
It has the form (2.8), where:

G (n, t) ≡ α̃ (n,N (1, t))− β (n) , D (n, t) ≡ α̃ (n,N (1, t)) + β (n)

2
. (2.16)

So, D (n, t) > 0, α̃ and β are determined by the functions:

α̃ = G (n, t) + 2D (n, t) , β = 2D (n, t)−G (n, t) . (2.17)
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The boundary conditions (2.14) and the conservation law of all molecules of the forming the phase substance in
the system are the same.

Our further aim is to determine the coefficients of the equations by the stationary and non-stationary distribution
functions of particles of a dispersed substance.

3. The determination of coefficients of the kinetic equations of a dispersed substance by their stationary
solution

Let the frequency functions be nonzero.
It is obvious, that the stationary solution of (2.1)–(2.3): N (n, t) = Neq (n) (“eq” from “equilibrium”), n =

1, 2, ...,m, satisfies the relationships:

α (n)Neq (1)Neq (n) = β (n+ 1)Neq (n+ 1) , (3.1)

for n = 1, 2, 3, ...,m − 1, and the conservation law (2.7). In (3.1) for the stationary solution Neq (n) the rate of the
forward process (of the coalescence) equals the rate of reverse one (which is fragmentation) for each of such processes.
For the physico-chemical kinetic equations such relationships are called the condition of detailed balance. From (3.1)
and Neq (n+ 1)−Neq (n) ≡ ∆N1 (n) we have:

(α (n)Neq (1)− β (n+ 1))Neq (n) = β (n+ 1) ∆N1 (n) . (3.2)

From (3.1) we also obtain:

Neq (n) =
Nn
eq (1)

∏n−1
j=1 α (j)∏n

j=2 β (j)
for n = 2, 3, ...,m. (3.3)

This relation indicates that α (n) and β (n) is sufficient to determine the function Neq (n). Indeed, substituting
(3.3) in the conservation law (2.4) we obtain the equation for calculation of Neq (1).

Also, we can solve the reverse problem: due to (3.1) we are able to find the ratios of coefficients
β (n+ 1)

α (n)
, where

n = 2, 3, ...,m, by the stationary solution. Thus, according to (3.1), for the system of equations (2.1)–(2.3), we can
find the frequency function α (n) or β (n) by the stationary solution, if we know another frequency function: β (n) or
α (n).

Let us consider the same issue for hybrid (discrete and continuous) problem: the equation (2.11) on the interval
[n1, n2], which is supplemented by the system of equations (2.2)–(2.3) for n = 2, ..., n1−1 and for n = n2 + 1, ...,m
(if n2 < m), by the conservation law of the number of all molecules of the forming the phase substance in the system
(2.7) and by the boundary conditions (2.10), (2.11) for n2 < m or (2.10), (2.12) for n2 = m.

Let us denote the stationary solution of this problem asNeq (n) for n = 1, 2, ..., n1−1, n2+1, ..., nM and ψeq (n)
for n ∈ [n1, n2].

From equations (2.2), (2.3) for n = n2 + 1, ...,m (if n2 < m) we obtain that the stationary solution satisfies the
relationships of detailed balance (3.1) for n = n2, ...,m−1. According to this and (2.11), for n2 < m or due to (2.15)
for n2 = m:

J [Neq (1) , ψeq (n)]|n=n2
= 0. (3.4)

A stationary solution of (2.8) is determined by the equation J [Neq (1) , ψeq (n)] = C (t) for n ∈ [n1, n2].
According to (3.4) C (t) ≡ 0, and we have:

J [Neq (1) , ψeq (n)] ≡ (α (n)Neq (1)− β (n))ψeq (n)− d

dn
((α (n)Neq (1) + β (n))ψeq (n)) = 0 (3.5)

for n ∈ [n1, n2]. (2.10) gives that α (n1 − 1)Neq (1)Neq (n1 − 1) − β (n1)Neq (n1) = 0, and, therefore, from the
equations (2.2) for n = 2, . . . , n1 − 1 (if n1 > 2) we obtain that the stationary solution satisfies the relationships of
detailed balance (3.1) for n = 1, . . . , n1 − 2.

Thus, the stationary solution satisfies the following hybrid system of equations: the relationships of detailed
balance (3.1) for n = 1, 2, 3, ..., n1 − 1, n2, ...,m − 1, the equation (3.5) and the conservation law of the number of
all molecules of the forming the phase substance in the system (2.7).

As before, we subsequently find the values of Neq (n) for n = 2, ..., n1 through the value of Neq (1): the formula

(3.3). Then we solve the equation (3.5) with initial data Neq (n1) =
Nn
eq (1)

∏n1−1
j=1 α (j)∏n1

j=2 β (j)
and find Neq (n) for

n ∈ [n1, n2] through the value of Neq (1). So, in particular, now we know Neq (n2) ≡ ψeq (n2) through the value
of Neq (1). Then, we again use the relationships of detailed balance (3.1) for n = n2, . . . ,m − 1 and calculate the
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remaining values of Neq (n). Finally, we substitute all these values in (2.10) and find Neq (1). Thus, we find the
stationary solution by the frequency functions.

Also we can solve the reverse problem. So, the following theorem is valid.
Theorem. For the system of equations (2.7), (2.8) and (2.2), (2.3) for n = 2, . . . , n1−1 and for n = n2+1, ...,m

(if n2 < m) with the boundary conditions (2.10), (2.11) for n2 < m or (2.10), (2.12) for n2 = m the frequency
function α (n) or β (n) for n = 1, 2, ..., n1 − 1, n2 + 1, ..., nM − 1 and for n ∈ [n1, n2] can be calculated by the
stationary solution, if we know another frequency function.

The proof. The frequency function is determined by the relationships of detailed balance (3.1) for n = 1, 2, 3, ...,
n1 − 1, n2, ..., nM − 1, and the equation (3.5) for n ∈ [n1, n2]. According to the condition of detailed balance we

solve (3.5) with initial data β (n1) =
α (n1 − 1)Neq (1)Neq (n1 − 1)

Neq (n1)
, if we calculate β (n), and with α (n2) =

β (n2 + 1)Neq (n2 + 1)

(Neq (1)Neq (n2))
, if we calculate α (n).

4. The parameters of modeling distribution functions of particles of a nanodispersed substance

A distribution function by sizes φ (l) is usually used. It is such function, that
∫ l
l0
φ (l′) dl′ gives the number of

particles with sizes which are less than l and more than l0, where l0 is the smallest particle’s size. In equations, we con-
sider the distribution function by the number of molecules constituting the particle ψ (n) instead of φ (l), considering
that these functions are related to the fact that

∫ l
l0
φ (l′, t) dl′ =

∫ n(l)
n0

ψ (n, t) dn, where n (l) is a number of molecules

constituting a particle with size l. The total number of particles is N (t) ≡
∫ lM
l0

φ (l′, t) dl′ =
∫ nM

n0
ψ (n, t) dn, where

lM is the biggest particle’s size, nM is the largest number of molecules constituting a particle. The integral distribution

functions θ (l) are also considered: θ (l) ≡ 1

N (t)

∫ l
l0
φ (l′, t) dl′. They are normalized to the total number of particles

N (t). Thus, they take values from zero to one.
In order to describe the particle size distribution of powders, basically, four formulas are used in practice [22]: the

Gorden–Andreev [22, 23], the Rozin–Rammlar–Bennett [24], [22], the normal [25–29] or lognormal [25–28, 30–48]
distributions. In other research [27, 36, 37], it is considered the issue that distributions with only two parameters are
insufficient. Using of normal and lognormal distribution with l0 = 0 and lM → +∞ is inadvisable.

The Gorden–Andreev formula is the function with only two parameters:

θ (l) = Alq, (4.1)

which, generally speaking, is not an integral distribution function, as it tends to infinity when l → +∞, and integral
distribution functions should to take values from zero to one. It is applied for small l.

The Rozin–Rammlar–Bennett formula is also the distribution function with only two parameters:

θ (l) = 1− exp (−Alq) , (4.2)

and is the prototype of the functions with tree and four parameters, which we’ll consider further.
Let us note that the formula (4.1) is obtained as the first two terms of the decomposition in the Maclaurin series

of the function (4.2). This indicates its applicability for small l.
Let θe (l) (“e” from “experiment”) is the integral distribution function measured in the experiment for a discrete

set of sizes of particles. θe (l) =
Ne (l)

Ne
, where Ne (l) is a number of measured particles with size less than l, Ne is a

total number of measured particles. We’ll call such set of parameters for modeling functions, in which the minimum
of the deviation of the function θe (l) from θe (l) is achieved, as the optimal set of parameters.

The parameters of the distribution function are the smallest particle’s size l0 (it corresponds to the minimum
number of molecules in the cluster: n = n0): θ (l0) = 0, the median value lR (it corresponds to n = nR):

θ (lR) =
1

N (t)

lR∫
l0

φ (l′, t) dl′ =
1

N (t)

nR∫
n0

φ (n′, t) dn′ =
1

2
,

and the maximum particle size lM : θ (lM ) = 1. The value l0 is from the interval (0, l1). And it is required that
l0
l1
≈ 1,

because in the experiment particles with size smaller, than l1, aren’t registered.
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5. The classes of modeling integral distribution functions of particles of a nanodispersed substance

We considered the following classes of modeling integral distribution functions of particles of a nanodispersed
substance:

θ (l) = 1− exp (−ω (l)) , (5.1)

where we took the following functions ω (l), containing the power parameter (q):

ω (l) = ω1 (l) = a0 (Z1 (l))
q
, where a0 = ln 2, Z1 (l) ≡ l − l0

lR − l0
, (5.2)

and

ω (l) = ω2 (l) = a (Z2 (l))
q
, where Z2 (l) ≡ l − l0

lM − l
. (5.3)

The optimal values of the parameter q were fractional mainly in the range from one to three.
It is advisable to use the following class of functions:

θ (s) = 1− exp (−a1Z3 (s) (1 + a2Z3 (s))) , where Z3 (s) ≡ s

s0 − 1
. (5.4)

Here, a1, a2, s0 are parameters of the distribution function, s = γsl
2 is a square of a particle of a nanodispersed

substance, s0 = γsl
2
0. (In the one-dimensional case (in the case of chains of molecules) the square of the image of the

particle is proportional to l.) Equation (5.4) reasonably approximates the distribution functions of particles, which are
surfaces of initial particles. In this case, δ = 2 in (1.10), and we can rewrite (5.4) in the following form:

θ (n) = 1− exp

(
−a1

(
n

n0
− 1

)(
1 + a2

(
n

n0
− 1

)))
. (5.5)

So, according (1.2) we have the classes of functions:

θ (l) = 1− exp

(
−a1

(
lδ

lδ0
− 1

)(
1 + a2

(
lδ

lδ0
− 1

)))
, (5.6)

where δ = 1, 2, 3 respectively for chains, surfaces and volumes of initial particles.
We checked by calculations on the computer that the considered approximating functions describe well the exper-

imental distribution functions of particles of nanodispersed substances [49–52].

6. The relationships between parameters of approximating distribution functions of particles of a dispersed
substance and the coefficients of the equation of the Fokker-Planck type describing their kinetics

Now we try to connect the simple phenomenological formulas of Section 5 with the equations of the Fokker–
Planck type from Section 2.

