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Dynamics of polarons in branched conducting polymers
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In this paper, we study polarons in branched conducting polymers. For the description of polarons dynamics in such a polymers, we use the modified
SSH-model in combination with quantum graph concept. Applications and possible extensions of the model are discussed.
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1. Introduction

Conducting polymers have attracted much attention in the context of organic electronic and third generation pho-
tovoltaics as basic functional materials. Effective practical implementation of such materials requires understanding
their electronic properties, especially, charge transport. To solve such a task, one needs to develop highly accurate and
realistic models for charge dynamics in conducting polymers. The main charge carriers in conducting polymers are
charged solitons, excitons and polarons. The latter is an electron or hole trapped by phonon cloud. Polarons as charge
carriers appear in different conducting polymers, when the latter is doped or has defects. The dynamics of polarons in
conducting polymers are nicely described within the Su–Schrieffer–Heeger (SSH) model, which is a one dimensional
analog of tight-binding models of the solid state physics. Applying the SSH model allows one to calculate band struc-
ture and transport characteristics of polarons in conducting polymers. So far, different aspects of charge transport in
conducting polymers have been studied within the SSH-model and its modifications (see, Refs. [1–11] for review).
However, despite the certain progress made in the study of charge transport in conducting polymers, some aspects
of the topic are still far from the research focus area. This mainly concerns branched conducting polymers. These
are three or more linear polymer chains connecting to each other at the branching areas. Such polymers have sev-
eral advantages compared to the linear (unbranched) ones. In particular, by choosing optimal branching architecture,
one can tune the functional properties of the materials and devices made of such polymers. Such polymers attracted
certain attention over the past decade. A considerable number of papers have been published in the literature during
past two decades on the synthesis of different branched polymers and study of their optical, electronic and mechanical
properties (see, e.g., [12–29]). A review of the chemistry and physics of hyperbranched polymers is presented in [15].
In [19], a synthesis strategy for a hyperbranched sulfonated polydiphenylamine was developed and electronic proper-
ties have been studied. Synthesis and light-emitting applications of several conjugated polymers have been reviewed
in [21].

In this paper, we address the problem of polaron dynamics in branched conducting polymers. The system is
modeled by means of the quantum graph concept and SSH-model, i.e., by constructing extended version of the latter.
This allows one to derive a system of wave equations on metric graphs. We note that the linear wave equations on
metric graphs have been extensively studied in the Refs. [30–35] and soliton dynamics in networks has been the topic
for extensive research during the past decade (see, e.g., Refs. [36–45]). Modeling such structures in terms of metric
graphs provides powerful tool for effective description of the wave dynamics in branched structures appearing in
different areas of physics. The graph itself is determined as a set of branches, which are connected to each other at the
vertices (branching points) according to some rule. This rule is called the topology of a graph. When branches of a
graph are assigned length it is called metric graph. The topology of a graph is given in terms of the adjacency matrix,
which is defined, e.g., in [30–34].

The paper is organized as follows. In the next section we briefly recall SSH model on a real line. Section 3
presents extension of the SSH-model on graphs and exact solution of the obtained wave equations. Finally, section 4
presents some concluding remarks.
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FIG. 1. Sketch of branched conducting polymers

2. Polaron dynamics on a linear polymers

Before treating the problem of branched conducting polymers, we briefly recall the linear counterpart of the
problem, following the Ref. [6]. The Hamiltonian of SSH model for linear polymer can be written as: [6, 7]

H(t) =
i

2

∫
(u(x, t)∂tu

∗(x, t)− u∗(x, t)∂tu(x, t)) dx+

+
i

2

∫
(v(x, t)∂tv

∗(x, t)− v∗(x, t)∂tv(x, t)) dx+

+γ

∫ [
d∆(x, t)

dt

]2
dx+ θ

∫
∆2(x, t)dx−

−iβ
∫

(u∗(x, t)∂xu(x, t)− v∗(x, t)∂xv(x, t)) dx+

+

∫
∆(x, t) (u∗(x, t)v(x, t) + v∗(x, t)u(x, t)) dx, (1)

where β is the effective electron-phonon coupling constant and the pair of the wave functions u(x, t) and v(x, t)
describe effective electron-phonon interaction.

The wave equations following from this Lagrangian can be written as:

−i∂tu+ iβ∂xu−∆(x)v = 0,

−i∂tv − iβ∂xv −∆(x)u = 0. (2)

Using substitutions u(x, t) = exp(iεt)u(x), v(x, t) = exp(iεt)v(x), one can separate time and space variables in
these equations:

εu = −iβ∂xu+ ∆(x)v,

εv = iβ∂xv + ∆(x)u. (3)

Explicit form of the band gap parameter can be written as

∆(x) = ∆0 − k0β [tanh k0(x+ x0)− tanh k0(x− x0)] .

For this system of equations the electron wave functions for the positive-energy localized state can be written
as [6, 7]

u0(x) = N0 [(1− i)sechk0(x+ x0) + (1 + i)sechk0(x− x0)] ,

v0(x) = N0 [(1 + i)sechk0(x+ x0) + (1− i)sechk0(x− x0)] , (4)

with N0 =
√
k0
4 . These wave functions are normalized as∫ (

u20 + v20
)
dx = 1, (5)

and k0 is found by solving equation tanh(2k0x0) = k0β/∆0. For the above wave functions one can estimate polaron
width x0 and polaron binding energy E0 [6, 7]:

2x0 ≈ 8.9a, E0 = 0.1∆0,

where a is the lattice constant. In the next section we extend this model for branched conducting polymer.
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FIG. 2. Star graph

