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The effect of an external magnetic field on the binding energy of a hole in an impurity complex A+ + e in a spherically symmetric quantum dot, as
well as frequency dependence of the spectral intensity of recombination radiation of the quasi-zero-dimensional structure with impurity complexes
A+ + e have been investigated. It is shown that in an external magnetic field there is a spatial anisotropy for the binding energy of A+-state due
to hybrid quantization in the quantum dot radial plane and dimensional quantization in the direction of an external magnetic field. It is shown that
in an external magnetic field the spectral intensity curve of the recombination radiation shifts to the short-wavelength region of the spectrum and
probability of the radiative transition of an electron to the level of A+-center increases, which is caused by increase in the overlap integral of the
envelope wave functions of a hole bound at the A+-center and of an electron localized in the ground state of quantum dot.
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1. Introduction

In recent years, interest in studying an external magnetic field’s influence on the photoluminescence (PL) of
structures with quantum wells (QWs) and quantum dots (QDs) has not been weakened [1–15]. This is due, first of all,
to modification of the optical spectrum of nanostructures, impurity and exciton states, which leads to new interesting
effects in the photoluminescence and optical absorption spectra under application of external magnetic field conditions.
For example, circular polarization of the PL peak associated with A+-centers was first measured in the case of the
QWs of GaAs/ AlGaAs, and analysis of which has made it possible to determine the fine, spin and energy structure of
the A+-center [1]. In [5], PL spectra were studied in an external magnetic field of an ensemble of QD-InAs grown by
method of the molecular-beam epitaxy on a (001) GaAs substrate disoriented in the (010)-direction. It was established
in [5] that in an external magnetic field, the capture of the photo-borne carriers in an array of QDs, which have been
formed as a result of coalescence, is suppressed, and as a result, an increase in the PL intensity has been observed.
A magnetic field also exerts an influence on the kinetics of the QD-photoluminescence. Thus, in [3], an acceleration
of the photoluminescence kinetics of the QD-InAs in the AlAs matrix in an external 5 T – magnetic field has been
observed. The obtained results are explained in the framework of a model that takes into account the exchange and
Zeeman splitting of the QD exciton levels in an external magnetic field [3].

The present work is devoted to the theoretical study of an external magnetic field’s influence on the binding energy
of a hole in an impurity complex A+ + e in a spherically symmetric QD, as well as on the frequency dependence of
the recombination radiation spectral intensity (SIRI) of a quasi-zero-dimensional structure with impurity complexes
A+ + e.

2. Model

Let us consider the problem of the hole bound states in an impurity complexA++e of a semiconductor spherically
symmetric QD in an external magnetic field. The potential of an infinitely deep spherically symmetric well has been
used as a model of the QD confinement potential:

U (ρ) =

{
0, if ρ ≤ R0;

∞, if ρ ≥ R0,
(1)
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where R0 – the QD radius. Interaction of an electron in the ground state of QD with a hole localized at the A0-center
will be considered in the framework of the adiabatic approximation [4]. In this case, the electron potential, Vn,l,m (r),
acting on the hole, can be considered as averaged one over the electron motion [4]:

Vn,l,m (~r) = − e2

4πε0ε

R0∫
0

|Ψn,l,m (~re)|2

|~r − ~re|
d~re, (2)

Where e – the electron charge; ε – dielectric constant of the QD material; ε0 – the electric constant; Ψn,l,m (~r) –
the electron wave function in QD; m = 0, ±1, ±2 . . . – the magnetic quantum number; l = 0, 1, 2 . . . – the orbital
quantum number.

In the first order of perturbation theory, for the ground state of an electron (m = 0, l = 0), potential (2) can be
written in the next form:

Vn,0,0 (ρ) = − e2βn
4πε0εR0

+
m∗h
2

(
ω2
n +

ω2
B

2

)
ρ2 +

m∗hz
2

2
ω2
n, (3)

where βn = γ0−Ci (2πn)+ln (2πn); ~ωn =
[(

2~2π2n2e2
)
/
(
3m∗hR

3
04πε0ε

)]1/2
; ρ, ϕ, z – cylindrical coordinates;

γ0 = 1.781 – the Euler constant; Ci (x) – the integral cosine; n – the electron radial quantum number; m∗h – the hole
effective mass; ωB = |e|B/m∗ – the cyclotron frequency.