The equation of the Fokker–Planck type has the form (2.8). The equation (2.8) is considered in the region n ∈
[n0,+∞), t ∈ [t0,+∞). When n < n0, the distribution function is equal to zero. If the functions G and D depend
only on time – it is the case of fixed number of active aggregation centers on the surface of the particle, then (2.8) has
the form:

∂ψ

∂t
= − ∂

∂n
J [N1, ψ] = −G (t)

∂ψ

∂n
+D (t)

∂2ψ

∂n2
, (6.1)

here, J [N1, ψ] ≡ −G (t)ψ +D (t)
∂ψ

∂n
. For Equation (6.1) after the substitution [53 (p. 309)]:

τ = τ (t) =

t∫
t0

D (x) dx+A, z = z (n, t) = n−
t∫

t0

G (x) dx+B, (6.2)

where A and B are constants, gives the equation for the function ψ̃ (z, τ) ≡ ψ (n, t):

∂ψ̃

∂τ
=
∂2ψ̃

∂z2
. (6.3)

Let us consider in the following exact solution of (6.3) (see, e.g., [53 (p. 233)]):

ψ̃ (z, τ) = C
z

τ3/2
exp

(
− z

2

4τ

)
. (6.4)
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In order, τ > 0, due to (6.2) the value of A should be positive (here we use that D (t) > 0). The function (6.4) is
nonnegative, if and only if z ≥ 0. So, according to (6.2) for any t ∈ [t0,+∞):

B ≥
t∫

t0

G (x) dx− n0. (6.5)

The condition of normalization gives the total number of all particles N (t) at any fixed moment of time t, and
due to (6.4) has the form:

N (t) =

+∞∫
n0

ψ (n, t) dn =

+∞∫
z(n0,t)

ψ̃ (z, τ) dz =
2C√
τ

exp

(
− (z (n0, t))

2

4τ

)
. (6.6)

From (6.4) and (6.6), we have:

θ =
1

N (t)

n∫
n0

ψ (n, t) dn =
1

N (t)

z(n,t)∫
z(n0,t)

ψ̃ (z′, τ) dz′ = 1− exp

(
(z (n0, t))

2

4τ

)
exp

(
− (z (n, t))

2

4τ

)
. (6.7)

Let us rewrite (5.5) in the form:

θ (n) = 1− exp

(
(n0 − b1)

2

4b2

)
exp

(
− (n− b1)

2

4b2

)
, (6.8)

where b1 = n0

(
1− 1

2a2

)
, b2 =

n20
4a1a2

.

So, due to (6.2) we have the same function in (6.8) as in (6.7), if

b1 (t) = n− z (n, t) =

t∫
t0

G (x) dx−B, b2 (t) = τ (t) =

t∫
t0

D (x) dx+A, (6.9)

We can check by the substitution, that the functions from the class (6.8) are solutions of (6.1), if and only if the
relationships (6.9) are valid.

The conditions (6.5) and τ > 0 are fulfilled, if for any t ∈ [t0,+∞) b1 (t) ≤ n0 (t), b2 (t) > 0. So, a1 (t) and
a2 (t) should be positive.

We’ll now strive to express the frequency functions G and D through the parameters of the simple phenomeno-
logical formulas of Section 5. From (6.9), we obtain b1 (t0) = −B, b2 (t0) = A, and:

t∫
t0

G (x) dx = b1 (t)− b1 (t0) ,

t∫
t0

D (x) dx = b2 (t)− b2 (t0) ,

or:

G (t) =
db1 (t)

dt
, D (t) =

db2 (t)

dt
(6.10)

According to the definition (2.16) of G (t) and D (t), they depend upon t only through the temperature T (t) and
the concentration of single molecules N (1, t): G (t) = g (T (t) , N (1, t)), D (t) = d (T (t) , N (1, t)). If T (t) and
N (1, t) are constant or their variations during time interval [t, t+ ∆t] are negligible, then according to (6.10) by two
measurements in the moments of time t and t + ∆t we can find the values of G = g (T,N1) and D = d (T,N1) for
the given temperature T and the concentration of single molecules N (1):

G =
b1 (t+ ∆t)− b1 (t)

∆t
=

(
n0 (t+ ∆t)

(
1− 1

2a2 (t+ ∆t)

)
− n0 (t)

(
1− 1

2a2 (t)

))/
∆t,

D =
b2 (t+ ∆t)− b2 (t)

∆t
=

1

4

(
n20 (t+ ∆t)

a1 (t+ ∆t) a2 (t+ ∆t)
− n20 (t)

a1 (t) a2 (t)

)/
∆t.

(6.11)

Varying system’s condition (considering different values of T and N (1, t)) and calculating in each case values of
G = g (T,N (1)) and D = d (T,N (1)) according to (6.11) we can find functions g (T,N (1)) and d (T,N (1)).

These formulas (6.11) connect the phenomenology of Section 5 with the Fokker–Planck type equation of Sec-
tion 2.
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Let us note, that we vary the value of N (1) in order to find the function α̃ (N (1)) in (2.17). If we have a rarified
gas, then we can assume the pair interaction. In this case, we can calculate α and β according (2.9), where N (1) is
calculated according (2.15). In this case, we need not vary N (1), and we can even calculate the frequency function
without the condition that N (1, t) is constant during time interval [t, t+ ∆t].

We can consider other approximating functions instead of (5.5). For example, we can obtain the relationships
between the parameters of normal distributions by n with n ∈ [n0,+∞) and the coefficients of the equation of the
Fokker–Planck type (6.1) (the case, when G and D depend only on time). The choice of which approximating class of
functions (or which solution of the equation of the Fokker–Planck type) is realized depends upon the law of varying
of the number of particles with minimum size n0, which determines the initial data and the boundary condition on the
left bound of the continuum distribution.

We have two one-dimensional functions in the coefficients of (6.1): G (t) and D (t). In order to determine
these, we need at least two independent parameters in modeling class of functions depending upon time. The further
development of the solving of this problem is to consider the case, when G and D depend upon n with the number of
parameters depending upon time more or equal to the number of one-dimensional functions in the coefficients of (2.8).

Thus, by two measurements of the distribution function of particles of a nanodispersed substance, we have learned
to find the frequency functions, in the case when the temperature T and the concentration of single molecules of the
forming the phase substance N (1) are constant or their relative variations is negligible. Varying system’s condition,
we can find frequency functions in dependence on T and N (1).

7. Discussion of the results

In the present paper, we considered the connection between the discrete equations describing the kinetics of
particles of a dispersed substance and the continuum one, in the case when only single molecules integrate with or
fragmentize from the particles, i.e. in the Becker–Döring case: equations (2.1)–(2.3). We obtained hybrid systems of
equations, which have both discrete and continuum parts.

We considered the basic known simulating (approximating) distribution functions (formulas (4.1)–(4.6)) and new
ones and their parameters. The exact solutions of the equation of the Fokker–Planck type, which gives distribution
functions of particles of a nanodispersed substance, are found, and we learned to find frequency functions by the
parameters of the modeling distribution functions.

Let us note that the consideration of the H-theorem for nonlinear systems with discrete time, in particular, even
for the Becker–Döring system of equations, becomes an extremely important problem as the computer simulation has
a significance in the solution of fundamental problem of the creating of new materials. In the linear case, the transition
from continuous time to discrete gives the transition from a Markov process to a Markov chain and the H-theorem
is valid and studied (see [54] and references in it, [55]). In the nonlinear case, for explicit time discretization it is
fulfilled in rare cases [19, 20] and for the implicit one, it is investigated in [20, 21]. The diffuse approximation is
widely used for the modeling of crystallization processes of a dispersed substance [5–8]. Therefore, the consideration
of the H-theorem for it is of interest.

The equation of the Fokker–Planck type allows one to understand, to explain and even, if the initial information
is enough, to predict the behaviors of the experimental distribution functions by properties of particles of a dispersed
substance.

All approximating distribution functions considered in the present paper were single humped. But, of course, it is
required not only such functions for practical problems: for example, with more than one extremum [56, 57].

We have considered the distribution function of particles of a dispersed substance by the number of constituting
of them molecules, because it is the basic parameter. Sometimes other parameters may be also very essential in a
counterbalance to the distribution by sizes. The simplest distribution function by this parameter is such, when we
take into account only monomers and dimers. It may be used for some practical problems. The state of each particle
is characterized by many parameters. Even dimers are such, and one can consider the distribution function by these
parameters [58]. And, of cause, very often, it is needed to investigate the distribution function by sizes and other
parameters with its value, which is not only number or concentration of particles [29]. In these cases the distribution
functions can have interesting plots [29]. And certainly, distribution functions of single initial particles (molecules,
atoms, etc.) or nucleation centers are also considered [59].

It turned out that three-parameter functions of the type (5.6), which are more informative than the commonly used
normal and log-normal distributions, and also the distributions (4.1), (4.2), have become available for determining.
The availability of three-parameter distribution functions is indicated, in particular, by the data published in [52] about
variations in the properties of nano-vesicles – niosomes, when they are heated to different temperatures.
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FIG. 1. Integral distribution functions of particle size in niosomal dispersions after heating at 303 K
(1), 313 K (2), 323 K (3) and 333 K (4)

TABLE 1. Distribution parameters of distribution functions (7.1) of particle size in niosomal disper-
sions after heating to temperatures of 303 K (1), 313 K (2), 323 K (3) and 333 K (4)

Temperature 303 K (1) 313 K (2) 323 K (3) 333 K (4)

l0, ±0.1 nm 46.6 49.7 50 25.1

a1, ±0.01 0.105 0.24 0.234 0.04

a2, ±0.001 0,001 0,087 0,001 0,058

Processing of these data showed that the studied niosomes had size distributions (Fig. 1) in accordance with the
distribution function of the type (5.6), namely:

θ (l) = 1− exp (−a1Z (l) (1 + a2Z (l))) , (7.1)

where Z (l) ≡ l2

l20
− 1, a1, a2, l0 are distribution parameters.

When heated, niosomes were compressed while retaining the three-parameter function θ (l), and it cannot be ruled
out that when heated at T = 333 K, they were transformed into a heat-resistant state characterized by a parameter
l0 = 25 nm. It is also possible that additional information on the kinetics of such a transition can be extracted from
the functions a1 (T ) and a2 (T ).

The distribution functions retain their informative value when the system transitions to an equilibrium state, as
indicated by equations (3.1), containing parameters α (n) and β (n). According to these relations, particles of different
sizes can be present in the equilibrium system. The theorem of Section 3 indicates that it is possible to use data on the
equilibrium distribution function to determine the kinetics for the formation and fragmentation of aggregates.

Relations (3.1) and (7.1) characterize the morphological diversity of dispersed systems, the distribution of particles
by properties of which preserves information about the kinetics of the processes occurring in the systems.
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Nanocrystalline cerium dioxide is known as a unique redox active nanomaterial. Cerium dioxide is considered as the basis for future biomedical
preparations, including radioprotectors. In the framework of this study, we synthesized citrate-stabilized CeO2 nanoparticles and carried out
a comprehensive in vitro assessment of their radioprotective properties on a NCTC L929 murine fibroblast culture. It was shown that CeO2

nanoparticles ensure the survival of murine fibroblasts, even after high-dose X-ray irradiation, reducing the number of dead cells in the culture and
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1. Introduction

Nanocrystalline cerium dioxide is a synthetic nanomaterial that is widely used in modern high-tech industries [1].
In recent years, cerium dioxide nanoparticles have been considered as one of the most promising nanobiomaterials [2].
It was shown that, due to their unique antioxidant activity, CeO2 nanoparticles are able to inactivate a wide range of
free radicals and reactive oxygen species (ROS) in various models of oxidative stress, including exposure to ionizing
radiation [3]. It was established that unique properties of nanodispersed cerium dioxide allow this material to exhibit
enzyme-like activity, for example, as a synthetic analogue of superoxide dismutase, peroxidase, haloperoxidase, phos-
phatase, esterase, etc. [4]. The low toxicity and high biocompatibility of nanodisperse CeO2 ensure the comparative
safety of its application in vivo, which allows one to consider this material as a promising component of drugs and
medicinal preparations. We have previously found [5] that CeO2 nanoparticles are able to prevent the development
of oxidative stress induced by ionizing radiation not only by direct inactivation of free radicals, but also indirectly, by
modulating the expression of a number of genes involved in key intracellular enzyme cascades. The unique physico-
chemical characteristics of cerium dioxide nanoparticles and their biological activity make it possible to consider this
nanomaterial as a promising radioprotector with a complex mechanism of protective action.

Caputo et al. have demonstrated on a HaCat keratinocyte culture that CeO2 nanoparticles reduce the number of
DNA breaks caused by exposure to X-ray radiation, weakening mutagenesis [6]. Wason et al. showed that activation of
c-Jun terminal kinase (JNK), a key driver of radiation-induced apoptosis, was significantly enhanced by the combined
action of CeO2 nanoparticles and ionizing radiation in pancreatic cancer cells in vitro, as well as in pancreatic tumors
of naked mice in vivo as compared to using CeO2 nanoparticles or radiation therapy alone. These data demonstrate
the important role of CeO2 nanoparticles in the selective destruction of cancer cells and show new prospects for the
use of CeO2 as a radiosensitizer [7].