3. Polarons in branched conducting polymers

Polarons in conducting polymers appear both as a result of photo-generation, as well as a charge carrier in organic
electronic devices when a voltage is applied. An effective way for modeling of polaron dynamics in conducting
polymers is the SSH-model, which treats a polymer chain as a 1D lattice and applies nonlinear version of the tight-
binding model. Here, we consider dynamics of polarons in a branched conducting polymers consisting of three (linear)
polymer chains, which are connected to each other at single monomer (see, Fig.1). The branching is assumed to be
in the form of Y-junction (see, Fig.1). Such system can be mapped onto the basic star graph presented in Fig.2.
Assuming that the length of polymer is much longer than its width, the dynamics of polaron can be described in terms
of the SSH-Hamiltonian given on a star graph with branches bj , j = 1, 2, 3, b1 ∼ (−∞; 0], b2,3 ∼ [0; +∞). The
SSH-Hamiltonian on this star graph is given as:

H =

3∑
j=1

+∞∫
0

Hj(t)dt, (6)

where:

Hj(t) =
1

βj

 i
2

∫
bj

(
uj(x, t)∂tu

∗
j (x, t)− u∗j (x, t)∂tuj(x, t)

)
dx+

+
i

2

∫
bj

(
vj(x, t)∂tv

∗
j (x, t)− v∗j (x, t)∂tvj(x, t)

)
dx+

+γj

∫
bj

[
d∆j(x, t)

dt

]2
dx+ θj

∫
bj

∆2
j (x, t)dx−

−iβj
∫
bj

(
u∗j (x, t)∂xuj(x, t)− v∗j (x, t)∂xvj(x, t)

)
dx+

+

∫
bj

∆j(x, t)
(
u∗j (x, t)vj(x, t) + v∗j (x, t)uj(x, t)

)
dx

 . (7)

Here, βj is the effective electron-phonon coupling constant for branch bj . Using this Hamiltonian, one can derive
wave equations for polaron in branched polymer, as well as boundary conditions at the branching point. The latter is
derived from the energy conservation, given by Ḣ = 0. Requiring the first variation of (6) should be zero, and using
δuj = 0, δvj = 0 at t = 0 and t → +∞, u1, v1 → 0 at x → −∞, u2,3, v2,3 → 0 at x → +∞ we have wave
equations and boundary conditions on the star graph presented in Fig.2:

−i∂tuj + iβj∂xuj −∆jvj = 0,

−i∂tvj − iβj∂xvj −∆juj = 0, (8)
u∗1δu1|x=0 = u∗2δu2|x=0 + u∗3δu3|x=0,

v∗1δv1|x=0 = v∗2δv2|x=0 + v∗3δv3|x=0. (9)

Using uj(x, t) = exp(iεt)uj(x), vj(x, t) = exp(iεt)vj(x), 1
α1
δu1

∣∣∣
x=0

= 1
α2
δu2

∣∣∣
x=0

+ 1
α3
δu3

∣∣∣
x=0

andα1δv1|x=0 =

α2δv2|x=0 = α3δv3|x=0 one can separate space and time-variables in the wave equation, so that the wave equation
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FIG. 3. (Color online) The profile of the squared modulus of the polaron wave function on a
branched conducting polymer for the values of βj fulfilling the sum rule in Eq.(16): β1 = 1;β2 =

β3 =
√

2. The values of x0 and σ are chosen as x0 = 1/3, σ = 2 (blue) and x0 = 1/2, σ = 4
(red)

takes the forms:

εuj = −iβj∂xuj + ∆jvj ,

εvj = iβj∂xvj + ∆juj , (10)

with:

α1u1|x=0 = α2u2|x=0 = α3u3|x=0,

1

α1
v1

∣∣∣∣
x=0

=
1

α2
v2

∣∣∣∣
x=0

+
1

α3
v3

∣∣∣∣
x=0

. (11)

αj are nonzero real constants, which will be determined below. We note that in real applications to polymers they can
be chosen on the basis of certain physical properties.

Let us introduce the following notations:

uj(x) =
u0(x)

βj
, vj(x) =

v0(x)

βj
. (12)

Then, exact analytical solution of the problem given by Eqs.(10) and (11) can be written as:

u0(x) = N [(1− i)sechk0(x+ x0) + (1 + i)sechk0(x− x0)] ,

v0(x) = N [(1 + i)sechk0(x+ x0) + (1− i)sechk0(x− x0)] ,

∆j(x) = ∆0j − k0βj [tanh k0(x+ x0)− tanh k0(x− x0)] , (13)
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where k0 is found by solving equation tanh(2k0x0) = k0/σ, and ∆0j = σβj , j = 1, 2, 3. Requiring that the solutions
given by (13) should fulfill the vertex boundary conditions (11), we get the following constraints for αj :

α1

β1
=
α2

β2
=
α3

β3
, (14)

1

α1β1
=

1

α2β2
+

1

α3β3
, (15)

which make Eq.(13) to be the exact solution of the problem given by: Eqs. (10) and (11):
1

β2
1

=
1

β2
2

+
1

β2
3

, (16)

and N = β1

√
k0

4 .
The exact solutions given by Eq.(13) present the wave function of polaron in branched conducting polymer having

the form of Y-junction. In Fig. 3 the plot of the squared modulus of the wave function is presented for the values of
parameters β1 = 1, β2 = β3 =

√
2.

4. Conclusions

We studied polarons in branched conducting polymers. A model based on the use of a modified SSH-model
leading to the linear wave equations system for polarons dynamics is used in combination with quantum graph concept.
Explicit wave function of the polaron on branched conducting polymer having Y-junction type branching is obtained.
The model proposed in this work can be extended to the case of more complicated branching topologies. Also, it can
be applied for modeling of exciton migration in polymer based thin film organic solar cells, where polymer chains
packed on the cell create complicated branched structures.
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