It can be shown that the wave function and energy spectrum corresponding to potential (3) have the next form:

Ψn1,m,n2
(ρ, ϕ, z) =

1

a21

(
n1!

2n2+1π3/2n2! (n1 + |m|)! an

)1/2(
ρ2

2a21

)|m|/2
×

exp

[
−
(
ρ2

4a21
+

z2

2a2n

)]
Hn2

(
z

an

)
L|m|n1

(
ρ2

2a21

)
exp (imϕ) , (4)

where n1, n2 = 0, 1, 2, . . . – quantum numbers corresponding to Landau levels and to energy levels of an oscillat-

ing spherically symmetric well; a21 = a2n/

(
2
√

1 + a4n/ (4a4B)

)
; an =

√
~/ (m∗hωn) – the characteristic oscillator

length; aB =
√

~/ (m∗ωB) – the magnetic length; Hn (x), Lcn (x) – the Hermite and Lagger polynomials, respec-
tively.

En,0,0n1,m,n2
= − e2

4πε0εR0
βn + ~ωn

(
n2 +

1

2

)
+ ~ωn (2n1 + |m|+ 1)

√
1 +

ω2
B

8ω2
n

+
~ωBm

2
. (5)

The short-range impurity potential is described in terms of the zero-radius potential model:

Vδ (ρ, ϕ, z; ρa, ϕa, za) = γ
δ (ρ− ρa)

ρ
δ (ϕ− ϕa) δ (z − za)

[
1 + (ρ− ρa)

∂

∂ρ
+ (z − za)

∂

∂z

]
, (6)

where γ = 2π~2/ (αm∗h) – the zero radius potential power; α is determined by the bound state energy Ei of the same
A+-center in a bulk semiconductor; ρa, za – coordinates of the A+-center in QD.

The one-hole Green function G (ρ, ϕ, z, ρa, ϕa, za, Eλh) to the Schrödinger equation, corresponding to the
source at the point ~r1 = (ρ1, ϕ1, z1) and to the energy Eλh, can be written as

G (ρ, ϕ, z, ρa, ϕa, za, En) = −
∑

n1,m,n2

Ψ
(n)∗
n1,m,n2 (ρ1, ϕ1, z1) Ψ

(n)
n1,m,n2 (ρ, ϕ, z)

|Eλh|+ En,0,0n1,m,n2

, (7)

where Eλh – the hole binding energy, measured from the bottom of the electron adiabatic potential.
Using the expressions for the single-particle wave functions (4) and for the energy spectrum (5), for the Green

function G (ρ, ϕ, z, ρa, ϕa, za, En) in units of the effective Bohr energy Eh = ~2/
(
2m∗ha

2
h

)
and the effective Bohr
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radius of the hole ah = 4πε0ε~2/
(
m∗h |e|

2
)

, we obtain

G (ρ, ϕ, z, ρa, ϕa, za, Eλh) =
−βh

2π3/2a3nEh
exp

[
−
(
ρ2 + ρ2a

4a21
+
z2 + z2a

2a2n

)]
×

+∞∫
0

dt exp
[
−
(
η2λhβh − β0 + w + 1

)
t
] ∞∑
n2=0

(
e−t

2

)n2 Hn2

(
za
an

)
Hn2

(
z
an

)
n2!

×

+∞∑
m=−∞

exp (−w |m| t)
(
ρ2ρ2a
2a21

)|m|
exp

(
im
(

(ϕ− ϕa)− βh (a∗)
−2
t
))
×

+∞∑
n1=0

n1!

(n1 + |m|)!
L|m|n1

(
ρ2

2a21

)
L|m|n1

(
ρ2a
2a21

)
exp [−2n1wt] , (8)

here η2λh = |Eλh| /Eh; β0 = βsne
2/ (4πε0εR

∗
0ahEh); R∗0 = R0/ah; βh = Eh/~ωn; a∗ = aB/ah ; w =√

1 + β2
h (a∗)

−4
/2.

