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We study various non classical effects of light like reduction of quantum phase fluctuation, antibunching and minimum total noise present in various
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1. Introduction

For being a non-classical quantum state, negativities of Glauber–Sudarshan P-function may appear. However, this
function may be strongly singular [1, 2]. Generally we use standard deviation as the most natural measure to study
quantum fluctuation [3]. Non classical effects of radiation field like reduction of quantum fluctuation, antibunching
and minimum total noise were recently attracted a great interest in quantum optics. Quantum phase can be considered
as a main feature to differentiate between classical and quantum physics. Antibunching and squeezing has no classical
correlation and are called non classical states. In Sub-Poissonian (antibunching) photon statistics the variance of pho-
ton number is less than the mean value. The Hermitian quantum phase operators have some uncertainty [4–6] which
leads to a lot of adverse formalism [7–9] of phase problem. Out of all these formalisms, Barnett–Pegg(BP) [8] and
Susskind–Glogower(SG) [9] has contributed a considerable role in phase fluctuation and have been used by various
researchers [10–18]. Study of phase fluctuation of coherent light coupled to a nonlinear medium and in intermedi-
ate state have already been studied [19, 20]. The development of nanotechnology and nanoscience has provided new
opportunities for nonlinear optics. In the last few decades, numerous studies on the nonlinear optical properties of
novel materials have been performed because of the potential of these materials in optical device applications [21–25].
Strong optical nonlinearities in nanoparticles are observed due to quantum confinement, such as nonlinear optical ab-
sorption and second and third order optical nonlinearities; these can be studied for making optical modulators, optical
limiters and laser second and third harmonic generators [23, 24]. To study the optical nonlinearity of nanoparticles,
there is a significant body of research concerning the measurements of third order nonlinear susceptibility χ3 which
can be used as a source for the generation of third harmonic generation process [26]. With the role of quantum phase
fluctuation in quantum cryptography [27], super conductivity [28, 29] and with the success in experimental study of
phase fluctuation [30], there has been a significant increase in importance of study of non-classical parameters.

In the present work, Carruther and Nieto phase parameters [16] are used to study phase fluctuation parameters
in nonlinear processes like seven and eight wave interaction process and in third harmonic generation using Barnett–
Pegg (BP) formalism [7]. We have reported in the paper that reduction of phase parameters not only directly implies
antibunching but also increases with an increase in antibunching. We have also found minimum total noise in terms
of number operators and observed that the greater the sub-Poissonian (antibunched) state, the greater will be the
minimum total noise in the system.

2. Measurement of quantum phase fluctuation parameters

Barnett and Pegg [7] defined the exponential of phase operator E and its Hermitian conjugate E† as:

E =

(
N +

1

2

)− 1
2

a(t),

E† =

(
N +

1

2

)− 1
2

a†(t),

(1)
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where N is the mean photon number in the coherent state. Cosine and sine operators are defined as [7]:

C =
1

2
(E + E†),

S = − i
2

(E − E†),
(2)

and satisfy the following relations:
〈C〉2 + 〈S〉2 = 1, (3)

and

[C, S] =
i

2

(
N +

1

2

)− 1
2

, (4)

and, we get

(∆C)
2

(∆S)
2 ≥ 1

16

1

(N + 1
2 )
. (5)

To measure quantum phase fluctuation, Carruthers and Nieto [16] had introduced U , S and Q parameters in the
following way:

U
(
θ, t, |α|2

)
= (∆N)

2 (∆S)
2

+ (∆C)
2

〈S〉2 + 〈C〉2
, (6)

S(θ, t, |α|2) = (∆N)
2

(∆S)
2
, (7)

and

Q(θ, t, |α|2) =
S(θ, t, |α|2)

〈C〉2
, (8)

where θ is the phase of input Poissonian state, t is interaction time and |α|2 is mean photon number in coherent state.

2.1. Seven wave interaction process

In seven wave mixing process, the interaction takes place in such a way that the absorption of two photons of
frequency ω1 each and the emission of two photons of frequency ω2 each and other two photons of frequency ω3. The
Hamiltonian represents total energy for the system and is given as (taking ~ = 1):

H = ω1a
+a+ ω2b

+b+ ω3c
+c+ g

(
a2b+2c+3 + a+2b2c3

)
, (9)

where g is a coupling constant, a
(
a+
)
, b
(
b+
)
, c
(
c+
)

are the annihilation(creation) operators respectively.
A = a exp iω1t, B = b exp iω2t, C = c exp iω3t are slowly varying operators at frequencies ω1, ω2 and ω3.

