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Finite Toda lattice and classical moment problem
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1. Introduction

The semi-infinite or finite Toda lattice can be written in the following way:{
ȧn(t) = an(t) (bn+1(t)− bn(t)) ,

ḃn(t) = 2
(
a2n(t)− a2n−1(t)

)
, t > 0, n = 1, 2, . . . , N,

(1)

where N ∈ N or N =∞, and one looks for a solution satisfying the initial conditions:

an(0) = a0n, bn(0) = b0n, n = 1, . . . , N, (2)

where a0n, b
0
n are real and a0n > 0. Toda lattices are used for modeling of nanosystems and macromolecules [1–3].

Methods of computing of functions an(t), bn(t) are subject of many investigations, see for example [4–6] and refer-
ences therein. In the present paper, we restrict ourselves to the case of finite N , this situation was studied in [7].

We define two operators acting in RN , f ∈ RN , f = (f1, f2, . . . , fN ) by rules:

H(t) : f 7→


a1(t)f2 + b1(t)f1,

an(t)fn+1 + an−1fn−1 + bn(t)fn, n = 2, . . . , N − 1,

aN−1(t)fN−1 + bN (t)fN ,

P (t) : f 7→


a1(t)f2,

an(t)fn+1 − an−1(t)fn−1, n = 2, . . . , N − 1,

aN−1fN−1.

Note that the operator H(t) is given by the Jacobi matrix (we keep the same notation for it):

H(t) =


b1(t) a1(t) 0 0 0

a1(t) b2(t) a2(t) 0 0

0 a2(t) b3(t) a3(t) 0

· · · · ·
0 0 0 aN−1(t) bN (t)

 . (3)

It is a well known fact [5, 6] that the system (1) is equivalent to the following operator equation:
dH

dt
= PH −HP. (4)

By dρt(λ), we denote the spectral measure of operator H(t). Being a spectral measure of a bounded operator in
RN , it has the form:

dρt(λ) =

N∑
k=1

σ2
k(t)δ(λ− λk(t)), (5)
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where λk(t), k = 1, . . . , N is a spectrum of H(t). The moments of dρt(λ) are introduced by the rule:

sk(t) =

∞∫
−∞

λk dρt(λ), k = 0, 1, 2, . . . (6)

It is well-known fact that the set of moments determines the semi-infinite Jacobi operator (but not necessarily in the
unique way!), see [8, 9] and [10, 11] for dynamic approach.

For infinite Toda lattices, people are interested in the evolution of scattering data for operator H(t) [4,5,7]. In the
finite case in [7] the author studied the evolution of σk(t) (it happens that λk do not depend on t). In the present paper,
we investigate the evolution of moments sk(t) under Toda flow. The authors are planning to use the obtained results
for studying the semi-infinite Toda lattices, which will be the subject of forthcoming publications.

In the second section, we provide the necessary information on Toda lattices and adopt and rewrite some of results
from [7] in a form, convenient for our purposes. In the last section, we remind the reader some basic facts on moment
problem and derive the evolution equation for moments under the Toda flow.

2. Finite Toda lattice, Moser formula.

Here, we adapt some of results from [7] to the convenient forms for our use. For simplicity we usually omit the
argument t.

Proposition 1. The eigenvalues of the matrix H(t) do not depend on t: λj(t) = λj(0).

This fact follows from the representation dH
dt = i (HiP − (iP )H) = {−iP,H}, and thusH(t) = ePtH(0)e−Pt.

Let (·, ·) denotes the scalar product in RN . The Weyl function [12, 13] is introduced by the rule:

m(λ) := (R(λ)e1, e1) ,

where:
R(λ) = (H(t)− λI)

−1
, ei = (0, . . . , 0, 1, 0, . . . , 0),

with 1 being at i−th place.

Proposition 2. The following relation holds:
d

dt
m(λ) = 2a1R21(λ). (7)

Proof. We can evaluate:
dR

dt
= −RdH

dt
R = −RPHR+RHPR = −RP (I + λR) + (I + λR)PR = PR−RP.

Then, using this relation, we have that:
d

dt
m(λ) = ((PR−RP ) e1, e1) = −2 (RPe1, e1) = 2a1R21.

�

We introduce the matrix:

BN = H − λI =


b1 − λ a1 0 0 0

a1 b2 − λ a2 0 0

0 a2 b3 − λ a3 0

· · · · ·
0 0 0 aN−1 bN − λ,


and minors Bk, 1 6 k < N of BN , where Bk are given by the intersection of k rows N − k + 1, . . . , N − 1, N and
k columns N − k + 1, . . . , N − 1, N . Denote ∆k := detBk. Then, simple algebra shows that:

m(λ) = R11 =
∆N−1

∆N
,

R21(λ) = R12(λ) = (R(λ)e1, e2) = −a1∆N−2

∆N
.

Using these equalities we can rewrite (7) in the following form:
d

dt
m(λ) = 2 (1− (b1 − λ)m(λ)) . (8)
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Representations of a Weyl function [12, 13] and a spectral measure (5) imply that:

m(λ) =

∫
R

1

λ− z
dρ(z) =

N∑
k=1

σ2
k(t)

λ− λk
.

Plugging the latter representation into (8) we have that:

N∑
k=1

2σ̇kσk
λ− λk

= 2

(
1− (b1 − λ)

N∑
k=1

σ2
k

λ− λk

)
,

where by dot we denote the differentiation with respect to t. Multiplying the last equality by (λ − λk) and setting
λ = λk, we come to the following system:

σ̇k(t) = −(b1 − λk)σk(t), k = 1, . . . , N. (9)

By ‖ · ‖ we denote the standard norm in RN .

Proposition 3. The coefficient b1 admits the representation:

b1 =

N∑
k=1

λkσ
2
k.

