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The Sturm-Liouville problem is solved for a linear differential second-order equation with generalized boundary conditions of the third kind
Generalized boundary conditions consist of a linear combination of the boundary values of a function and its derivative. The coefficients of the
linear combination are polynomials of the boundary problem eigenvalue. A method of approximate analytical calculation of boundary problem
eigenvalues is proposed The calculation error of an eigenvalue is estimated.
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1. Introduction

Advances of nanotechnologies make it possible to design and create microelectromechanical systems (MEMS)
and nanoelectromechanical systems (NEMS). These systems find use as primary converters in miniature sensors of
physical quantities [1].

Characteristic dimensions of used systems elements: hundreds of nanometers for MEMS with operating frequen-
cies of sensors up to 10 gHz and tens of nanometers for NEMS with operating frequencies of sensors up to tens of
gHz [2, 3].

High-quality electromechanical resonators are used as primary converters to provide sensor sensitivities and mea-
surement accuracy of physical quantities. Various aspects of these devices research, technological developments and
their various applications are presented in the reviews [4–12].

The simplest resonators in MEMS and NEMS are one-dimensional distributed elastic structures (strings, rods,
beams loaded with sensitive elements - masses). Technologies for making such resonators are presented, for example,
in [13, 14].

The mathematical model of time harmonic elastic oscillations of resonators is the Sturm-Liouville boundary
problem. The Sturm-Liouville problem is a boundary problem on a segment for an ordinary linear homogeneous
differential equation with homogeneous boundary conditions at the ends of the segment [15].

To describe the motion of an MEMS or NEMS element, a generalized boundary condition of the third kind
is used, containing eigenvalues [15–17]. A generalized boundary condition is a linear combination of the sought
function and its first-order derivative, wherein the coefficients of the linear combination are polynomials with respect
to the sought eigenvalue of the problem. The mathematical theory such of problems is built in the works [18, 19],
where a generalization of the classical Sturm-Liouville problem theory is given [20, 21].

2. Statement of the Sturm-Liouville problem with generalized boundary conditions of the third kind

We consider the Sturm-Liouville boundary problem for a linear homogeneous ordinary second-order differential
equation

y′′ = −µy, (1)
where y = y(x) at −1 ≤ x ≤ 1, µ is an eigenvalue of the problem, µ > 0. Taking into account the positivity µ we
will accept µ = λ2, where λ > 0.

As boundary conditions for the differential equation, we have generalized homogeneous conditions of the third
kind [15–17]:

α1(µ)y(1) + β1(µ)y′(1) = 0, (2)

α2(µ)y(−1) + β2(µ)y′(−1) = 0. (3)
Multipliers αk = αk(µ) and βk = βk(µ) (k=1,2) are polynomials with respect to µ. Polynomials coefficients are
parameters of the problem. Parameters depend on characteristics of physical models in application problems. If the
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total number of such parameters under conditions (2) and (3) is equal to the number S, then we will call the boundary
problem S-parametric. We will denote problem parameters by γ1,γ2,...γS .

If the homogeneous boundary problem (1)–(3) has a non-zero solution y0(x) at a value µ = µ0, then the value µ0

is called an eigenvalue, and the corresponding solution y0(x) is called an eigenfunction of the boundary problem.

3. Sturm-Liouville problem eigenvalues calculation algorithm

To solve the Sturm-Liouville problem means to find all the problem eigenvalues and eigenfunctions.
Eigenvalues are analytically calculated for the simplest boundary conditions of the first and second kind. In cases

of boundary conditions of the third kind, eigenvalues are calculated as the roots of a transcendental equation lacking
an exact analytical solution. Therefore, various approximate methods are used to find eigenvalues. These methods
produce only an asymptotic estimate of an eigenvalue without discussing the accuracy of the result obtained, which is
important in applied research.

The proposed new method makes it possible to calculate a set of boundary problem eigenvalues and to evaluate
effectively the accuracy of their calculation.