Xu et al. [8] showed that the intraperitoneal administration of CeO2 nanoparticles to CBA/J mice exposed to
radiation at a dose of 15 Gy resulted in a significant increase in their survival. In the corresponding experiments, CeO2

nanoparticles were administered to mice intraperitoneally twice a week for 4 weeks. At 160 days after irradiation, 90 %
of mice which received 10 µM CeO2 nanoparticles injection survived, compared with 10 % survival rate for mice that
did not receive the nanoparticles and 30 % survival rate for mice which received a lower dose of CeO2 nanoparticles
(100 nM). Zal et al. showed that CeO2 nanoparticles reduced to 73 % the number of cytogenetic incidences induced
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in lymphocytes by irradiation at a dose of 1.5 Gy, in comparison with the control group. The introduction of CeO2

nanoparticles significantly reduced the number of apoptotic and necrotic cells in the culture of human lymphocytes [9].
Colon et al. have demonstrated the radioprotective efficacy of cerium dioxide nanoparticles (10 nM) on a culture

of normal human lung fibroblasts. Cells were irradiated at a dose of 20 Gy, and after 48 hours, their viability was
assessed, which correlated with the concentration of CeO2 nanoparticles. At the same time, CeO2 nanoparticles did
not protect cancer cells of the A549 line. It is worth noting that nanocrystalline cerium dioxide was found to be
superior to Amifostin – a clinically used radioprotector [10], in a series of model in vivo experiments performed for
nude athymic mice. The radioprotective properties of nanodisperse cerium dioxide in the culture of gastrointestinal
epithelium were studied [11]. The pretreatment of the culture with cerium dioxide nanoparticles provided a dose-
dependent protection against radiation damage by reducing the production of ROS and increasing the expression of
SOD2. It was shown [12] that the use of nanosized cerium dioxide can reduce xerostomia and dermatitis after exposure
to ionizing radiation. Using two types of cell culture as examples (MCF-7 cancer cells and normal CRL-8798 cells),
the selective cytotoxicity of cerium dioxide nanoparticles was revealed [13]. It was additionally shown, by the example
of radiation-resistant 9L gliosarcoma cells, that the radioprotective effect of cerium dioxide nanoparticles is a function
of the irradiation energy [14]. The radioprotective properties of cerium dioxide were manifested when cells treated
with cerium dioxide nanoparticles were exposed to high-energy X-ray radiation. On the other hand, low-intensity
radiation promoted the formation of Auger electrons by interaction with the surface of cerium dioxide nanoparticles,
which significantly reduce cell viability.

The synthetic method used for CeO2 nanoparticles determines their physicochemical characteristics, which in
turn dictate their biological activity [15, 16]. In the framework of this study, we synthesized citrate-stabilized CeO2

nanoparticles and carried out a comprehensive assessment of their radioprotective properties in vitro for a NCTC L929
murine fibroblast culture line.

1.1. Materials and methods

1.2. Preparation and analysis of physicochemical properties of CeO2 nanoparticles

The aqueous sol of nanocrystalline cerium oxide stabilized by citrate ions was used in the present work. It was
obtained by dissolving 0.24 g of citric acid in 25 ml of 0.05 M aqueous solution of cerium (III) nitrate, which was
then rapidly added with stirring to 100 ml of a 3 M ammonia solution and then kept for 2 hours [17]. Transmission
electron microscopy testified that the sol consisted of weakly aggregated nearly isotropic 2 – 3 nm CeO2 particles.
The concentration of CeO2 nanoparticles in the sol was 0.01 M. The pH value of the sol was in the range of 7.2 – 7.4.
Just before biological experiments, CeO2 nanoparticles were precipitated by acidifying the sol with 10 % hydrochloric
acid to pH = 3, followed by centrifugation at 20 ◦C, at 11200 g for 10 minutes. The precipitated nanoparticles were
resuspended in distilled water and re-centrifuged under the same conditions. The resulting precipitate was resuspended
in the culture medium DMEM/F12 + 10 % fetal bovine serum (Gibco).

1.3. Cell culture

The NCTC L929 murine fibroblasts were cultured in DMEM/F12 (1:1) medium with the addition of 10 % fetal
bovine serum and 100 U/ml penicillin/streptomycin under 5 % CO2 at 37 ◦C.

1.4. MTT assay

The determination of mitochondrial and cytoplasmic dehydrogenases activity in living cells was carried out using
a MTT assay based on the reduction of the colorless tetrazolium salt (3-[4.5-dimethylthiazol-2-yl]-2.5-
diphenyltetrazolium bromide, MTT). After 24 hours of cell incubation with different concentrations of CeO2 nanopar-
ticles, 0.5 mg/ml of MTT reagent was introduced into the wells by replacing the culture media, followed by a standard
MTT assay.

1.5. Live/Dead assay

Assessment of the viability of the cells cultured in the presence of CeO2 nanoparticles was performed on a Carl
Zeiss Axiovert 200 microscope. An L-7007 LIVE/DEAD BacLight Bacterial Viability Kit (Invitrogen) was used for
the assay, which included a SYTO 9 fluorescent dye (absorption – 420 nm, emission – 580 nm) and a propidium iodide
(PI) dye (absorption – 488 nm, emission – 640 nm). The dyes were added to the medium (1 µg/ml) and the plate was
placed in a CO2 incubator for 15 min. Microphotographs were taken after washing the cells with a phosphate-buffered
saline.
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1.6. Confocal and scanning electron microscopy

The cells were seeded on the surface of glass slides in Petri dishes (Ibidi, Germany) at a density of 103 per cm2.
After cell seeding for 24 h, 10−5 M of CeO2 nanoparticles was added to the culture medium. After incubation (24 h)
the medium in the plates was replaced with HBSS containing DNA-tropic fluorescent dye Hoechst-33342 (excitation
at 345 nm, emission at 487 nm). The morphology analysis of the cells was carried out using an upright confocal
microscope LSM-510 with multiphoton excitation of fluorescence and an image analysis system.

After a 24 h cultivation period, the cells on the cover slips were washed with a 0.1 M phosphate buffer (pH 7.2) and
fixed with a 2.5 % solution of glutaraldehyde in the same buffer for 2 h at room temperature to prepare the samples for
scanning electron microscopy (SEM) analysis. After the samples were dehydrated in ethanol solutions (50 – 100 %)
at 4 ◦C, ethanol was replaced with hexamethyldisilazane. The resulting preparations were studied on a Carl Zeiss
NVision 40 workstation at an accelerating voltage of 0.5 kV.

1.7. X-ray irradiation

X-ray irradiation was conducted using an X-ray therapeutic machine RTM-15 (Mosrentgen, Russia) with a dose
of 15 Gy for cell culture at a dose rate of 1 Gy min−1, 200 kV voltage, 37.5 cm focal length and 20 mA current.

1.8. Real-time PCR

Total RNA from the sample cells was isolated using an RNA extraction kit (SINTOL, Russia). Reverse tran-
scription reaction was carried out using a kit for RT (SINTOL, Russia). Real-time PCR amplification was performed
using a thermocycler ANK-32 (SINTOL, Russia). Primers used for estimation of transcription level for the analyzed
gene and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) (reference gene) were supplied by SINTOL. A kit
(SINTOL, Russia) containing SYBR Green I intercalating dye was used for real-time PCR. Then the threshold cycle
values obtained in the result of PCR were determined (Table 1).

TABLE 1. The primers (sequence) of analyzed genes

Name of gene Gene primers

IL-6
F: cttccatccagttgccttcttg

R: ttgggagtggtatcctctgtga

CuZnSOD
F: gtaccagtgcaggacctcatttt
R: gtctccaacatgcctctcttcat

GAPDH
F: atgtgtccgtcgtggatctga
R: cctgcttcaccaccttcttga

MnSOD
F: ccacacattaacgcgcagat
R: ggtggcgttgagattgttca

Gpx-1
F: ccaccgtgtatgccttct

R: gagacgcgacattctcaatga

GSR
F:aaagaagaccccatcgggctcgg
R:agagaggcaatcgacatccggaa

1.9. Statistical analysis

The experiments were carried out in 3 – 4 replicates and analytical determinations for each sample were performed
in duplicate. The results were compared with the control experiment. Methods of variation statistics were applied
to estimate the reliability of the results. To assess the statistical significance, the Mann-Whitney U test was used
(p ≤ 0.05). The obtained data were processed using Microsoft Excel 2007 software.

2. Results and discussion

Cerium oxide nanoparticles were synthesized by a facile precipitation method using citric acid as a stabilizer.
TEM images (Fig. 1(a)) of CeO2 nanoparticles confirmed their ultra-small dimensions (2 – 3 nm). They have a qua-
sispherical shape and are sufficiently monodisperse. Maximum optical absorbance of citrate-stabilized nanoparticles
is at 320 nm (Fig. 1(b)). Dynamic light scattering allowed to determine the mean hydrodynamic radius of cerium
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FIG. 1. image of citrate-stabilized cerium oxide nanoparticles (a), UV-vis absorption spectrum (b),
hydrodynamic radii distribution of citrate-stabilized cerium oxide nanoparticles (c), potential of
citrate-stabilized cerium oxide nanoparticles (d)

oxide nanoparticles diluted in DMEM/F12 + 10 % FBS culture medium, which amounted about 5 – 7 nm (Fig. 1(c)).
Negative zeta potential (∼ −65 mV) of CeO2 nanoparticles is provided by the citrate ions on their surface (Fig. 1(d)).

It is known that the UV-vis spectra of cerium dioxide sols can contain two absorption bands due to the presence
of cerium in different valence states (+3 and +4) [18]. In the nonstoichiometric (reduced) state, CeO2 nanoparticles
exhibit luminescence of Ce(III) ions at 390 nm [19]. To that end, with a decrease in CeO2 particle size, a bathochromic
shift of the luminescence maximum and an increase in its intensity are observed [20]. Given these spectral character-
istics of CeO2 nanoparticles, we investigated their intracellular localization by confocal microscopy. The intracellular
localization of nanoparticles was confirmed (Fig. 2). CeO2 nanoparticles are distributed over the entire cytoplasm
of the cell, which is shown by a characteristic green glow (Fig. 2(b)), while in the control group (without CeO2

nanoparticles) the green glow is not observed (Fig. 2(a)).
An in vitro study of the radioprotective effect of cerium dioxide nanoparticles was carried out using NCTC L929

murine fibroblast culture. To optimize the radiation dose, we performed preliminary studies that showed that X-
rays at doses of 5 and 10 Gy do not cause damage, which are reliably detected at the cellular level after 24, 48 or
72 hours. However, a dose of 15 Gy reveals significant violations of cell structures and metabolism (40 % decrease
in dehydrogenase activity according to the MTT test, morphological changes and the presence of dead cells) in a
fibroblast culture within 72 hours after irradiation. It was found that preliminary incubation of NCTC L929 cell lines
with CeO2 nanoparticles increases their viability (up to control values) (Fig. 3). It should be noted that all the tested
concentrations of CeO2 nanoparticles (10−5 – 10−9 M) increased the cell viability after irradiation in a dose-dependent
manner.

A comparative analysis of cell viability using the LIVE/DEAD fluorescence test (Fig. 4) showed that preliminary
treatment of cells with CeO2 nanoparticles at the concentration of 10−5 M significantly reduces the number of dead
(stained with propidium iodide) cells protecting the cell culture from the negative effects of ionizing radiation. The
data obtained indicate that CeO2 nanoparticles prevent the development of oxidative stress after exposure to X-ray
radiation.

The radiolysis of water that occurs in the cytoplasm of cells under the action of ionizing radiation leads to the
generation of a large number of free radicals and reactive oxygen species, which damage the cellular structures,
ultimately leading to its death [21]. We have previously shown that the main contribution to the radioprotective effect
of CeO2 nanoparticles is precisely the decrease of intracellular ROS concentration due to chemical inactivation of
water radiolysis products on the surface of nanoparticles [5]. At the same time, we revealed a complex mechanism
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FIG. 2. Confocal images of NCTC L929 fibroblasts after 24 h exposure with cerium oxide nanopar-
ticles (a – control, b – CeO2 nanoparticles, 10−4 ). DAPI dye was used for nuclear staining. Mor-
phological analysis of NCTC L929 fibroblasts after 24 h incubation with cerium oxide nanoparticles
(c – control, d – CeO2 nanoparticles, 10−4 )

FIG. 3. Dehydrogenase activity of NCTC L929 fibroblasts after treatment with CeO2 nanoparticles
72 h after exposure to X-rays at a dose of 15 Gy, as assessed by MTT-test. Control – 15 Gy without
CeO2 nanoparticles. * – Significant differences estimated by the U Mann–Whitney test, p < 0.005

for the radioprotective action of nanocrystalline cerium dioxide, which, in addition to chemical protection, involved
physical and biological protection. The physical protection is realized through the absorption of ionizing radiation
by CeO2 nanoparticles and biological protection – through the activation of genes expression responsible for the
development of oxidative stress in the cell.