Summation over a quantum number n2 can be performed using the Mehler formula:

∞∑
n2=0

(
e−t

2

)n2 Hn2

(
za
an

)
Hn2

(
z
an

)
n2!

=
1√

1− e−2t
exp

{
2zaz e

−t −
(
z2a + z2

)
e−2t

a2n (1− e−2t)

}
. (9)

Using the Hille–Hardy formula for the bilinear generating function of the Laguerre polynomials, it is possible to
sum the series over the quantum number n1:

∞∑
n1=0

n1!

(n1 + |m|)!
L|m|n1

(
ρ2a
2a21

)
L|m|n1

(
ρ2

2a21

)
exp (−2n1wt) =

(
ρaρ

2a21

)−|m|
exp [|m|wt]× (1− exp (−2wt))

−1
exp

(
− exp (−2wt)

(
ρ2a + ρ2

)
2a2n (1− exp (−2wt))

)
×

I|m|

(
ρaρ exp (−wt)

2a21 (1− exp (−2wt))

)
. (10)

Summation over the magnetic quantum number m gives:

+∞∑
m=−∞

exp
[(
i (ϕ− ϕa)− βh (a∗)

−2
t
)
m
]
I|m|

(
ρaρ exp (−wt)

2a21 (1− exp (−2wt))

)
=

exp

[(
exp

[
i (ϕ− ϕa)− βh (a∗)

−2
t
]

+ exp
[
−i (ϕ− ϕa) + βh (a∗)

−2
t
])
× ρaρ exp (−wt)

2a21 (1− exp (−2wt))

]
. (11)

Taking into account (9) – (11), after separation of the diverging part, we obtain:

G (ρ, ϕ, z, ρa, ϕa, za;Eλh) =
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− 1

(2π)
3/2√

βhEha3h

{
exp

[
−
(
ρ2a + ρ2

)
w + z2a + z2

4βha2h

]
×

+∞∫
0

dt exp
[
−
(
βhη

2
λh − β0 + w + 1/2

)
t
]
×

[
w
(
1− e−2t

)−1/2
(1− exp [−2wt])× exp

{
2zaz e

−t −
(
z2a + z2

)
e−2t

2βha2h (1− e−2t)

}
×

exp

[
− exp (−2wt)

(
ρ2a + ρ2

)
w

2βha2h (1− exp [−2wt])

]
×

exp

[
1

2

(
exp

[
i (ϕ− ϕa)− βh (a∗)

−2
t
]

+ exp
[
−i (ϕ− ϕa) + βh (a∗)

−2
t
])
× wρaρ exp (−wt)
βha2h (1− exp (−2wt))

]
−

t−3/2 exp

[
− (ρ− ρa)

2
w + (z − za)

2

4βha2ht

]]
+ 2
√
πβhah

exp

[
−
√

(2βhη2λh−2β0+2w+1)((ρ−ρa)2w+(z−za)2)
2βha2h

]
√

(ρ− ρa)
2
w + (z − za)

2

}
. (12)

The bound state energy of a hole in the total field (including the zero radius well located at a point ~Ra = (~ρa, za))
is the pole of the Green’s function, i.e. the equation solution:

α =
2π~2

m∗
(TG) (ρa, ϕa, za, ρa, ϕa, za;Eλh) , (13)

where

(TG) (ρa, ϕa, za, ρa, ϕa, za;Eλh) = lim
ρ→ρa
ϕ→ϕa
z→za

[1 + (ρ− ρa) ∂/∂ρ+ (z − za) ∂/∂z]×G (ρ, ϕ, z, ρa, ϕa, za;Eλh) .