Consider the problem of finding all eigenvalues and eigenfunctions of the Sturm-Liouville problem (1)–(3).
To solve the problem, we find the general solution of the differential equation (1)

y = C1 cosλx+ C2 sinλx, (4)

where C1 and C2 depend on the value of λ.
Satisfying the boundary conditions (2) and (3), we obtain a homogeneous system of linear algebraic equations for

finding quantities C1 and C2 in the general solution (4):{
C1p

−
1 (λ) + C2q

+
1 (λ) = 0,

C1p
+
2 (λ) + C2q

−
2 (λ) = 0,

(5)

where
p±k (λ) = αk(λ2) cosλ± λβk(λ2) sinλ,

q±k (λ) = ±αk(λ2) sinλ+ λβk(λ2) cosλ

at k=1,2. We take upper or lower symbol in formulas for p±k (λ) and q±k (λ) simultaneously.
The principal determinant of the homogeneous system of algebraic equations (5) is in the form of

∆(λ, γ1, γ2, . . . , γS) = p−1 (λ) q−2 (λ) − p+2 (λ) q+1 (λ). (6)

The arguments of the determinant are a sought value λ and parameters γ1, γ2, . . . , γS included in the conditions (2)
and (3).

In order to find a non-zero solution to the homogeneous system of linear algebraic equations (5), we will require
that the principal determinant of this system to be zero:

∆(λ, γ1, γ2, . . . , γS) = 0. (7)

Equation (7) is called a characteristic equation. To find an eigenvalues µ of the Sturm-Liouville problem, we look for
the positive roots λ of characteristic equation (7), and then look for the eigenvalue µ = λ2 > 0.

As can be seen from equality (6), the principal determinant is the sum of the components consisting of the works
of the polynomial and trigonometric functions that depend on a sought λ value. Thus, equation (7) is transcendental
and does not allow an analytic solution of the form of

λ = ϕ(γ1, γ2, . . . , γS), (8)

which would allow to calculate an eigenvalue from known problem parameter values.
The proposed approximate method provides an approximate representation of the view (8) and estimates the

accuracy of this representation.
Let us give an algorithm of the proposed method of obtaining an approximate solution of the characteristic equa-

tion.
In the first step we will make a table of function values λ = ϕ(γ1, γ2, . . . , γS) on some set of variable

γ1, γ2, . . . , γS values. To do this, we record the determinant ∆(λ, γ1, γ2, . . . , γS) as a linear combination of
trigonometric functions with multipliers representing some polynomials with respect to λ value. Coefficients of these
polynomials are calculated through parameter γ1, γ2, . . . , γS values.

The dependence of the determinant on each parameter is not more than quadratic, since the problem parameters
are coefficients of the polynomials and enter in the polynomials linearly, and the polynomials themselves are only
multiplied according to formula (6).
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Using this circumstance, we solve equation (7) with respect to some arbitrarily chosen parameter γi with the i
number. We get a functional dependence of the form of

γi = ϕi(λ, γ1, γ2, . . . , γi−1, γi+1 , . . . , γS). (9)

We now arbitrarily set argument values of the function ϕi and calculate the value γi. For example, we can select
arguments values of the function ϕi on a uniform grid of the λ, γ1, γ2, . . . , γi−1, γi+1 , . . . , γS arguments. Values
of the parameter γi are then calculated. If necessary, if the values obtained for the parameter γi are not sufficient, the
relation (9) can be recorded with another selection of the parameter on the left hand side of the equality (9). We can
now choose additional values for the γi parameter. As a result, we create a table of function ϕi values.

In the second step of solving characteristic equation we have a sufficient number of function ϕi values. We find an
approximating function Γi = Φi(λ, γ1, γ2, . . . , γi−1, γi+1 , . . . , γS) using the obtained set of the function values
ϕi given by formula (9). We will select the approximation function Φi so that it has an inverse function Φ−1i with
respect to the variable λ at fixed values of the γ2, . . . , γi−1, γi+1 , . . . , γS arguments:

λ = Φ−1i (γ1, γ2, . . . , γi−1, Γi, γi+1, . . . , γS).

In order to calculate the approximate value of the sought λ∗ value, we set in this formula Γi = γi:

λ∗ = Φ−1i (γ1, γ2, . . . , γi−1, γi, γi+1, . . . , γS). (10)

Then we calculate our eigenvalue µ∗ = λ2∗.
As an example of the implementation of the method, we consider the problem of finding eigen frequencies of a

longitudinally oscillating rod loaded with masses at the ends.

4. Statement of eigen frequencies problem for a longitudinally oscillating rod loaded at the ends with masses

We have an elastic uniform rod: the rod length is 2l, the constant cross-sectional area is F , the rod material has
Young’s modulus E, linear density is ρ. Body 1 with mass M1 and body 2 with mass M2 are fixed at the rod ends.
The placement of rod (R) and bodies 1 and 2 in the coordinate system is shown in Fig. 1.