The expression of four key antioxidant enzymes (SOD1, SOD2, glutathione peroxidase-1 and glutathione reduc-
tase) was further studied by real-time polymerase chain reaction (PCR) upon exposure of the cells to X-rays in the
presence of CeO2 nanoparticles (Figs. 5, 6). The glutathione reductase/glutathione peroxidase (GR/GP) system is an
essential component of the body’s antioxidant defence, which maintains the intensity of free radical oxidation at a
stationary level [22]. Due to the GR/GP system functioning in mammalian cells, the inactivation of hydroperoxides
and peroxides is achieved, which are the main source of the hydroxyl radical formed in the Fenton reaction in the
presence of Fe2+ ions [23]. Glutathione reductase (GR) is a common flavin enzyme that catalyzes the reversible
NADPH-dependent reduction of oxidized glutathione (GSSG) [24]. The biological role of GR is to maintain a high
intracellular concentration of reduced glutathione (GSH) without increasing its production.
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FIG. 4. Viability of murine fibroblasts (NCTC L929 cell line) treated with CeO2 nanoparticles 72 h
after exposure to X-rays at a dose of 15 Gy, as assessed by Live/DEAD assay. Control – cells without
CeO2 nanoparticles

It was shown that exposure to X-rays at a dose of 10 Gy leads to an increase in the expression of glutathione
peroxidase-1 by a factor of 25 in comparison to the unirradiated control (Fig. 5). Pre-treatment of L929 cells with
CeO2 nanoparticles reduces the expression level of this enzyme by 2.5-fold. It can be assumed that a large number
of radicals formed upon exposure to X-ray radiation are directly inactivated by CeO2 nanoparticles, which exhibit
activity similar to natural antioxidant enzymes of the cell including glutathione peroxidase-1. At the same time,
the level of glutathione reductase transcripts remains close to the control of the treated cells, which, apparently, is
associated with the need to maintain a high level of reduced glutathione after exposure to X-ray radiation. The change
in the expression of Mn-superoxide dismutase (MnSOD) occurs upon incubation with cerium dioxide nanoparticles
even without exposure to ionizing radiation.

Literature data [25–28] confirm the dominant role of MnSOD in protecting cells from oxidative stress induced
by ionizing radiation. It was also previously shown that preincubation of colon cells [29] with CeO2 nanoparticles
leads to overexpression of MnSOD. There is much evidence that some forms of ROS act as signaling molecules,
suggesting a much more complex role for ROS in genome expression and post-translational protein modification than
it was assumed previously. For example, two transcription factors (NF-kB and AP1) are involved in intracellular
redox signaling, which controls the induction of pro-inflammatory cytokines, as well as the control of the expression
of MnSOD and similar antioxidants. Recent studies showed that nanocrystalline cerium dioxide is able to modulate
cellular oxidative signaling pathways that are closely associated with inflammation through activation of JNK kinase,
mitogen-activated protein kinase, and p38 protein [7, 30].

Using the www.genemania.org resource, we built a map of signaling pathways that involves the studied
genes (Fig. 6). We conducted a study of the interleukin-6 expression – the cytokine involved in pro-inflammatory
reaction. The results provide evidence that almost triple increase of expression occurs after exposure to ionizing radi-
ation. Cerium dioxide nanoparticles do not cause an increase in the expression of the proinflammatory cytokine, and
provide its reduction to the control level when exposed to ionizing radiation (Fig. 5).



570 N. R. Popova, T. O. Shekunova, A. L. Popov, I. I. Selezneva, V. K. Ivanov

FIG. 5. Gene expression of SOD1, SOD2, GPX-1, GSR and IL-6 in murine fibroblast cell line
NCTC L929 24 h after incubation with CeO2 nanoparticles (10−5 ) and X-ray irradiation at a dose
of 10 Gy

3. Conclusions

The data obtained indicate that cerium dioxide nanoparticles are able to modulate the expression level of key
cellular antioxidant enzymes, providing a radioprotective effect upon exposure to high doses of X-rays.
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FIG. 6. Gene map of signaling pathways involved in SOD1, SOD2, GPX-1, GSR and IL-6 action
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In this work, a facile and cost-effective layer by layer method was proposed to synthesize novel high stable and effective electrode material based on
the Co-doped Cu(OH)2 nanocrystals. The crystals have orthorhombic structure and a rod-like morphology with a 23±2 nm in width and 43±4 nm
in length. The composition of the nanocrystals corresponds to the 1 % Co-doped Cu(OH)2 by EDX with no noticeable impurities as it was found by
FTIR spectroscopy. It was shown that nickel electrode modified with nanorods is characterized by an overvoltage value of −347 mV at 10 mA/cm2,
which is 250 mV lower than that of an initial pure nickel electrode. The value of Tafel slope that reaches 138 mV/dec, high stability of the Co-doped
Cu(OH)2 nanorods in chronopotentiometric (10 hours) and cyclic volamperometric (500 cycles) tests allows us to consider them as a prospective
basis of electrode materials for the hydrogen evolution from renewable water-alcohol sources.

Keywords: copper hydroxide, nanocrystals, successive ionic layer deposition, hydrogen evolution, electrocatalytic reforming.

Received: 13 June 2019

Revised: 18 September 2019

1. Introduction

The interest in the development of a clean and renewable energy source has been increased over the last few
decades due to increased energy needs, the depletion of fossil fuel reserves and environmental pollution. Hydrogen
is most often considered as such energy source [1]. There are various methods of hydrogen production, such as
steam reforming [2], water electrolysis [3, 4], biological processes [5] and photoelectrolysis [6, 7]. In recent years, a
method of hydrogen production from water-alcohol mixtures (or, as it is called electrochemical reforming or ECR)
is being developed as an alternative technique to the water electrolysis because of the lower energy requirements [8].
However, the wide application of this method is limited because of the scarcity and high cost of Pt electrodes. Thus,
the alternative electrode materials are the main research objective in this area.

Various cost-efficient nanomaterials have been developed for hydrogen evolution reactions, including oxides [9,
10] sulfides [11–13], phosphides [14–16], carbides [17], nitrides of d-elements [18], and composites with other ma-
terials [19–21]. However, among them, Cu-based materials are much less explored for hydrogen evolution, due to
the instability and low catalytic efficiency, despite the fact that such materials have much higher electrical conductiv-
ity [22]. Those Cu-based materials seem to be promising electrode materials, basic for the ECR process, in the cases
of solving the problem of their effective production and increasing of their functional characteristics.

There are two main strategies for improving the hydrogen evolution performance of Cu-based materials: the first
one is to form nanocomposites by heteroatom doping; and the second is to construct nanostructures with specific
morphologies with high surface area, such as nanowires, nanotubes, and nanosheets [23–25]. Both of strategies, as it
will be shown below, can be attained by using successive ionic layer deposition (SILD) which is a kind of layer-by-
layer methods [26, 27].

The layer-by-layer method is one technique that allows the synthesis of the nanocomposites mentioned above [28–
30]. It is based on the sequential absorption of precursors on the substrate surface, followed by the removal of
excess reagents. The result is a film of the synthesized substance, the thickness of which increases with repetition of
adsorption reactions in proportion to the number of processing cycles [31]. This approach allows one to synthesize
nanoparticles with non-isometric morphology and to finely vary their composition by changing the composition of the
reaction solutions. So, the aim of this work is to investigate the structure and electrochemical properties of Co-doped
Cu(OH)2 non-isometric nanoparticles, synthesized via the SILD method, and the possible use of this nanocomposite
as a suitable material for hydrogen evolution via electrochemical reforming of the water-ethanol solution.
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2. Experimental

Monocrystalline silicon plates with the orientation of [100] and nickel foam plates (JSC ECAT, 90 PPI) with the
size of 5 × 20 mm were used as substrates for nanocomposite synthesis. Before synthesis, these plates were treated
in acetone for 10 minutes in an ultrasonic bath. Then, silicon plates were etched with concentrated HF for 15 minutes
and nickel foam plates were treated with 6 M HCl solution for 15 minutes. After that, the silicon plates were treated
for 20 minutes in dilute aq. KOH solution with pH = 9.0. Finally, all wafers were washed with deionized water and
air-dried at 80◦ for 30 minutes.

The nanocomposite was synthesized on the substrates using a layer-by-layer technique. During the synthesis, the
wafers were immersed for 30 seconds into the solution containing 0.1 M Cu(CH3COO)2 and 0.01 M Co(CH3COO)2,
distilled water, solution of NaOH with pH = 9 and again distilled water. This treatment considered as one layer-by-
layer cycle.

The elemental analysis and morphology of the synthesized sample were studied by energy dispersive X-ray analy-
sis (EDX) and scanning electron microscopy (SEM) using Tescan Vega 3 SBH scanning electron microscope equipped
with an Oxford INCA x-act X-ray microanalysis device. X-ray phase analysis was performed on a RigakuSmartLab 3
X-ray powder diffractometer, phase analysis of the composition was performed using ICDD PDF-2 powder database.
The average crystallite size (coherent-scattering regions) was calculated from the broadening of X-ray diffraction
lines using the Scherrer formula. FTIR spectra were obtained using Shimadzu IRTracer-100 FTIR spectrometer in the
spectral range from 350 cm−1 to 4000 cm−1 with a spectral resolution 2 cm−1.

Electrochemical properties of obtained electrodes for electrochemical reforming were investigated using potentio-
stat Elins P-45X and a three-electrode cell. Nickel foam plate with nanocomposite film deposited via the layer-by-layer
method was used as a working electrode, the Ag/AgCl electrode was used as reference electrode and a platinum foil
was used as a counter electrode. All measurements have been carried out at atmospheric pressure and room temper-
ature in aq. 1 M KOH solution with 10 % (by volume) ethanol as the electrolyte. The voltammogram was made at
5 mV/s sweep rate with IR compensation (1.3Ω). Chronopotentiogram was made at a current density of −10 mA/cm2.

3. Results and discussions

According to the XRD pattern (Fig. 1), the only phase in the sample is copper (II) hydroxide Cu(OH)2 with the
orthorhombic structure (JCPDS 13-420) with Cmcm space group.

FIG. 1. XRD pattern of Co-doped Cu(OH)2 nanorods on a silicon wafer

Refining of the unit cell parameters of this sample using Rietveld method yielded the following results: a =
2.9489 Å, b = 11.1141 Å, c = 6.2414 Å, α = β = γ = 90◦, Rwp = 5.41 %. A significant difference in the
broadening of the X-ray diffraction lines in individual crystallographic directions indicates the anisotropic shape of
the Cu(OH)2 crystallites. Analysis of these data using the Scherrer formula allowed us to establish the size of coherent
scattering region: in the [111] direction – 23±2 nm, in the [002] direction – 43±4 nm. Thus, taking into account
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the exact arrangement of these crystallographic planes in crystals with an orthorhombic structure [32], it could be
concluded that the obtained nanocrystals have a morphology of nanorods, which is also confirmed by scanning electron
microscopy (Fig. 2(b,c,d)).

FIG. 2. a – EDX spectrum; b,c,d – SEM images of Co-doped Cu(OH)2 nanorods on a silicon wafer

The results of scanning electron microscopy indicate that the synthesized nanocrystals of Co-doped Cu(OH)2 are
in the sample in the form of agglomerates with micron sizes (Fig. 2(a)). Only at a higher magnification, it becomes
noticeable that each agglomerate consists of a large number of copper hydroxide nanorods. However, the nanorods
observed on SEM images have a submicron length, which differs from the crystallite lengths, about 40 nm, estimated
on the base of X-ray diffractometry data. Thus, these submicron nanorods are non-oriented intergrown nanocrystals
of Co-doped Cu(OH)2. The similar structure of micron and submicron rods based on intergrown nanocrystals was
observed earlier in work [33]. The EDX analysis shows that synthesized nanocrystals include cobalt atoms with
Cu/Co ratio equal to 99.0 %: 1.0 %. Thus, 1 % Co-doped Cu(OH)2 nanorods were synthesized as a result of the
successive ionic layer deposition.

Figure 3 shows the FT-IR spectra of the obtained nanocomposite. The strong and broad absorption band at around
3300 cm−1 and a sharp peak at 3571 cm−1 is attributed to the stretching mode of –OH groups, which indicates the
presence of hydroxyls in the free water and in the copper hydroxides, correspondently. The bands at 913, 1358, and
1561 cm−1 are attributed to the bending mode of H2O and CO2 coordinated to metal ions [34] that is the result
of adsorption of these substances by the developed surface of the hydroxide obtained. Three intense bands at 683,
610, and 512 cm−1 are attributed to Cu–O vibrations and additionally confirm the presence of copper hydroxide. No
absorption bands were detected, associated with the presence of cobalt and only a subtle shift in the absorption bands
of the Cu–O bonds was observed with respect to pure copper hydroxide [26].