To study quantum phase fluctuation, a coherent state |α〉 is used as pump for mode A and before the interaction
process there was no photon in signal mode B and stokes mode C i.e.,

|ψ〉 = |α〉|0〉|0〉. (10)

The Heisenberg equation of motion for fundamental mode A is given as (~ = 1):

dA

dt
=
∂A

∂t
+ i [H,A] , (11)

in this process, we assume the interaction time t to be very small. Using short time approximation technique, expand
A (t) by using Taylor’s series expansion and retain the terms up to second order in g2t2:

A(t) = A(0) +
t

1!

dA(0)

dt
+
t2

2!

d2A(0)

dt2
,

and we get:

A(t) = A− 2igtA†B2C3 + g2t2
(

2AN2
BN

3
C − 9A†A2N2

BN
2
C − 18A†A2N2

BNC

−6A†A2N2
B − 4A†A2NBN

3
C − 36A†A2NBN

2
C − 72A†A2NBNC − 24A†A2NB

−2A†A2N3
C − 18A†A2N2

C − 36A†A2NC − 12A†A2
)
, (12)

where NB = B†B and NC = C†C.
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From equation (12), the mean number of photons i.e. N(t) = A†(t)×A(t) can be expressed as:

N(t) = A†A− 2igt
(
A†2B2C −A2B†2C†

)
+ 4g2t2

(
2A†AN2

BNC +N2
BNC

)
−2g2t2

(
A†2A2N2

B + 4A†2A2NBNC + 4A†2A2NB + 2A†2A2NC + 12A†2A2
)
, (13)

the expectation value of N(t) using condition (10) is:

〈N〉 = |α|2 − 24g2t2 |α|4 . (14)

The squaring of expectation value of number operator is given as:

〈N〉2 = |α|4 − 48g2t2 |α|6 + 576g4t4 |α|8 ,
as the interaction time is small, we are taking terms up to g2t2 and above equation is written as:

〈N〉2 = |α|4 − 48g2t2 |α|6 , (15)〈
N2
〉

= |α|4 + |α|2 − g2t2
(

48 |α|6 + 96 |α|4
)
. (16)

Using equation (15) and (16), we get:

(∆N)
2

=
〈
N2
〉
− 〈N〉2 ,

(∆N)
2

= |α|2 − g2t2
(

96 |α|4
)
.

(17)

The condition of sub-Poissonian photon statistics is given as:

d = (∆N)
2 − 〈N〉 < 0. (18)

Using (14) and (17), we get:
d = −72g2t2 |α|4 . (19)

We obtained a negative value, which shows that the photon statistics is sub-Poissonian or antibunched light.
By substituting (13) in (2), we obtain:

C =
1

2

(
N +

1

2

)− 1
2
[
A+A† − 2igtA†B2C3 + 2igtAB†2C†3 + g2t2

(
2AN2

BN
3
C − 9A†A2N2

BN
2
C

−18A†A2N2
BNC − 6A†A2N2

B − 4A†A2NBN
3
C − 36A†A2NBN

2
C − 72A†2A2NBNC

−24A†2ANB − 2A†A2N3
C − 18A†A2N2

C − 36A†A2NC − 12A†A2 + 2A†N2
BN

3
C

−9A†2AN2
BN

2
C − 18A†2AN2

BNC − 6A†2AN2
B − 4A†2ANBN

3
C − 36A†2ANBN

2
C

−72A†2A2NBNC − 24A†A2NB − 2A†2AN3
C − 18A†2AN2

C − 36A†2ANC − 12A†2A
)]