Proof. Denote by Ck the eigenvectors of H:

HCk = λkC
k, Ck =


Ck1
Ck2
. . .

CkN

 , k = 1, . . . , N,

such that ‖Ck‖ = 1, k = 1, . . . , N . Then, by the spectral theorem:

C∗HC =


λ1 0 0 . . . 0

0 λ2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . λN

 , where C =
(
C1|C2| . . . |CN

)
,

i.e., the matrix C is constructed from columns Ck, k = 1, . . . , N . Then:

H = C


λ1 0 0 . . . 0

0 λ2 0 . . . 0

. . . . . . . . . . . . . . .

0 0 0 . . . λN

C∗,

from where and (3) we have that:

b1 = H11 =

N∑
k=1

λk
(
Ck1
)2

=

N∑
k=1

λk (σk)
2
.

�

The above proposition allows us to rewrite the system (9) in a more convenient form:

σ̇k(t) = −

 N∑
j=1

λjσ
2
j (t)− λk

σk(t), k = 1, . . . , N. (10)

Solution of (10) is given by the Moser formula:

σ2
k(t) =

σ2
k(0)e2λkt∑N

j=1 σ
2
j (0)e2λjt

. (11)
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3. Moment problem. Evolution of moments under the Toda flow.

We denote by CN [X] the set of polynomials of order less than N . The set of moments {sk}2N−2k=0 determines on
CN [X] the bilinear form by the rule: for F,G ∈ CN [X], F (λ) =

∑N−1
n=0 αnλ

n, G(λ) =
∑N−1
n=0 βnλ

n, one defines:

〈F,G〉 =

N−1∑
n,m=0

sn+mαnβm. (12)

Thus this quadratic form is determined by the following Hankel matrix:

S =


s0 s1 s2 . . . sN−1
s1 s2 . . . . . . . . .

s2 . . . . . . . . . . . .

. . . . . . . . . . . . s2N−1
sN−1 . . . . . . s2N−1 s2N−2

 (13)

In [10,11] it is shown that CN [X] is in fact a de Branges space (we denote it here by BN (t)), related to the dynamical
system with discrete time associated with Jacobi matrix (3), see also [14,15]. The scalar product in BN (t) is given by
[F,G]BN (t) = 〈F,G〉.

By ‖ · ‖ we denote the standard norm in RN . We introduce the vector:

σ̃(t) =


σ̃1(t)

σ̃2(t)

. . .

σ̃N (t)

 =


σ1(0)eλ1t

σ2(0)eλ2t

. . .

σN (0)eλN t

 . (14)

Then (11) and (14) implies that:

σk(t) =
σ̃k(t)

‖σ̃(t)‖
,

where

‖σ̃(t)‖ =

√√√√ N∑
j=1

σ2
j (0)e2λjt.

For k = 1, . . . , N we have that:

sk(t) =

∫
R

λk dρt(λ) =

N∑
j=1

λkjσ
2
j (t) =

N∑
j=1

λkj
σ̃2
j (t)

‖σ̃(t)‖2
. (15)

Then on introducing the notation
s̃k(t) = sk(t)‖σ̃(t)‖2,

and using (15) we see that

˙̃sk(t) =

N∑
j=1

λkj 2 ˙̃σj(t)σ̃j(t) =

N∑
j=1

λk+1
j 2σ̃2

j (t) = 2s̃k+1(t). (16)

We take F,G ∈ CN [X], F (λ) =
∑N−1
n=0 αnλ

n, G(λ) =
∑N−1
n=0 βnλ

n, then the scalar product in BN (t) has the
form:

[F,G]BN (t) =

N−1∑
n,m=0

sn+m(t)αnβm.

We multiply both sides of the above equality by ‖σ̃(t)‖2 and differentiate:(
[F,G]BN (t) ‖σ̃(t)‖2

)′
=

N−1∑
n,m=0

(
‖σ̃(t)‖2sn+m(t)

)′
αnβm (17)

=

N−1∑
n,m=0

(s̃n+m(t))
′
αnβm =

N−1∑
n,m=0

2s̃n+m+1(t)αnβm = 2‖σ̃(t)‖2
N−1∑
n,m=0

sn+m+1(t)αnβm.
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Differentiating the left hand side of the above equality, we have that:(
[F,G]BN (t) ‖σ̃(t)‖2

)′
=
(
‖σ̃(t)‖2

)′ N−1∑
n,m=0

sn+m(t)αnβm + ‖σ̃(t)‖2
N−1∑
n,m=0

ṡn+m(t)αnβm. (18)

On equating (18) and the right and side of (17), we come to the relation:(
‖σ̃(t)‖2

)′
‖σ̃(t)‖2

N−1∑
n,m=0

sn+m(t)αnβm +

N−1∑
n,m=0

ṡn+m(t)αnβm = 2

N−1∑
n,m=0

sn+m+1(t)αnβm.

Due to the arbitrariness of F,G the last equality implies that for moments sk the following system holds:

ṡk(t) +
(
ln
{
‖σ̃(t)‖2

})′
sk(t) = 2sk+1(t), k = 0, . . . , 2N − 2. (19)

Since we know that s0(t) = 1 for all t, then (19) allows us to determine s1(t), s2(t) . . . , s2N−2(t) recursively. Then,
we use the fact that the set of moments sk(t), k = 0, . . . , 2N − 2 determines N × N Jacobi matrix (3) and thus
coefficients ak(t) , bk(t) , aN (t), k = 1, . . . , N − 1. Formulas for the reconstruction of entries of Jacobi matrix from
moments are given in [8, 14, 16]

Analysis of the solution to (19) as well as an application of the results of the present paper and of [11, 16] to the
case of semi-infinite Toda lattices will be the subject of forthcoming publications.
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