The electrochemical investigations show that the synthesized nanocomposite could be successfully used in elec-
trochemical reforming of ethanol. Electrocatalytic properties were characterized by cyclic voltammetry and chronopo-
tentiometry shown in Fig. 4.

The overpotential of hydrogen evolution for the initial sample and the sample after 500 cycles of charge-discharge
was determined from the polarization curves obtained at 5 mV/s scanning rate. The initial sample shows overpotential
about −347 mV at current density 10 mA/cm2. For the original nickel electrode, the overpotential value at this current
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FIG. 3. FTIR spectrum of Co-doped Cu(OH)2 nanorods

FIG. 4. a – polarization curves, b – Tafel slop, c – cyclic stability and d – chronoamperogramm of
Co-doped Cu(OH)2 nanorods
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density is about −600 mV, thus the overvoltage on the cobalt-doped copper hydroxide electrode improved by 250 mV
and approached the advanced electrode materials based on d-elements oxides [3, 4, 20]. A slight difference in the
change of overpotential after 500 charge-discharge cycles indicates good electrochemical stability and low degradation
of the obtained material.

The microkinetic characteristics of the samples were determined from the Tafel slope. The value of the Tafel slope
was calculated using formula η = a · log(i), where η – overpotential of HER reaction, i – current density, a – Tafel
slope, from the linear part of the overpotential and it reaches 138 mV/dec and 163 mV/dec after 500 charge-discharge
cycles (Fig. 4(b)). The obtained value of the Tafel slope is characteristic for electrocatalyst based on transition metal
oxides and hydroxides during the HER reactions in an alkaline aqueous medium, as was previously noted [35]. It
should be noted that after 500 charge-discharge cycles, the Tafel slope increases significantly (by 25 mV/dec), which
indicates a change in the mechanism of hydrogen evolution from the catalyst surface. In our opinion, the observed
effect may occur due to a change of surface morphology during cycling, at the same time the overvoltage changes
insignificantly. The chronopotentiometry was used to characterize the stability of the material in a stationary mode at
a given current density of 10 mA/cm2. The measurements show that this nanocomposite is effective through all 10
hours of work and 500 cycles of voltammetry. Thus the results of electrocatalytic studies confirm that the Co-doped
Cu(OH)2 synthesized via successive ionic layer deposition can be considered as an effective and high stable material
for hydrogen production by electrocatalytic reforming of water-ethanol solutions.

4. Conclusion

In this work, a successive ionic layer deposition method was used to synthesize Co-doped Cu(OH)2 nanocrystals
with rod-like morphology. As it was shown by XRD and SEM, nanocrystals of Co-doped Cu(OH)2 have 23±2 nm
in width (for [111] crystallographic direction) and 43±4 nm in length (for [002] crystallographic direction) and form
agglomerates of the same width and micron-submicron length. The results of EDX, XRD and FTIR investigations con-
firmed the high purity of the synthesized Co-doped Cu(OH)2 nanocrystals with Co content of 1 at. % in relation to Cu.
Electrochemical investigation of the electrode with Co-doped Cu(OH)2 shows overpotential values of 347 mV at a cur-
rent density of 10 mA/cm2 and Tafel slope values of 138 mV/dec for hydrogen evolution from water-ethanol solution
(10 % v/v). In addition, it was found that the resulting electrode material has high stability in both chronoamperometry
mode and in voltammetric cycling mode. On the base of this results, Co-doped Cu(OH)2 nanorods synthesized via
layer by layer approach, could be considered as a prospective basis of electrode materials for electrocatalytic reforming
of ethanol.
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A globally acknowledged green synthesis of reduced graphene oxide (rGO) from graphene oxide (GO) is presented in this paper. The graphene
oxide powder was synthesized from Graphite powder by a modification of Hummer’s method. The GO is exposed to focused sunlight to obtain
reduced graphene oxide (rGO). The reduction of GO under solar light is an eco-friendly method to conventional method of rGO preparation. The
mechanism of the reduction of GO by sunlight imperative to exfoliation was seen to be well defined. The rGO powder was characterized by X-
ray Diffraction (XRD), Field-Emission Scanning Electron Microscopy (FESEM), Raman spectroscopy, Fourier-Transform Infrared Spectroscopy
(FTIR) and High-Resolution Transmission Electron Microscopy (HRTEM). This eco-friendly method of synthesizing of rGO paves way for an
alternative method of rGO nanosheets preparation and it can be effectively used for fabrication of various electronic devices.
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1. Introduction

Graphene Oxide (GO) is being single-layered carbon atom in a hexagonal lattice has a combination of both
aromatic (sp2 hybridized C–C atoms) and aliphatic (sp3 hybridized –OH, C–O–H, C=O, –COOH) groups [1–3]. Thus,
it exhibits a wide range of striking properties like optical transmittance, electrical conduction, energy storage, medical
diagnosis and treatment, electronic applications, etc. The properties of GO and its reduced form plays a vital role in
the multi-disciplinary functionality of these materials. They possess high surface area to volume ratio, high tensile
strength, good thermal conduction, tremendous electrical conduction and superb optical properties [4]. The single
layer GO and rGO can be synthesized by several methods, such as mechanical exfoliation, electrochemical reactions,
thermal treatment and [5], photocatalytic method of preparing of GO and rGO. The solar energy assisted route of
synthesis has an advantage of enhancement in its performance, especially when used for energy storage devices and
super capacitors. Currently, a metallic oxide in combination with rGO and carbon nanotubes (CNTs), enhances the
network performance of the devices. Oxides of tin, zinc, and cobalt are coated on graphene to obtain the desired
quality of electrical devices [6–9]. Here, the purest form of solar energy was used to reduce the GO into rGO and this
product was thoroughly characterized.

2. Experimental

2.1. Materials and methods

GO was synthesized from graphite powder using a modification of Hummer’s method [10]. The reduced GO was
prepared by using a convex lens of 100 mm diameter to focus solar radiation [11]. Briefly, 1 g of GO was taken in
a glass Petri dish and kept under focused solar radiation at 12 Noon. GO powder was exposed to the focused solar
radiation for approximately 10 – 15 minutes. GO was exfoliated into rGO sheets. The power of focused sunlight
ranged from 1.8 – 2.5 W and the temperature was about ∼ 300 ◦C [12]. GO was exfoliated into rGO sheets under this
high temperature and power [13].

3. Result and discussion

3.1. XRD Analysis

The XRD pattern of synthesized GO/rGO shows diffraction with Cu Kα radiation (λ = 1.54178 Å) and depicted
in Fig. 1 [14]. The GO/rGO exhibits a well-crystalline orthorhombic crystal structure (JCPDS card No. 89-8491).

The GO/rGO featured sharp diffraction peaks indicates that GO at 11.83, 42.78 corresponds to (001) and (100)
peaks. The diffraction peaks of rGO at 10.30, 23.31 & 43.76 correspond to (001), (002) & (100) [15]. The diffraction
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FIG. 1. X-ray diffraction pattern of GO and rGO nanosheets

plane of the hexagonal crystal structure has lattice constants of value, a = 2.47 and c = 6.79 Å. The crystalline size
(D) of the GO/rGO was calculated using Scherrer’s formula:

D =
0.89λ

β cos θ
, (1)

where λ is the wavelength of the X-ray radiation, 2θ is the diffraction angle and β is the full width at half maximum
(FWHM). Measured broadening of the GO/rGO with (001), (100) and 001),(002), (100) X-ray peaks offers average
crystalline size about at 72.97, 14.03, and 19.59, 14.31, 21.23 nm for the GO/rGO, respectively [16].

3.2. FESEM/EDS

The morphology of GO/rGO nanosheets was observed using FESEM and shown in Fig. 2(a–b). The morpho-
logical feature clearly shows the formation of GO/rGO in 2D sheet-like pattern morphology in the prepared graphene
materials similar to commercial materials. 2D wrinkled structure morphology of both GO and rGO sheets were ob-
served to be fine micrometer in size. The rGO has a few broad and highly wrinkled layers with a regular shape and
slanting size estimated in the range size of approximately 300 – 500 µm exclusively [17, 18].

The Energy Dispersive X-Ray Spectroscopy (EDS) analysis of the GO and rGO reveals that the atomic percentage
of oxygen was considerably reduced in rGO than GO as expected. This is also confirmed by the increased ratio of C/O
from 1.6684 to 2.0075.

3.3. HRTEM

Transmission electron microscopic (TEM) study was carried out to obtain the wide-ranging morphological infor-
mation about the GO/rGO nanosheets and the respective HRTEM images were also showed in Fig. 3(a–d). The TEM
image of GO/rGO confirms the nanosheets like morphology with their wrinkle shape with the face end (Fig. 3(a, b)).
However, the TEM images of GO/rGO exhibits sheet-like shape with an average size of about 0.2 µm. In order to
obtain that lattice fringes form in the plane (100) indicated, the d-spacing values in three different places are shown in
Fig. 3(b). Inset images shows good conformity with TEM images [19].

A clear morphology of rGO was observed, as evidence that is shown in Fig. 3(c). The sheets of rGO obtained by
the chemical reduction process possess a few layer forms, such as crumpled sheet-like morphology and the structure
were further confirmed by TEM, as shown in Fig. 3(c, d). The uniform and wrinkled sheet-like morphology, as
well as the micropores on sheet surface of rGO samples (Fig. 3(c)) were clearly observed. Also, it displays highly
interconnected ultrathin silk-like morphology and wrinkled shape [20]. Moreover, the wrinkle of the layers folded over
each other was clearly visible, suggesting that these wrinkles were occurred by the crumpling of graphene-like sheets.
The results also show that the highly crumbled morphology can effectively prevent the aggregation of the sheets as
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FIG. 2. FESEM surface morphology of GO and rGO nanosheets

FIG. 3. HRTEM micrographs of GO and rGO nanosheets



582 Subramani shanmugam, Sivanandan nanjan

shown in Fig. 3(d). The lattice fringes form was correlated with the reports in the plane about (002) as indicated in
the d-spacing value. Inset image Fig. 3(d) clearly shows a well standard SAED pattern in two ring shape with a circle
in the poly crystalline nature of the rGO [21]. The HRTEM result is in agreement with the XRD result in Fig. 2(d).
These results conclude the morphology of the prepared GO/rGO [22].

3.4. Raman spectroscopy

The structure of GO/rGO was studied using Raman spectroscopy. The GO/rGO nanosheets exhibited a series of
bands at 143, 493, 625, 687, 847, 1172, 1369, 1617, 1840, 1980, 2234 and 2336 cm−1. All these bands were attributed
to the fundamental vibration modes existing in graphene oxides. The reduction of GO and rGO sheets were further
confirmed through Raman spectra as shown in Fig. 4. The Raman spectra of GO displays two characteristic Raman
bands centered at 1369 and 1617 cm−1 were assigned to the well-known D and G bands, respectively [23].

FIG. 4. Raman spectra of GO and rGO nanosheets

The D band (∼ 1369 cm−1) corresponds to disorder in the sp2 carbon network, and the G band (∼ 1617 cm−1)
is associated with the tangential vibrations of the sp2 carbon atoms in the hexagonal planes. In general, the D band is
known as an imperfect band that typically arises from the first order diffusion of sp3 hybridized carbon atoms, while
the G band is mainly reflects from the stretching vibration of sp2 hybridized C=C bonds. Results show that there
is a shift occurring in Raman peaks positions for pure graphene oxide, which confirms the bond formation between
graphene layers of rGO. The ID/IG ratio of the D-band to the G-band is related to the disorderliness of the sp2 domain,
owing to the removal of the oxygen functional groups (Fig. 4) [24]. The ID/IG ratios for GO and rGO were found to
be 0.750 and 1.030 respectively (Fig. 4).

3.5. FTIR spectrum

The major difference between the GO and rGO depicts the presence of specific functional groups like hydroxyl
(–OH), carboxyl(C=O), epoxy (C–O–C) molecules attached to the main graphene layer [25]. These groups show the
molecular vibrations of a specific characteristic frequency, when exposed to infrared radiation, as shown by the FTIR
study in Fig 5.