(20)

and

lS = − i
2

(
N +

1

2

)− 1
2
[
A−A† − 2igtA†B2C3 − 2igtAB†2C†3 + g2t2

(
2AN2

BN
3
C − 9A†A2N2

BN
2
C

−18A†A2N2
BNC − 6A†A2N2

B − 4A†A2NBN
3
C − 36A†A2NBN

2
C − 72A†2A2NBNC

−24A†2ANB − 2A†A2N3
C − 18A†A2N2

C − 36A†A2NC − 12A†A2 − 2A†N2
BN

3
C

+9A†2AN2
BN

2
C + 18A†2AN2

BNC + 6A†2AN2
B + 4A†2ANBN

3
C + 36A†2ANBN

2
C

+72A†2A2NBNC + 24A†A2NB + 2A†2AN3
C + 18A†2AN2

C + 36A†2ANC + 12A†2A
)]
. (21)

The expectation value of C and S operators of equation (20) and (21) by applying condition (10) are:

〈C〉 =
1

2

[(
N +

1

2

)− 1
2 {

α+ α∗ − g2t2
(

12 |α|2 α+ 12 |α|2 α∗
)}]

, (22)

〈S〉 = − i
2

[(
N +

1

2

)− 1
2 {

α− α∗ − g2t2(12 |α|2 α− 12 |α|2 α∗)
}]
. (23)

Then square of expectation value of C and S are:

〈C〉2 =
1

4

(
N +

1

2

)−1 [
α2 + α∗2 + 2 |α|2 − 24g2t2

(
|α|2 α2 + |α|2 α∗2 + 2 |α|4

)]
, (24)
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〈S〉2 = −1

4

(
N +

1

2

)−1 [
α2 + α∗2 − 2 |α|2 − 24g2t2

(
|α|2 α2 + |α|2 α∗2 − 2 |α|4

)]
. (25)

Similarly:

〈
C2
〉

=
1

4

(
N +

1

2

)−1 [
α2 + α∗2 + 2 |α|2 + 1− 12g2t2

(
α2 + α∗2 + 2 |α|2 α2

+2 |α|2 α∗2 + 4 |α|4 + 4 |α|2
)]
, (26)

〈
S2
〉

= −1

4

(
N +

1

2

)−1 [
α2 + α∗2 − 2 |α|2 − 1− 12g2t2

(
α2 + α∗2 + 2 |α|2 α2

+2 |α|2 α∗2 − 4 |α|4 − 4 |α|2
)]
. (27)

.
Using equations (24)–(27), second order variances is expressed as:

(∆C)
2

=
〈
C2
〉
− 〈C〉2 =

1

4

(
N +

1

2

)−1 [
1− 12g2t2

(
α2 + α∗2 + 4 |α|2

)]
, (28)

and

(∆S)
2

=
〈
S2
〉
− 〈S〉2 = −1

4

(
N +

1

2

)−1 [
− 1− 12g2t2

(
α2 + α∗2 − 4 |α|2

)]
. (29)

Now equations (6)–(8) can be expressed as:

U(θ, t, |α|2) =
1

2

{
1− 144g2t2 |α|
1− 24g2t2 |α|2

2
}
, (30)

S(θ, t, |α|2) =
1

4

(
|α|2 − 24g2t2 |α|4 +

1

2

)−1 [
|α|2 + 24 |α|4 g2t2(cos 2θ − 6)

]
, (31)

and

Q(θ, t, |α|2) =
1 + 24 |α|2 g2t2(cos 2θ − 6)

2(cos 2θ + 1)(1− 24 |α|2 g2t2)
. (32)

From equation (19) and (30), it is clear that the reduction of phase parameter U increases withan increase in the
number of photons and is associated with antibunching.

2.2. Eight wave interaction process

In an eight wave mixing process, the interaction takes place in such a way that the absorption of two photons of
frequency ω1 each and the emission of four photons of frequency ω2 each and another two photons of frequency ω3.

The Hamiltonian for the given process is:

H = ω1a
+a+ ω2b

+b+ ω3c
+c+ g

(
a2b+4c+2 + a+2b4c2

)
, (33)

where g is a coupling constant, a
(
a+
)
, b
(
b+
)
, c
(
c+
)

are the annihilation(creation) operators, respectively.
A = a exp iω1t, B = b exp iω2t, C = c exp iω3t are slowly varying operators at frequencies ω1, ω2 and ω3.