Substituting (12) into (13), we obtain the dispersion equation for a hole, localized at the QD A+-center in a
magnetic field:

√
η2λh − β0β

−1
h + (2βh)

−1
+ wβ−1h = ηi −

√
2

πβh

+∞∫
0

dt exp
[
−
(
βhη

2
λh − β0 + w + 1/2

)
t
]
×

[
1

2t
√

2t
− w

(
1− e−2t

)−1/2
(1− exp (−2wt))

−1
exp

[
− (z∗a)

2

2βh
cot

(
t

2

)]
×

exp

[
− w (ρ∗a)

2

2βh (1− exp (−2wt))

(
1 + exp (−2wt)− 2 exp (−wt) cosh

(
βh (a∗)

−2
t
))]]

, (14)

where η2i = |Ei| /Eh; Ei – the bound state energy of a hole localized at the same A+-center in a bulk semiconductor;
z∗a = za/ah; ρ∗a = ρa/ah.

Let us consider the process of the radiative transition of an excited electron to theA+-center level. To calculate the
frequency dependence of the recombination radiation spectral intensity (SIRR), it is necessary to obtain an expression
for the wave function of an electron localized in the ground state of a spherically symmetric QD in a magnetic field. In
the second order of perturbation theory, the energy spectrum of an electron in an external magnetic field can be written
as

E = E(0) + Vn,l,m;n,l,m +
∑

n′ l′ m′

(R∗0)
2 |Vn,l,m;n′,l′,m′ |2

π2 − X̃2
n′,l′

, (15)

here X̃n′,l′ – the root of the Bessel function of a half-integer order l + 1/2, E(0) = X̃2
n,lEh/ (R∗0)

2 – zero approach
to electron energy in the size-quantized band, Vn,l,m;n′,l′,m′ – matrix element of the perturbation operator, which in
spherical coordinates has the form:

V̂n,l,m;n′,l′,m′ = − i~ωB
2

∂

∂ϕ
+
m∗hω

2
B

2
r2 sin2 θ. (16)
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In the second order of perturbation theory, the electron wave function is given by an expression of the form:

Ψn,l,m (r, θ, ϕ) = Ψ
(0)
n,l,m (r, θ, ϕ) +

∑
n′l′m′

(R∗0)
2
Vn,l,m;n′,l′,m′

π2 − X̃2
n′,l′

Ψ
(0)
n′,l′,m′ (r, θ, ϕ) , (17)

where Ψ
(0)
n,l,m (r, θ, ϕ) – the zero approximation wave function:

Ψ
(0)
n,l,m (r, θ, ϕ) = Yl,m (θ, ϕ)

Jl+3/2

(
X̃n,l
R∗0

r∗
)

a
3/2
h

√
2πR∗0

√
r∗Jl+3/2

(
X̃n,l

) . (18)

The matrix element Vn,l,m;n′,l′,m′ of the perturbation operator, taking into account (18), can be written as:

Vn,l,m;n′,l′,m′ =

R∗0∫
0

π∫
0

2π∫
0

Y ∗l,m (θ, ϕ) Jl+3/2

(
X̃n,l
R∗0

r∗
)
V̂n,l,m;n′,l′,m′Yl′,m′ (θ, ϕ) Jl′+3/2

(
X̃n′,l′

R∗0
r∗
)
r∗dr∗dθdϕ

2πR∗0Jl+3/2

(
X̃n,l

)
Jl′+3/2

(
X̃n′,l′

) .

(19)
Using the recurrence relations between the spherical functions and the properties of their orthogonality, the integrals
over the variables θ and ϕ can be written as

π∫
0

2π∫
0

Y ∗l,m (θ, ϕ)Yl′,m′ (θ, ϕ) sin θdθdϕ = δll′δmm′ , (20)

π∫
0

2π∫
0

Y ∗l,m (θ, ϕ)Yl′,m′ (θ, ϕ) sin3 θdθdϕ =

√
(l −m+ 4) (l −m+ 3) (l −m+ 2) (l −m+ 1)

(2l + 1) (2l − 1)
2

(2l − 3)
δl,l′+2δm,m′−2 −

2

(2l + 3) (2l − 1)

√
(l −m) (l −m− 1) (l +m+ 2) (l +m+ 1)δll′δm,m′−2 +√

(l +m+ 4) (l +m+ 3) (l +m+ 2) (l +m+ 1)

(2l + 5) (2l + 3)
2

(2l + 1)
δl,l′−2δm,m′−2. (21)