The GO shows a sharp peak at 1040cm−1 (representing C–O–C), 1713 & 1607 cm−1 (corresponding to C=O) and
a board peak around 3000 cm−1 (attributed to –OH groups) apart from oxygen base plane [26]. These have become
less broadened with rGO samples due to the reduction in the concentration of vibrational groups.

3.6. PL Spectrum

The PL spectrum of GO nanosheets are depicted in Fig 6(a). The photoluminescence characterized by a broad
peak between 600 – 900 nm was observed and the emission sharp peak was detected in GO at 750 nm. Fig. 6(b) shows
PL spectra of rGO.

Three emission peaks was observed at 350, 435 and 524 nm, respectively, that are observed in rGO and it is
attributed to the recombination of electron hole pairs in local state of sp2 carbon cluster embedded in sp3 matrix [27],
in which are clearly known as GO is reduced to become rGO.
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FIG. 5. FTIR spectra of (a) GO and (b) rGO nanosheets

FIG. 6. PL spectrum of (a) GO and (b) rGO nanosheets

4. Conclusions

To summarize, we have successfully synthesized and characterized GO/rGO nanosheets. The crystalline struc-
tures of GO/rGO have been determined by XRD measurements. The morphological analysis shown by FESEM
exhibits conspicuous wrinkled flakes. HRTEM images studies shows SAED patterns and nanosheets like structure in
the plane with (002) orientation. The weight percentage of oxygen was reduced in rGO, as compared to GO which
confirms the reduction and the formation of reduced graphene oxide. Raman spectra inferred that D/G value of GO
0.750 (< 1) and rGO 1.030(> 1) respectively, which confirms the formation of GO and rGO. Thus, the shallow
peaks of rGO observed in FTIR reveals the partial removal of oxygen-linked functional groups from the hexagonal
carbon-carbon plane of GO. The PL spectra of GO/rGO peak at 750 and 435 nm shows red and blue shift. Design
of hetero-junction photodiode fabrication could be a thought for future amelioration and future scope of this research
work. Due to its simplicity, this eco-friendly method of synthesizing rGO paves the way for making enormous rGO
supported devices with good characteristics.
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Luminescent hydrophobic composite films based on nanocrystalline (CNC) and nanofibrillated (CNF) cellulose matrix with up-conversion MF2:Ho
(M = Ca, Sr) particles and acrylic resin (ACR) as a coating have been synthesized. Flexible, translucent composite films were obtained by molding
from the CNC/CNF suspensions with up-conversion particles. ACR coating was applied to the composite film by spraying. Studies have shown that
ACR coating with a layer thickness of 7 – 10 µm provides hydrophobic properties for the films, increasing the water contact angle up to 100± 2◦

with a simultaneous improvement in the luminescent properties. Transparency of CNC/CNF/MF2:Ho-ACR films in the visible and near IR region
improves by 20 – 25 % without compromising the flexibility and thermal stability. The manufactured water-resistant composite films can be utilized
as potential photonics materials, in particular for visualization of near-IR laser radiation and luminescent labels.

Keywords: cellulose nanocrystals, cellulose nanofibrils, nanocomposites, hydrophobicity, acrylic resins, SrF2:Ho, CaF2:Ho, up-conversion lumi-
nescence films.
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1. Introduction

Luminescent composite materials based on a nanocellulose matrix have attracted much attention due to environ-
mental problems [1, 2] and their promising for photonics [3–7], optoelectronics [8–11], and biomedicine [12, 13].
Luminescent nanocomposites with a nanocellulose matrix are light-weight, flexible, thin materials with sufficient me-
chanical strength. These nanocomposites can be used in a number of practical applications, including: miniature
biosensors and chemosensors [12–20], photodetectors [21, 22], organic light-emitting diodes [23, 24], organic solar
cells [25], anti-counterfeiting [26] and different photonics devices [27–29].

Cellulose is a widely-spread natural “green” environmentally friendly polysaccharide, which has an amorphous-
crystalline structure. Cellulose nanocrystals (CNC) and cellulose nanofibrils (CNF) are synthesized from wood
and other plant sources, which have nanoscale transverse sizes and lengths ranging from nanometers to microm-
eters [30–32]. The preparation and properties of CNF and CNC are described in detail in numerous review arti-
cles [33–36]. Nanocellulose is a unique platform for nanocomposites producing due to attractive properties such as
renewability, affordability, low density, unique optical properties, excellent mechanical properties, biocompatibility,
and biodegradability. The properties of CNC and CNF make them promising for smart photonic devices [7, 37].
Thin CNC films are one-dimensional photonic crystals [38–40]. Like CNC, the CNF can form optically transparent
films [41, 42]. One of the most specific nanocellulose characteristics is the presence of three free hydroxyl groups in
each monomer unit, which provide a chemically active surface. A large number of hydroxyl groups on the nanocellu-
lose surface is responsible for its inherent hydrophilic nature and possibilities for their modifications [1, 3, 33, 36].

CNF and CNC can serve as a matrix for inorganic phosphors. So Miao et al. developed a simple method for
highly-transparent luminescent nanopaper production with high heat resistance by grafting Eu, Sm, Tb lanthanide
complexes onto TEMPO-oxidized CNF [43]. Chu with co-authors synthesized chiral nematic CNC luminescent films
with YVO4:Eu3+ nanoparticles [44]. Yb (III) doped carbon quantum dots (CQD) grafted oxidized nanofibrillated
cellulose (Yb3+-CQDs-ONFC) was proposed as novel anti-counterfeiting materials. The CQD serve as a visible
emitter and antenna for the Yb3+ ions NIR emission sensitizing. As a result, Yb3+-nanopaper fabricated from Yb3+-
CQDs grafted ONFC by amide condensation show in eight times higher NIR emission than Yb3+-CQDs in solution
with significant aggregation. Further, polystyrene as surface sizing was used to improve the water-resistant property in
those nanopapers [45]. Nguyen with co-authors proposed to use nanocellulose as a matrix for up-conversion photonic
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films production with chiral nematic ordering containing NaYF4: Yb,Er hexagonal nanorods [46]. Films have a
low resistance to water due to the hydrophilic nature of the cellulose. The hydrophilic nature limits their using as
luminescent composite materials based on CNF and CNC. Increase of hydrophobicity by surface modification is very
attractive for manufacture of luminescent composite materials based on a nanocellulose matrix. The purpose of the
modification is to change only the surface of the nanocellulose with preservation of the initial morphology of the
nanocomposite material and the complex structure of internal hydroxyl groups.

This paper is devoted to the studies of hydrophobic composite luminescent nanocellulose films with up-conversion
particles based on calcium and strontium fluorides doped with holmium for identify the hydrophobic agent influence
on the change in the optical and luminescent properties of nanocomposite films.

2. Experimental section

2.1. Chemicals

Powdered bleached woodkraft cellulose (PCC-0.25 (PC) from Polycell, Vladimir, Russia), filter paper “Blue
Ribbon” (FP), 98 % sulfuric acid, 18 % hydrochloric acid, double distilled water, acrylic varnish (KUDOKU-9002
from Elf Filling, Electrougli, Russia), regenerated cellulose dialysis tubing with 12 – 14 kDa molecular weight cut-
off from Orange Scientific (Graignette Business Park, Braine-l’Alleud, Belgium), up-conversion Ca0.92Ho0.08F2.08

and Sr1−xHoxF2+x (x = 0.08, and 0.10) powders, which prepared by our proposed technique [47, 48] were used as
starting materials.

2.2. Preparation techniques of cellulose nanocrystals and nanofibrills, and nanocellulose films

Initial PC cellulose samples were mixed with double distilled water (cellulose: H2O = 1:10 g/g) in a beaker.
The prepared suspension was placed in an ice bath. Concentrated sulfuric acid (cellulose: H2SO4 = 1:25 g/g) was
added drop-wise to the cellulose suspensions under vigorous stirring until acid concentration reached about 65 wt%.
The resulting suspension was placed in a water bath at 47 ◦C for 60 min under 350 rpm stirring. Hydrolysis was
terminated by addition of 10-fold excess of cold double distilled water. The hydrolyzed suspension was washed with
double distilled water and repeatedly centrifuged (Eppendorf 5804 centrifuge, 8000 rpm, 10 min). The supernatant
was separated from the precipitate and then a new portion of water was added. After 4 – 5 centrifugation cycles,
washing procedure was terminated at pH = 5. The resulting cellulose gel was dispersed in double distilled water
and then placed into a dialysis bag and dialyzed for 7 days. After dialysis, the dispersion was sonicated for 15 min
(UZG13-01/22 sonicator, 110 W, VNIITVCH) in an ice bath. The yield of CNC was about 30 %. The CNC content
in the dispersion was determined gravimetrically. CNF was obtained by hydrolysis of FP with hydrochloric acid
with followed by ultrasonic treatment. FP was preliminarily shredded into small pieces (2 × 2 mm). The aqueous
suspension was prepared at FP:H2O = 1:10 g/g. Hydrochloric acid (FP:HCl = 1:13 g/g) was added drop-wise to the
suspension under vigorous stirring at 80 ◦C for 20 min. The hydrolysis was terminated by adding a large amount of
cold double distilled water (10 times the volume of the suspension). Further, the suspension was washed with double
distilled water and repeatedly centrifuged (10 min at 8000 rpm, an Eppendorf 5804 centrifuge). The supernatant was
separated from the precipitate and then a new portion of water was added. After 4 – 5 centrifugation cycles, washing
was terminated at pH 4.5 – 5.0. The resulting cellulose gel was dispersed in double distilled water and sonicated in
an ice bath for 15 min, then placed into a dialysis bag and dialyzed for 7 days. After dialysis, the suspension was
sonicated according to the above-mentioned procedure. pH value was reached 5.5. The yield of CNF was about 50
%. The CNF content in the dispersion was determined gravimetrically.The resulting CNC and CNF dispersions were
stored in a refrigerator at a temperature < 5 ◦C.

The nanocellulose films were prepared by solution casting technique of CNC, CNF dispersion with concentration
less 3 wt.% in polystyrene Petri dishes with followed drying at ambient temperature for 2 – 3 days. The film thickness
was about 25 – 35 µm.

2.3. Preparation of nanocomposites films

Ca0.92Ho0.08F2.08 and Sr1−xHoxF2+x (x = 0.08 and 0.10) powders annealed at 750 ◦C were carefully ground in
an agate mortar. The ground powders were dispersed in CNC or CNF colloidal solutions by sonication on an ice bath
for 15 min. The colloidal suspensions were poured into polystyrene Petri dishes and dried under ambient conditions
for 2 – 3 days. The air-dried composite films were further dried at 90 ◦C for 40 min to remove residual moisture, so
that hydration would not affect the products’ morphology, physical and luminescent characteristics. The film thickness
was about 25 – 45 µm. The nanocellulose content in the dried films varied from 45 to 90 wt%, while the Ho content in
the dried films ranged from 1.00 to 6.71 wt% for SrF2:Ho samples and from 2 to 8 wt.% for CaF2: Ho samples. The
composite films were designated as CNC:xHo, CNF:xHo, CNC/CNF:xHo, where x = Ho wt%.
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2.4. Surface modification of nanocomposite films by acrylic resin

The hydrophobicity was reached by the simple procedure for applying a double-sided coating of KUDOKU-9002
acrylic varnish, which includes modified acrylic resin (ACR). Procedure consists of acrylic resin spraying from a
balloon from 25 – 30 cm distance onto suspended composite films CNC:xHo, CNF:xHo, CNC/CNF:xHo. One to
three thin layers were applied to each side of the film. The drying time between layers spraying was 5 – 10 minutes,
then the next layer was applied. Dry to stick 20 – 30 minutes, but complete drying in air for 2 hours. The film thickness
varied in the range of 45 – 75 µm, the thickness of the ACR layer was from 2.5 to 16 µm on each side. Designation
of CNC composite films were CNC:xHo-zACR, CNF:xHo-zACR, CNC/CNF:xHo-zACR, where z is the number of
layers deposited, from 1 to 3.

2.5. Characterization techniques and equipments

X-ray diffraction analysis was carried out on a Bruker D8 Advance diffractometer (Bruker AXS GmbH, Karlsruhe,
Germany) using CuKα-radiation in the range 8 – 60 2θ with 0.02 2θ step. The diffraction peak at 22.7 2θ was used
for crystallinity index (IC, %) calculation by Segal’s method according to Eq. (1):

IC =
I200 − IAM

I200
× 100, (1)

where, I200 is the intensity of the 〈200〉 reflex at 22.70 2θ. I200 consist of both crystalline and amorphous phases.
IAM is the intensity at the minimum between the 〈200〉 and 〈110〉 peaks at 18.00 2θ.