Now, using the short time approximation technique, Taylor’s series expansion of A (t) can be expressed as:

A(t) = A− 2igtA†B4C2 + g2t2(2AN4
BN

2
C − 16A†A2N3

BN
2
C − 72A†A2N2

BN
2
C

−96A†A2NBN
2
C − 24A†A2N2

C − 4A†A2N4
BNC − 64A†A2N3

BNC − 288A†A2N2
BNC

−384A†A2NBNC − 96A†A2NC − 2A†A2N4
B − 32A†A2N3

B − 144A†A2N2
B

−192A†A2NB − 48A†A2, (34)

where NB = B†B and NC = C†C.
From equation (33), mean number of photons using condition (10) can be written as:

N(t) = A†A− 96g2t2(A†2A2). (35)

The expectation value of N(t) is:
〈N〉 = |α|2 − 96g2t2 |α|4 . (36)
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Using equation (35), we get:

(∆N)
2

= |α|2 − 192g2t2
(

2 |α|4
)
. (37)

The condition of sub-Poissonian photon statistics is given as:

d = (∆N)
2 − 〈N〉 < 0. (38)

Using equations (36) and (37), we get:

d = −288g2t2 |α|4 , (39)

as d is negative, and thus, we achieve an antibunched state.
Now, by substituting equation (34) in equation (2), we obtain:

C =
1

2

(
N +

1

2

)− 1
2
[
A+A† − 2igtA†B4C2 + 2igtAB†4C†2 + g2t2

(
2AN4

BN
2
C

−16A†A2N3
BN

2
C − 72A†A2N2

BN
2
C − 96A†A2NBN

2
C − 24A†A2N2

C

−4A†A2N4
BNC − 64A†A2N3

BNC − 288A†A2N2
BNC − 384A†A2NBNC

−96A†A2NC − 2A†A2N4
B − 32A†A2N3

B − 144A†A2N2
B − 192A†A2NB

−48A†A2 + 2A†N4
BN

2
C − 16A†2AN3

BN
2
C − 72A†2AN2

BN
2
C − 96A†2ANBN

2
C

−24A†2AN2
C − 4A†2AN4

BNC − 64A†2AN3
BNC − 288A†2AN2

BNC − 384A†2ANBNC

−96A†2ANC − 2A†2AN4
B − 32A†2AN3

B − 144A†2AN2
B − 192A†2ANB − 48A†2A

)]
(40)

and

S = − i
2

(
N +

1

2

)− 1
2
[
A−A† − 2igtA†B4C2 − 2igtAB†4C†2 + g2t2

(
2AN4

BN
2
C − 16A†A2N3

BN
2
C

−72A†A2N2
BN

2
C − 96A†A2NBN

2
C − 24A†A2N2

C − 4A†A2N4
BNC − 64A†A2N3

BNC

−288A†A2N2
BNC − 384A†A2NBNC − 96A†A2NC − 2A†A2N4

B − 32A†A2N3
B − 144A†A2N2

B

−192A†A2NB − 48A†A2 − 2A†N4
BN

2
C + 16A†2AN3

BN
2
C + 72A†2AN2

BN
2
C + 96A†2ANBN

2
C

+24A†2AN2
C + 4A†2AN4

BNC + 64A†2AN3
BNC + 288A†2AN2

BNC + 384A†2ANBNC

+96A†2ANC + 2A†2AN4
B + 32A†2AN3

B + 144A†2AN2
B + 192A†2ANB + 48A†2A

)]
. (41)

Using equations (40) and (41), second order variance is expressed as

(∆C)
2

=
〈
C2
〉
− 〈C〉2 =

1

4

(
N +

1

2

)−1 [
1− 48g2t2(α2 + α∗2 + 4 |α|2)

]
(42)

and

(∆S)
2

=
〈
S2
〉
− 〈S〉2 = −1

4

(
N +

1

2

)−1 [
− 1− 48g2t2(α2 + α∗2 − 4 |α|2)

]
. (43)

Now, equations (6)–(8) can be expressed as:

U(θ, t, |α|2) =
1

2

{
1− 576g2t2 |α|
1− 96g2t2 |α|2

2
}
, (44)

S(θ, t, |α|2) =
1

4

(
|α|2 − 96g2t2 |α|4 +

1

2

)−1 [
|α|2 + 96 |α|4 g2t2(cos 2θ − 6)