Integration over a variable r∗ gives

R∗0∫
0

Jl+3/2

(
X̃n,l

R∗0
r∗

)
Jl′+3/2

(
X̃n′,l′

R∗0
r∗

)
r∗dr∗ =

R∗0(
X̃2
n,l − X̃2

n′,l

)×
[
R∗0X̃n′,lJl+1/2

(
R∗0X̃n′,l

)
Jl+3/2

(
R∗0X̃n,l

)
−R∗0X̃n,lJl+1/2

(
R∗0X̃n,l

)
Jl+3/2

(
R∗0X̃n′,l

)]
(22)

and

R∗0∫
0

Jl+3/2

(
X̃n,l

R∗0
r∗

)
Jl′+3/2

(
X̃n′,l′

R∗0
r∗

)
r∗3dr∗ =

X̃
l+3/2
n,l X̃

l′+3/2
n′,l′

2l+l′+3Γ (l′ + 5/2)

∞∑
k=0

(−1)
k

k!Γ (l + k + 5/2)

(
X̃
l+3/2
n,l

2R∗0

)2k F

(
−k,−l − k − 3/2, l + 5/2,

X̃2
n′,l′

X̃2
n,l

)
l + l′ + 2k + 4

, (23)

where F (α, β, x) – the degenerate hypergeometric function.
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Taking into account (20) – (23), the matrix element of the considered optical transition can be represented as

Vn,l,m;n′,l′,m′ =

∞∑
n′=0

 ~ωBm

4π
(
X̃2
n,l − X̃2

n′,l

)
Jl+3/2

(
X̃n,l

)
Jl+3/2

(
X̃n′,l

) [R∗0X̃n′,lJl+1/2

(
R∗0X̃n′,l

)
Jl+3/2

(
R∗0X̃n,l

)
−

R∗0X̃n′,lJl+1/2

(
R∗0X̃n,l

)
Jl+3/2

(
R∗0X̃n′,l

)]
+

∞∑
k=0

(−1)
k
m∗hω

2
BR
∗
0

(
X̃
l+3/2
n,l

)2k+1

k!Γ (l + k + 5/2) 2l+4+2k
×

[√
(l −m+ 4) (l −m+ 3) (l −m+ 2) (l −m+ 1)

(2l + 1) (2l − 1)
2

(2l − 3)

F

(
−k,−l − k − 3/2, l + 5/2,

X̃2
n′,l−2

X̃2
n,l

)
(2l + 2k + 2) Γ (l + 1/2)

−

2F

(
−k,−l − k − 3/2, l + 5/2,

X̃2
n′,l

X̃2
n,l

)
(2l + 3) (2l − 1) (2l + 2k + 4)

√
(l −m) (l −m− 1) (l +m+ 2) (l +m+ 1)+

F

(
−k,−l − k − 3/2, l + 5/2,

X̃2
n′,l+2

X̃2
n,l

)
2l + 2k + 6

√
(l +m+ 4) (l +m+ 3) (l +m+ 2) (l +m+ 1)

(2l + 5) (2l + 3)
2

(2l + 1)


 . (24)

SIRR, taking into account the QD size dispersion, is determined by the expression of the next form:

Φ (ω) =

4ω2
√
εe2

c3V

∣∣∣∣Pehe0m0

∣∣∣∣ ∫ ∑
n

∣∣∣∣∫ Ψ∗n,l,m (ρ, ϕ, z) Ψλ (ρ, ϕ, z) dρdϕdz

∣∣∣∣2 × P (u) δ (Ei − Ef − ~ω) du, (25)

where m0 – the free electron mass; Peh – matrix element of the momentum operator on the band carriers Bloch
amplitudes; ω – frequency of radiated electromagnetic wave with polarization e0; V – the QD volume; P (u) – the
Lifshitz–Slezov function.