The nanoparticle size distribution in aqueous dispersions was determined by dynamic light scattering (DLS) using
a Photocor Complex DLS spectrometer equipped with He–Ne laser. The CNC and CNF dispersions were preliminarily
diluted up to 0.01 wt% concentration and then sonicated for 5 min in an ice bath.

The degree of polymerization (DP) was measured by the viscosity method using diluted solutions of dry cellulose
particles in Cadoxen (cadmium ethylenediamine) [49]. The polymerization degree was determined as the average of
two independed measurements. The relative error was 4 % at p = 0.95.

Film thickness was measured using a micrometer (MKTS-25 0.001, Kalibron, Russia) at seven randomly selected
locations on each film, and mean value was reported for each replication.

Water absorption test carried out for ACR film and without ACR layer nanocomposite films without ACR coatings
were dried at 90 ◦C for 40 min and immersed in distilled water for 2 min. ACR coated nanocomposite films were
immersed in distilled water for 2 min without drying. After immersed in doubly-distilled water, the samples were wet
with FP to carefully remove excess water from the surface and weighed. Water adsorption % (WA) was calculated by
the formula:

WA =
Wwet −Wdry

Wdry
× 100, (2)

where Wdry is the weight of the dried sample, Wwet is the weight of the wet sample after soaked in water for 2 min.
The microstructure of the particles in films was analyzed by scanning electron microscopy (SEM) using a NVision

40 microscope (Carl Zeiss NTS GmbH, Oberkochen, Germany) with simultaneous energy-dispersive spectroscopy
(EDX) (X-Max detector, Oxford Instruments, Abingdon, UK).

Fourier transform infrared spectroscopy (FTIR) with ATR unit (Pike) was performed on a INFRALUM FT-08
spectrometer from 400 to 4000 cm−1. The transmission spectra were recorded using a Cary 5000 spectrophotometer
in the 250 –3000 nm range.

Thermal gravimetric analysis (TG) was performed from 25 to 800 ◦C with a 5 ◦C/min heating rate in air on the
Netzsch TG 209 F1 Libra.

The contact angle was measured using the FTA1000 Drop Shape Instrument B Frame System. The test sample
was placed on a horizontal holder. The water was applied to the surface of the test sample by a special microdosing
syringe. The droplet volume was 100 µl. The image was recorded using a CCD detector of 640× 480 pixels. Images
were obtained 1 s after application of the droplets. The measurements were carried out at room temperature (24±2 ◦C)
and repeated 5 times on various fresh surfaces.

The up-conversion luminescence spectra were recorded with a Horiba FHR 1000 spectrophotometer with OL IS-
670-LED integrating sphere (Gooch & Housego). A continuous solid-state LiYF4:Tm laser was used as the excitation
source for Ho3+ ions at 1912 nm. The beam diameter of incident laser radiation was 300 µm. The incident excitation
power was 960 mW.
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3. Results and discussion

3.1. Characterization of a hydrophobic agent (ACR)

Acrylic universal gloss varnish KU-9002 was chosen as a hydrophobic agent. It contains xylene, methyl ac-
etate, butanol, propanol, and modified acrylic resin (ACR). ACR is ethylhexyl acrylate, methyl methacrylate and
styrene copolymer. The varnish is transparent, colorless and insoluble in water. KU-9002 designed to create a pro-
tective coating for metal, wood, and plastic products. It allows the masking of surface defects without yellowing and
provides resistance to mechanical stress and abrasion. ACR has excellent surface adhesion and high environmental
resistance [50]. Hardening takes place quickly at room temperature. The first drying came unstuck is 20 – 30 minutes
but complete drying in the air for 2 hours. ACR contains esters of acrylic and methacrylic acids, as well as a phenyl
group. The phenyl group ACR can improve the water-resistance of the film after drying [51]. Negatively polarized
oxygen atoms of the ACR ester group are able to form hydrogen bonds [52]. Hydrogen bonds with the hydroxyl
groups of nanocellulose improve the bonding between the nanocellulose film and the ACR. It ensures the uniformity
of the ACR film on the surface of the nanocellulose. Intra- and intermolecular hydrogen bonds play a decisive role
in the formation of supramolecular structures that affect on the nanocellulose properties. As a result, cellulose chains
are assembled into highly ordered structures [4]. A possible mechanism for the interaction of a nanocellulose film and
ACR in composite materials is shown in Fig. 1.

FIG. 1. Scheme of inter-surface hydrogen bonds between hydroxyl groups of nanocellulose and
oxygen atoms of the ester group of ACR (ethylhexyl acrylate, methyl methacrylate and styrene
copolymer)

3.2. Characterization of dispersions, nanocellulose films, and nanocomposite films CaF2:Ho and SrF2:Ho
with up-conversion particles

The 1.55 – 2.50 wt.% CNC aqueous dispersions are transparent and stable colloidal solutions of nanocrystalline
cellulose, which staying without coagulation during for more than four months. The stability of CNC dispersions
is explained by the presence of negatively charged sulfate groups on the surface of the CNC and an increase in the
surface charge of CNC particles. It leads to a more stable CNC dispersion due to electrostatic repulsion between
sulfate groups. The presence of sulfur in CNC samples (0.71 wt.%) confirmed by EDX analysis (Table 1) as a result
of esterification of cellulose hydroxyl groups by sulfate ions.

Aqueous CNF dispersions with a concentration of 0.94 – 2.07 wt.% with milky hue are stable for a month. After
one month of aging, the dispersion begins to stratify. Mixed aqueous dispersions of CNC/CNF with a concentration
of 1.24 – 2.28 wt.% are transparent and stable colloidal solutions without coagulation for three months.

The hydrodynamic particle radii for CNC and CNF dispersion show a polydisperse particle distribution. CNC
and CNF form whiskers and nanofibrils, respectively. Most particles are 10 – 30 nm and 90 – 170 nm sizes, but a
small portion are aggregated CNCs. As a result of hydrolysis, the CNC particle sizes are reduced one thousand-fold
compared to the initial PC. CNF is characterized by the presence of three groups of particles corresponding to sizes
22 – 32 nm, 90 – 180 nm, and 500 – 1800 nm.

Samples for SEM analysis were prepared by applying a drop of 0.01 wt.% dilute aqueous dispersions nanocellu-
lose on the single-crystal silicon substrate with followed by drying in air. The properties of the initial cellulose (PC
and FP) are shown in Table 2. Rod-like particles with a width of about 15 – 25 nm and length of about 100 – 200 nm,
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TABLE 1. EDX analysis of nanocellulose

Elements
at. % wt. %

CNC CNF CNC CNF

C 53.8± 0.2 56.2± 0.1 46.5 49.1

O 45.8± 0.2 43.8± 0.1 52.8 50.9

S 0.3± 0.1 — 0.7 —

as well as aggregates are determined on SEM images for CNC samples (Fig. 2(a)). Cellulose nanofibrils with a width
of 20 – 35 nm and length of 200 – 1800 nm with a large aspect ratio (ratio of length to smallest transverse size) of
20 – 60 are determined on SEM images for CNF films (Fig. 2(b)), which confirms the production of nanofibrillated
cellulose. Nanocellulose prepared from a mixed dispersion of CNC/CNF = 1/1 present on Fig. 2(c,d). Entangled CNF
fibrils form a porous network with CNC evenly distributed inside the CNF.

TABLE 2. Properties of the initial and synthesized nanocellulose

Sample
Particle size (SEM), nm Cellulose

Type
Structure

IC, % DP
Decomposition

temperature

diameter length Tonset/Tendset, ◦C

PC 25 – 50 * 230 – 500 * Iß 69.2 930 300/491

FP 25 – 50 * 200 – 1500 * Iß 68.7 1112 300/486

CNC 15 – 25 100 – 200 Iß 86.2 105 157/567

CNF 22 – 35 200 – 1800 Iß 70.3 154 196/591

CNC/CNF 15 – 35 100 – 1800 Iß 71.6 147 186/567
* Particle sizes of PC and FP are expressed in microns [53].

Particle sizes determined using SEM are consistent with DLS results.
CNC and CNF showed different behaviors during the film formation process due to the different shapes and

lengths. CNCs tend to form the ordered structure, which associated with the self-assembly of CNC during slow
drying. CNC forms transparent but fragile films. At 0.94 wt.% CNF dispersion, the flexible but wrinkled film with a
milky tint is formed with porous network. The non-transparent film is formed at 2.07 wt.% dispersion concentration.
In our earlier study of nanocellulose films was shown [53], that a transparent and flexible film was synthesized from
CNC/CNF = 1/1 mixed dispersions.

Changes in the supramolecular structure of cellulose during hydrolysis are characterized by X-ray diffraction of
cast films, but the monoclinic crystal structure of Iβ cellulose is preserved for all nanocellulose films (Fig. 3).

X-ray diffraction patterns of the CNC (Fig. 3(a)) samples revealed the Iβ crystal structure [54]. The CNC samples
are characterized by a significant increase in the crystallinity index compared to the initial cellulose (Table 2) due to
optimized acid hydrolysis process. A smaller increase in IC for CNF is observed due to the partial destruction of the
amorphous regions of cellulose (Table 2).

The degree of polymerization for cellulose materials after hydrolysis is significantly reduced, namely by 8-fold
for CNC. Moreover, CNC has a degree of polymerization about 1.3-fold less than CNF.

The thermal degradation of the initial cellulose (PC and FB) and nanocellulose (CNC and CNF) showed obvious
differences (Table 2) [53]. Degradation onset temperature (Tonset) in comparison to the initial cellulose was decreased
by 100 and 140 ◦C for CNF and CNC, respectively. The decrease in thermal stability of CNC and CNF compared to
the initial cellulose is probably associated with an increase of heat transfer rate due to an increase in surface area of
smaller particle sizes. Also, it‘s probably due to the introduction of sulfate groups during acid hydrolysis. The lower
temperatures of the Tonset (157 ◦C) for CNC compared to CNF/CNC (186 ◦C) are due to the higher content of sulfate
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(a) (b)

(c) (d)

FIG. 2. SEM images of CNC and CNF: (a) CNC; (b) CNF; (c), (d) CNC/CNF

FIG. 3. X-ray pattern diffractions (a) CNC; (b) CNC-2ACR; (c) CNC: 5.5 Ho; (d) CNC: 5.5 Ho-
1ACR; (e) ACR
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groups in them, which is confirmed by EDX data. The total mass loss for all samples during thermal decomposition
in the air is 100 %.

Finally, the morphology, particle size, the ratio of geometric parameters (sides), the degree of polymerization
and the degree of crystallinity of nanocellulose are determined by preparation technique. Various mechanisms for the
formation of CNC, CNF films affect their optical, thermal and mechanical properties.

Mixing CNC or CNC/CNF with Ca0.92Ho0.08F2.08 particles, or Sr0.92Ho0.08F2.08, or Sr0.90Ho0.10F2.10 particles
with the subsequent ultrasonic treatment result in good distribution of the filler in the nanocellulose matrix. The
resulting dispersion is transparent and stable during the day with 0.28 – 1.57 wt.% content of up-conversion powders.

The X-ray diffraction pattern of the CNC: 5.5Ho (45.4 wt% Sr0.90Ho0.10F2.10) composite film exhibit diffraction
peaks characteristic of cellulose Iβ and the crystalline fluorite phase Sr0.90Ho0.10F2.10 with unit cell parameter a =
5.7778(1) Å (Fig. 3(c)).

It means that the crystalline structure of cellulose does not change after dispersion since the positions of all reflexes
are preserved but their intensity changes.

The thermal destruction of CNC: 4.4Ho composite film (36.4 wt.% Sr0.90Ho0.10F2.10) begins in the air at 157 ◦C
(Fig. 4(b)). The latter does not differ from the decomposition temperature of CNC film (Table 2). According to TG,
the residue after heating up to 800 ◦C is 36.4 wt.%, which corresponds to the content of up-conversion powder in the
composite film.

FIG. 4. TG measurements in the air at a heating rate of 5 ◦/min for films: (a) CNC: 4.4 Ho-1ACR;
(b) CNC: 4.4 Ho

Scanning electron microscopy images of the surface and cleavage of composite films CNC/CNF: 4.6Ho (37.7 wt.%
Sr0.90Ho0.10F2.10) and CNC: 5.1Ho (34.8 wt.% Ca0.92Ho0.08F2.08) analyzed in topographic contrast (Fig. 5(a, c, e,
g)) and in the Z contrast (Fig. 5(b, d, f, h)).