]
, (45)

and

Q(θ, t, |α|2) =
1 + 96 |α|2 g2t2(cos 2θ − 6)

2(cos 2θ + 1)(1− 96 |α|2 g2t2)
. (46)

From equation (38) and (44), we can correlate reduction of U with sub-Poissonian state.
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2.3. Third harmonic generation process

In third harmonic generation process, the interaction takes place in such a way that the absorption of three photons
of frequency ω1 each and the emission of one photon of frequency ω2 such that ω2 = 3ω1. The Hamiltonian for the
given process is:

H = ω1a
+a+ ω2b

+b+ g
(
a3b+ + a+3b

)
, (47)

where g is a coupling constant, a
(
a+
)
, b
(
b+
)

are the annihilation(creation) operators, respectively. A = a exp iω1t,
B = b exp iω2t are slowly varying operators at frequencies ω1, ω2.

By using the same techniques used in above interaction process, we get;

A(t) = A− 3igtA†2B +
3

2
g2t2

(
6A†A2NB + 6ANB −A†2A3

)
, (48)

where NB = B†B and NC = C†C.
From equation (48), the mean number of photons using condition (10) can be simplified as:

N(t) = A†A− 3g2t2
(
A†3A3

)
. (49)

The expectation value of N(t) is:

〈N〉 = |α|2 − 3g2t2 |α|6 . (50)

Using equation (48), we get:

(∆N)
2

= |α|2 − 18g2t2
(
|α|6

)
. (51)

The condition of sub-Poissonian photon statistics is given as:

d = (∆N)
2 − 〈N〉 < 0. (52)

Using (50) and (51), we get:

d = −15g2t2 |α|6 , (53)

as d is negative and thus we achieve a non-classical state.
By substituting (48) in (2), we obtain:

C =
1

2

(
N +

1

2

)− 1
2 [
A+A† − 3igtA†2B + 3igtA3B† − 3

2
g2t2

(
A†2A3 +A†3A2

) ]
(54)

and

S = − i
2

(
N +

1

2

)− 1
2 [
A−A† − 3igtA†2B − 3igtA2B† − 3

2
g2t2

(
A†2A3 −A†3A2

) ]
, (55)

Using equations (54)–(55), second order variance is expressed as:

(∆C)
2

=
〈
C2
〉
− 〈C〉2 =

1

4

(
N +

1

2

)−1 [
1− 3

2
g2t2

(
2 |α|2 α2 + 2 |α|2 α∗2 + 6 |α|4

) ]
, (56)

and

(∆S)
2

=
〈
S2
〉
− 〈S〉2 = −1

4

(
N +

1

2

)−1 [
− 1− 3

2
g2t2

(
2 |α|2 α2 + 2 |α|2 α∗2 − 6 |α|4

) ]
. (57)

Now equations (6)–(8) can be expressed as:

U(θ, t, |α|2) =
1

2

{
1− 27g2t2 |α|
1− 3g2t2 |α|4

4
}
, (58)

S(θ, t, |α|2) =
1

4

(
|α|2 − 3g2t2 |α|6 +

1

2

)−1 [
|α|2 + 3 |α|6 g2t2(2 cos 2θ − 9)

]
, (59)

and

Q(θ, t, |α|2) =
1 + 3 |α|4 g2t2(2 cos 2θ − 9)

2(cos 2θ + 1)(1− 3 |α|4 g2t2)
, (60)

equations (53) and (58) indicate the presence of non-classicality.
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3. Minimum total noise in terms of number operator

The minimum total noise of a single mode with density matrix ρ can be stated in terms of A and A† as [31]:

X1 =
1

2
[A+A†] and X2 =

1

2i
[A−A†]. (61)

From equation (60), we get: 〈
X2

1

〉
+ 〈X2〉2 =

〈
N +

1

2

〉
. (62)

In order to find out the minimum total noise of state in terms of number operator we use Schwartz inequality:∣∣∣ 〈(X2 − 〈X2〉) (N − 〈N〉)〉
∣∣∣2 ≤〈(X2 − 〈X2〉)2

〉〈
(N − 〈N〉)2

〉
≤ (∆X2)

2
(∆N)

2
. (63)

Equation (63) is simplified as:

(∆X2)
2

(∆N)
2 ≥ 1

4

∣∣∣ 〈[X2, N ]〉
∣∣∣2 ≥ 1

4

∣∣ 〈X1〉
∣∣2, (64)

where [X2, N ] = iX1.
Similarly,we can achieve for X1 is:

(∆X1)
2

(∆N)
2 ≥ 1

4

∣∣ 〈X2〉
∣∣2. (65)

Using equation (64) and (65), we get:

〈X1〉2 + 〈X2〉2 ≤ 4 (∆N)
2
[
(∆X1)

2
+ (∆X2)

2
]
. (66)

Using equation (62), we obtain:〈
N +

1

2

〉
≤
[
4 (∆N)

2
+ 1
] [

(∆X1)
2

+ (∆X2)
2
]
, (67)

thus minimum total noise in terms of number operator is:

Tmin =
[
(∆X1)2 + (∆X2)2

]
.

Substituting equation (67) in above relation, we get:

Tmin ≥
〈
N + 1

2

〉
[4(∆N)2 + 1]

, (68)

equation (68) shows that as the value of (∆N)
2 decreases, minimum total noise increases.

3.1. Seven wave mixing process

Minimum total noise in seven wave interaction process can be obtained by substituting equation (14) and (17) in
equation (68):

TN ≥
|α|2 − 24g2t2 |α|4 + 1

2

4 |α|2 + 1− 384g2t2 |α|4
. (69)

3.2. Eight wave mixing process

In this case we substitute equation (36) and (37) in equation (68) to obtain the expression for minimum total noise
and is given as:

TN ≥
|α|2 − 96g2t2 |α|4 + 1

2

4 |α|2 + 1− 1536g2t2 |α|4
. (70)

3.3. Third harmonic generation process

After substituting equation (50) and (51) in equation (68), we get expression of minimum total noise as:

TN ≥
|α|2 − 3g2t2 |α|6 + 1

2

4 |α|2 + 1− 72g2t2 |α|6
, (71)

thus equations (69)–(71) show that for a fixed value of 〈N〉 as the value of [∆N ]
2 decreases, minimum total noise

increases which indicates the presence of quantum state.
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4. Conclusion

Comparison of non-classical parameters like phase fluctuation, antibunching and minimum total noise have been
done in seven and eight wave mixing interaction and third harmonic generation nonlinear optical processes. Figs. 1–
4 show that reduction of phase fluctuation parameters U , S, Q and antibunching increases with increasing mean
photon number |α|2. After comparing Figs. 1–4, we can conclude that rate of reduction of parameters U , S, Q and
antibunching is maximum in third harmonic generation as compared to eight wave mixing and seven wave mixing.
Equations (30)–(32), (44)–(46), (58)–(60) show that the parameter U is independent of θ while S and Q parameters
can be tuned by varying the values of t and θ. The result also indicates that higher the rate of reduction of phase
fluctuation parameter, higher will be the antibunching.

FIG. 1. Variation of phase fluctuation parameter U with |α|2 for seven wave mixing, eight wave
mixing and for third harmonic generation (taking g2t2 ≈ 10−4)

FIG. 2. Variation of phase fluctuation parameter S with |α|2 for seven wave mixing, eight wave
mixing and for third harmonic generation (taking g2t2 ≈ 10−4 and θ = 0)

Figures 4 and 5 show the variation of antibunching and minimum total noise with |α|2 and we observe that more
is the antibunched state (sub-Poissonian), more will be the minimum total noise present in the system.

Thus we can conclude that the depth of non-classicality can be directly measured by using the quantum parameters
i.e. phase fluctuation, antibunching and minimum total noise present in the system.
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FIG. 3. Variation of phase fluctuation parameter Q with |α|2 for seven wave mixing, eight wave
mixing and for third harmonic generation (taking g2t2 ≈ 10−4 and θ = 0)

FIG. 4. Variation of d with |α|2 for seven wave mixing, eight wave mixing and third harmonic
generation (taking g2t2 ≈ 10−4)

FIG. 5. Variation of Tmin in antibunched (sub-Poissonian) state with |α|2 for seven wave mixing,
eight wave mixing and for third harmonic generation (taking g2t2 ≈ 10−5)
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