The wave function of the A+-state, as is known, differs only by a constant factor from the one-particle Green
function:

Ψλh (ρ, ϕ, z) = C exp

(
−wρ

2 + z2

4βha2h

)
×

∞∫
0

dt exp

[
−
(
βhη

2
λh − β0 + w +

1

2

)
t

] (
1− e−2t

)− 1
2 (1− exp [−2wt])

−1×

exp

{
− z2 exp [−2t]

2βha2h (1− exp [−2t])

}
exp

[
− exp [−2wt]

wρ2

4βha2h (1− exp [−2wt])

]
, (26)

where C – the normalization factor determined by an expression of the next form:

C =

[
−2−1/2π−3/2β

3/2
h a3hwΓ

(
1

2
− w

) Γ
(
βhη

2
hλ+w
2 + 5

4

)
(
βhη2hλ+w

2 + 1
4

)2
Γ
(
βhη2hλ−w

2 + 3
4

)×
[(

βhη
2
hλ + w

2
+

1

4

)[
Ψ

(
βhη

2
hλ + w

2
+

5

4

)
−Ψ

(
βhη

2
hλ − w
2

+
3

4

)]
− 1

]]−1/2
. (27)

Taking into account (18), (24) and (26), the matrix element of the radiative recombination transition of an electron
from the ground state of the size-quantized band to the level of the QD A+-center in a magnetic field can be written
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as:

M1,λ =
C (2βh)

5/4
a2h

2πR∗20 J3/2

(
X̃n,1

) +∞∫
0

+∞∫
−∞

2π∫
0

ρ∗dρ∗dz∗dϕ×

+∞∫
0

dt exp

[
−
(
βhη

2
λh − β0 + w +

1

2

)
t

] (
1− e−2t

)−1/2
(1− exp [−2wt])

−1×

exp

[
−
(
z∗2 (1 + exp [−2t])

2βh (1− exp [−2t])
+
p∗2w (1 + exp [−2wt])

2βh (1− exp [−2wt])

)]
×

ρ∗

(ρ∗2 + z∗2)
3/4

J5/2
(
X̃n,1
R∗0

√
ρ∗2 + z∗2

)
J5/2

(
X̃n,1

) +

∞∑
n′=1

R∗20 V n,1,−1;n′,1,−1J5/2

(
X̃n′,1
R∗0

√
ρ∗2 + z∗2

)
(
π2 − X̃2

n′,1

)
J5/2

(
X̃n′,1

)
 , (28)

where R∗0 = R0/a
2
h.

Performing integration in (28), we obtain

M1,λ =
C (2βh)

5/4
a2h

2πR∗20 J3/2

(
X̃n,1

) +∞∫
0

dt exp

[
−
(
βhη

2
λh − β0 + w +

1

2

)
t

] (
1− e−2t

)−1/2×
(1− exp [−2wt])

−1
∞∑
j=0

(−1)
j

(
1− exp [−2wt]

1 + exp [−2wt]

)2j+5/2

×

[√
π

2
Γ

(
2j +

5

2

)(
X̃n,1

√
2βh

2R∗0

)2j+3/2(
1 + exp [−2t]

1− exp [−2t]
− 1 + exp [−2wt]

1− exp [−2wt]

)−1/2
−

R∗20

∞∑
n′=0

(−1)
n′

(2j + 3)!

2n!
(
2j + 5

2 + n′
) (X̃n′,1

√
2βh

2R∗0

)2j+3/2

×

Vn,1,−1;n′,1,−1

π2 − X̃2
n′,1

(
1 + exp [−2wt]

1− exp [−2wt]

)2j+5/2+n′ (
1 + exp [−2t]

1− exp [−2t]
− 1 + exp [−2wt]

1− exp [−2wt]

)−2j−3 ]
. (29)

After integration in (29), we finally obtain:

Φ (X) = Φ0
X2β̄4

hu1w̄(
J3/2

(
X̃n,0

))2
R̄∗50

×
Γ
(
1
2 − w̄

)
Γ (∆ + 1)

∆2Γ
(
∆− w̄ + 1

2

) ×
[
∆

[
Ψ (∆ + 1)−Ψ

(
∆− w̄ +

1

2

)]
− 1

]
P (u1)×∣∣∣∣∣∣

∞∫
0

dt exp

[
−
(
β̄hη

2
λhu

3/2
1 − β̄0u−11 + w̄ +

1

2

)
t

] (
1− e−2t

)−1/2
(1− exp [−2w̄t])

−1 ×

∞∑
j=0

(−1)
j

(
1− exp [−2w̄t]

1 + exp [−2w̄t]

)2j+5/2

×

√π
2

Γ

(
2j +

5

2

)(
X̃n,1

√
2βh

2R̄∗0

)2j+3/2(
1 + exp [−2t]

1− exp [−2t]
− 1 + exp [−2wt]

1− exp [−2wt]

)−1/2
−

R̄∗20

∞∑
n′=0

(−1)
n′

(2j + 3)!