CNC/CNF: 4.6Ho and CNC: 5.1Ho composite films have a uniform morphology and contain uniformly distributed
up-conversion particles over the entire surface and volume (Fig. 5(c, d, f, h)). The SrF2:Ho and CaF2:Ho particle size
varies between 50 – 200 nm. EDX analysis confirmed that the measured atomic ratio of Sr/Ho and Ca/Ho elements
in composites is very close to that measured in Sr0.90Ho0.10F2.10 and Ca0.92Ho0.08F2.08 powders. Thus, the use
of CNC or mixed CNC/CNF dispersions (1:1) allows to composite films producing with a uniform distribution of
up-conversion particles without losses and changing of the crystal structure.

The thickness of composite films depends on the concentration and volume of CNC and CNC/CNF dispersions,
as well as on the content of up-conversion particles in them. The optimal concentration of nanocellulose dispersions
is 1.8 – 2.2 wt.% with the 0.9 – 1.3 wt.% content of up-conversion particles for preparation of composite films with
a thickness of 35 – 50 µm. Such concentrations ensure the stability of the dispersions and the drying of the film in
during two days.

3.3. Effect of ACR coating on the thermal, structural, optical, and luminescent properties of composite films

The thermal stability of a CNC: 4.4Ho-1ACR composite ACR coated films do not change in comparison to
uncoated film (Fig. 4(a)). An increase in losses during annealing by 6.3 % in comparison to CNC: 4.4Ho film is
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 5. SEM images of CNC/CNF film: 4.6 Ho (a, c) – in topographic contrast, (b, d) – in cleaved
film Z-contrast, (c, d) – cross section of the film.. CNC: 5.1 Ho (e, g) – in topographic contrast, (f,
h) – film cleavage in Z-contrast, (g, h) – cross section of the film
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associated with the burnout of the ACR coating. It was found that the crystalline structure of nanocellulose does
not change after applying the ACR coating since the positions of all reflections are preserved but intensity changes
(Fig. 3(b,d)). An increase of the amorphous halo intensity is also noted, which can be explained by the amorphous
nature of ACR coating. The X-ray diffraction pattern of the ACR film does not have clear reflections (Fig. 3(e)).

The IR spectrum of CNC films contains absorption bands about 2900 cm−1 (stretching modes of the CH and CH2

groups), about 1430 cm−1 (symmetric deformation vibrations of the CH2 group), 1000 – 1200 cm−1 (stretching vibra-
tions of C–O–C and C–O bonds in the pyranose ring) (Fig. 6(a)). The CNC spectrum has a weak band at 1203 cm−1

(S = O), which confirms the introduction of a sulfate group into the cellulose structure during acid hydrolysis [55].

FIG. 6. IR spectra of (a) ACR, CNC-ACR (b), and (c) CNC films

The spectrum for CNC is characterized by a wide absorption band in the region 3284 – 3335 cm−1 (stretching
modes of hydroxyl groups included in the hydrogen bond). In the IR spectrum of the ACR film, wide bands at 2868,
2933 and 2951 cm−1 are caused by aliphatic regions (C–H), such as CH2 and CH3 (Fig. 6(a)). Absorption spectrum
contains band at 1725 cm−1 (stretching vibrations of the C=O ester group), at 1128 and 1183 cm−1 (stretching
vibrations of C–O groups), and at 1452 and 1340 cm−1 (symmetric and asymmetric stretching vibrations of C–CH3).
The absorption band at 698 and 756 cm−1 are associated with the out-of-plane transverse vibrations of the phenyl
ring and out-of-plane peak CH, respectively [56]. The shape of the complicated peak at 3273 – 3356 cm−1 for the
CNC-ACR film becomes wider and shifts along compared to pure CNC. It can be explained by the formation of inter-
surface hydrogen bonds between CNC hydroxyl groups and oxygen atoms in ACR ester group. It confirmed by the
shift of the bands of C–O groups to 1108 and 1157 cm−1 (Fig. 6).

A comparison of the transmittance spectra of the same composition films with ACR coating (Fig. 7(a, c, d)) and
without coating (Fig. 7(b, e, f)) confirms that the transparency of films with ACR coating significantly (by 20 – 25 %)
improves in the visible and near IR spectral regions.

Comparison of the SEM images of the CNC: 5.1Ho (34.8 wt.% Ca0.92Ho0.08F2.08) surface without coating
(Fig. 8(a)) and with ACR coating shows that the coating of the transparent acrylic resin provides good surface smooth-
ness. ACR fills all of the irregularities of the composite films (Fig. 8(b)), which resulted in increase in the transparency
of composite films with ACR coating. However, the uniformity of the coating depended on the thickness of the ACR
layer. The triple-layer coating resulted in cracks on the film (Figs. 8(c, d)), which did not affect on the optical trans-
mission but reduced the water-resistance of the films (Table 3).

Films of CNC/CNF: 4.6Ho (37.7 wt.% Sr0.90Ho0.10F2.10) (Fig. 9(a)) and CNC/CNF: 4.6Ho-2ACR (Fig. 9(b))
are flexible, uniform, and wrinkle-free. The film without ACR is translucent, while the film with ACR is almost
transparent.

The luminescence intensity of composite films with ACR coating (CNC/CNF: 8.4Ho-2ACR, CNC/CNF: 6.8Ho-
2ACR) is higher than films without ACR coating (CNC/CNF: 8.4Ho (57.5 wt.% Ca0.92Ho0.08F2.08), CNC/CNF:
6.8Ho (55.8 wt% Sr0.90Ho0.10F2.10) with the same amount of holmium (Fig. 10). The ACR coating protects the
nanocomposite film from atmospheric moisture and prevents luminescence quenching.

Finally, it was determined that the ACR coating improves the optical transmission and luminescent properties of
up-conversion nanocomposite films based on nanocellulose.
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FIG. 7. Transmission spectra of films: a) CNC/CNF-2ACR; (b) CNC/CNF; (c) CNC: 5.4 Ho-
2ACR; (d) CNC/CNF: 6.8 Ho-2ACR; (e) CNC: 5.4 Ho (54.5 wt.% Sr0.92Ho0.08F2.08); (f)
CNC/CNF: 6.8 Ho (55.8 wt.% Sr0.90Ho0.10F2.10)

(a) (b)

(c) (d)

FIG. 8. SEM images of film surface: (a) CNC: 5.1 Ho; (b) CNC: 5.1 Ho-2ACR; (C, d) CNC: 5.1 Ho-3ACR
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TABLE 3. Wetting angle and water adsorption of nanocomposite films with different number of
applied acrylic resin layers

Film composition
Film

thickness,
µm

ACR,
wt.%

WA,
wt.% Wetting angle

CNC/CNF: 4.6 Ho
(37.7 wt.% Sr0.90Ho0.10F2.10) 50± 2 — 46.8

CNC/CNF: 4.6 Ho-1ACR
(37.7 wt.% Sr0.90Ho0.10F2.10) 59± 2 9.8 0

CNC: 5.1 Ho
(57.5 wt.% C0.92Ho0.08F2.08) 42± 2 — 53.0

CNC: 5.1 Ho-2ACR
(57.5 wt.% C0.92Ho0.08F2.08) 58± 2 21.5 0

CNC: 5.1 Ho
(57.5 wt.% C0.92Ho0.08F2.08) 35± 2 — 53.3

CNC: 5.1 Ho-3ACR
(57.5 wt.% C0.92Ho0.08F2.08) 65± 2 48.3 6.1

(a) (b)

FIG. 9. Film photos: (a) CNC/CNF: 4.6 Ho; (b) CNC/CNF: 4.6 Ho-2ACR

3.4. Effect of ACR coating thickness on the hydrophobic properties of composite films

The cleaved composite films with a different number of ACR coating layers demonstrate the strong adhesion of
the ACR to the surface of the nanocellulose film (Fig. 11). This indicates a good interaction and compatibility of
nanocellulose with ACR due to the presence of hydrogen bonds between the hydroxyl groups of CNC and oxygen
atoms of ACR ester group, which is confirmed by IR spectra (Fig. 6). ACR layer thicknesses are 3 – 5 µm, 7 – 10 µm
and 14 – 17 microns for single, double, and triple-layered coatings, respectively. Cracks appear in the ACR layer for
the triple-layered coating (Fig. 11(d)), which are also visible on the film surface (Fig. 8(c, d)).

The use of ACR coatings provides an easy way to impart hydrophobic properties to nanocomposite films (Table 3).
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FIG. 10. Up-conversion luminescence spectra of composite films: (a) CNC/CNF: 8.4 Ho-2ACR;
(b) CNC/CNF: 8.4 Ho; (c) CNC/CNF: 6.8 Ho-2ACR;(d) CNC/CNF: 6.8 Ho

(a) (b)

(c) (d)

FIG. 11. SEM image of cleaved films: (a) CNC/CNF: 4.6 Ho-1ACR; (b) CNC/CNF-1ACR; (c)
CNC: 5.1 Ho-2ACR; (d) CNC: 5.1 Ho-3ACR
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The ACR uncoated nanocomposite film is hydrophilic and easily wetted by water. Water adsorption and water
contact angle of CNC/CNF: 4.6 Ho and CNC: 5.1Ho films are 47 and 53 %, and 15 and 0◦, respectively. After a
single-layer ACR coating, the film acquired hydrophobic properties. This was confirmed by the water contact angle
(93◦) and the absence of water adsorption. After a two-layer coating of the film, the water contact angle increased
up to 100◦ without water adsorption. Three-layer coating demonstrate the water contact angle (92◦), but the water
adsorption of the film was 6 %. This behavior is associated with a presence of cracks in the thick ACR layer. Water
penetrates into the composite film via cracks. Studies have shown that a two-layer ACR coating with a layer thickness
of 7 – 10 µm provides good hydrophobic properties of up-conversion composite films with simultaneously improving
transparency and luminescent properties.

4. Conclusions

By spraying a two-layer ACR coating with 7 – 10 µm thickness onto up-conversion CNC/CNF/MF2:Ho composite
films, the hydrophobic composite films with a water contact angle of 100±2◦ and good water resistance were prepared.
The water adsorption of up-conversion composite films after applying a two-layer ACR coating decreased from 53 to
0 %. The thickness effect of the ACR layer on the film water-resistance is established. After applying a three-layer
ACR coating, the thickness of the ACR layer is approximately 14 – 17 µm with water adsorption increase. It associated
with the presence of cracks in the ACR layer. Using TGA and X-ray diffraction, it was shown that the deposition of
ACR coatings did not affect on the thermal stability of the films and the crystal structure of CNC, CNF, and up-
conversion particles. SEM studies show strong adhesion of ACR to the surface of a nanocellulosic film. This indicates
good adhesion and interaction of nanocellulose with ACR due to the presence of hydrogen bonds between hydroxyl
groups in CNC/CNF and oxygen atoms of the ACR ester group. The transparent acrylic resin coating led to a smoother
surface, which contributed to an increase in the transparency of composite films with ACR coating by 20 – 25 % in the
visible and near-infrared spectral range with a simultaneous improvement in luminescent properties. Water-resistant,
flexible, uniform, translucent up-conversion films with a thickness of 50 – 65 µm were prepared. These films can
be used as a potential material for the photonics, as a luminescent label, luminescent detector, and in particular for
imaging near-IR laser radiation, etc.
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quantum dots through optical fibers”

O. P. Swami, V. Kumar, B. Suthar, A. K. Nagar

Published in: NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2019, 10(3), P. 273–281

1. Table 1 should be changed in following manner:

TABLE 1. Relation between the density of SQDs and FWHM of solitons

S.No. Density of SQD (1011 cm−3) FWHM (ps)

1. 2.63 6.18

2. 8.00 3.52

3. 22.88 2.06

4. 99.42 1.00

2. The heading of Fig. 3 should be modified as:

Fig. 3. Simulation of soliton generated by SQDs system with different densities of QDs. (a) n0 = 2.63 ×
1011 cm−3; (b) n0 = 8.00× 1011 cm−3; (c) n0 = 22.88× 1011 cm−3 and (d) n0 = 99.42× 1011 cm−3.

3. Reference [3] requires a change such that:

S. D. Horta, et al. Study of the propagation of solitary waves produced by an assembly of quantum dots through
optical fibers. A theoretical study. J. Phys.: Conf. Ser., 2019, 1221, P. 012020(1-6).
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