2n′!
(
2j + 5

2 + n′
) (X̃n′,1

√
2βh

2R̄∗0

)2j+3/2

×

Vn,1,−1;n′,1,−1

π2 − X̃2
n′,1

(
1 + exp [−2wt]

1− exp [−2wt]

)2j+5/2+n′ (
1 + exp [−2t]

1− exp [−2t]
− 1 + exp [−2wt]

1− exp [−2wt]

)−2j−3]∣∣∣∣∣
2

, (30)
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where Φ0 = 6
√
εe222a3hπ

−3/2 |Pehe0| /π2c3m0; ∆ =
(
β̄hη

2
hλu

3/2 + w̄
)
/2 + 1/4; w̄ =

√
1 + β̄2

hu
3a∗−4/2;

β̄0 = βne
2/4πε0εahR̄

∗
0; β̄h =

(
3EhahR̄

∗3
0 πε0ε

)1/2
/
(
π2e2

)1/2
; X = ~ω/Ed; u – is the root of a transcenden-

tal equation of the form:

π2/R∗20 u+

∞∑
nn′=1

R∗20 u (V1n′ (u))
2
/
(
π2 −X2

n′,1

)
= η2λh +X.

3. Dependence of the spectral intensity of recombination radiation on the energy of emitted photon and on
the magnitude of an external magnetic field

Figure 1 shows the frequency dependence of the spectral intensity of recombination radiation, as well as its
dependence on the magnitude of an external magnetic field. The spectral intensity of recombination radiation in an
external magnetic field increases, which is associated with an increase in the overlap integral of the envelope wave
functions of a hole bound at the A+-center and of an electron localized in the ground state of quantum dot. Fig. 2(a,b)
shows the coordinate dependence of the wave function modulus square, for the A+-state and for the electronic wave
function of the ground state, respectively, for different values of the magnitude of an external magnetic field “B”. It
can be seen that as the value of B increases, the degree of localization both as for the hole (see Fig. 2a) and as for the
electron wave functions increases, and accordingly the overlap integral increases.

FIG. 1. Dependence of the spectral intensity of recombination radiation (in relative units) on the
emitted photon energy and on the magnitude of an external magnetic field B, for the quasi-zero-
dimensional structure of InSb–QD at R0 = 55 nm

4. Conclusions

Dependence of the binding energy of a hole in the A+ + e complex on the magnitude of an external magnetic
field has been investigated by the zero-range potential method in the adiabatic approximation. It is shown that in an
external magnetic field there is a spatial anisotropy of the binding energy for A+-state due to hybrid quantization in
the QD radial plane and due to dimensional quantization in the direction of an external magnetic field. In the dipole
approximation, the frequency dependence calculation of the spectral intensity of recombination radiation for a quasi-
zero-dimensional structure in an external magnetic field has been performed, taking into account dispersion of the QDs
radius. It is shown that in an external magnetic field the spectral intensity of recombination radiation curve shifts to the
short-wave region of the spectrum and probability of the electron radiative transition to the A+-center level increases,
which is associated with an increase in the overlap integral of the envelope wave functions of a hole bound at the
A+-center and of an electron localized in the ground state of quantum dot. The obtained results can be used in the
development of IR sources or terahertz radiation (depending on the QD radius), on the basis of quasi-zero-dimensional
structures with impurity complexes, with parameters controlled in an external magnetic field.
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FIG. 2. The coordinate dependence of the wave function modulus square: (a) for A+-state and
(b) for the electronic wave function for various values of the magnetic field intensity B. 1: B = 0;
2: B = 2T ; 3: B = 5T , at R0 = 20 nm
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