FIG. 1. Longitudinally oscillating rod (R) loaded at the ends with bodies 1 and 2. Choice of the
coordinate system is shown

Small longitudinal displacements U = U(X, t) of rod cross section with coordinate X from equilibrium position
at moment of time t satisfy to the equation

ρF
∂2U(X, t)

∂t2
= EF

∂2U(X, t)

∂X2
(11)

at −l < X < l.
Boundary conditions describe masses oscillations under the action of the elastic rod:
we have on the right end of the rod if X = l

M1
∂2U(l, t)

∂t2
= −EF ∂U(l, t)

∂X
, (12)

we have on the left end of the rod if X = −l

M2
∂2U(−l, t)

∂t2
= EF

∂U(−l, t)
∂X

. (13)

In order to find eigen frequencies of rod oscillations it is considered that dependence of longitudinal displacement of
rod cross-section on time is harmonic with circular frequency ω: U(X, t) = Y (X) e−iωt, Y = Y (X) is the amplitude
of longitudinal displacement of rod cross-section at the point with coordinate X .

Let us pass in equations (11)–(13) to dimensionless values. We introduce the dimensionless coordinate x = X/l,
then −1 ≤ x ≤ 1, and introduce the dimensionless amplitude of the longitudinal displacement of rod cross-section
y(x) = Y (X)/l.
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We introduce also dimensionless quantities: dimensionless eigenvalue µ = ρω2l2/E, dimensionless eigen fre-
quency λ =

√
µ, and two dimensionless parameters of the problem: γ1 = M1/M0 and γ2 = M2/M1, where the

mass M0 is equal to half the mass of the rod: M0 = ρF l. Note that problem parameters have the properties: γ1 > 0,
γ2 ≥ 0.

Taking into account the introduced dimensionless quantities problem (11)–(13) takes the form of boundary prob-
lem (1)–(3)

y′′ = −λ2y, (14)
at −1 ≤ x ≤ 1, with edge conditions of type (2) and (3) where α1(λ2) = γ1λ

2, α2(λ2) = γ1γ2λ
2, here βk =

βk(λ2) = (−1)k at k=1,2:
γ1λ

2y(1)− y′(1) = 0, (15)
γ1γ2λ

2y(−1) + y′(−1) = 0. (16)
We have a two-parametric boundary problem with parameters γ1 and γ2.

A simpler single-parameter problem is discussed in [22], when the masses attached to the rod ends are the same:
M1 = M2 or γ2 = 1.

The general solution of equation (14) has the form (4). We obtain from the boundary conditions (15) and (16) a
system of linear algebraic equations of the form of (5), where

p±k (λ) = αk(λ2) cosλ± λ sinλ, q±k (λ) = ±αk(λ2) sinλ∓ λ cosλ

at k = 1, 2.
The characteristic equation (7) for finding non-zero eigen frequencies is converted to the form of

γ21 γ2 λ
2 sin 2λ − γ1(1 + γ2)λ cos 2λ − sin 2λ = 0. (17)

The obtained equation defines the implicit dependence of the dimensionless frequency λ on the problem parameters
γ1 and γ2. As shown in item 3 and seen from equation (17), it is not possible to obtain an analytical solution of the
characteristic equation with respect to a sought value λ.

The proposed method of solving the characteristic equation makes it possible to obtain an approximate analytical
λ = λ(γ1, γ2) dependence.

Note that the characteristic equation (17) was obtained in 6.2 [23] in solving the problem of a substance diffusion
through a permeable wall. The equation was solved graphically for the particular γ2 = 1 case, when this equation is
converted to the form of cot 2λ = (γ21λ

2 − 1)/2γ1λ. The graphs of functions from the right and left hand sides of the
equation were drawn at a fixed value of the γ1 parameter. The sought frequency values λ were obtained as abscissas
of the intersections points of these graphs.

As a result, in [23] there is a table of values of five first sought eigen frequency values λs for three parameter γ1
values. It is difficult to use the obtained results in practice: first, the number of frequencies found is insufficient for the
qualitative numerical simulation of a physical problem, second, modeling may require a different parameter value γ1
than the table value, third, the case γ2 6= 1 will be interesting.

5. Approximate solution of characteristic equation for the problem of longitudinal oscillations of elastic rod
loaded with masses

In computer simulation of practical problems it is convenient to have an approximate analytical solution of the
characteristic equation for all roots of this equation and at any values of problem parameters.

Approximate methods used to solve equations of type (17) give analytical estimates for eigenvalues sufficient
for large eigenvalues [24]. Obtaining approximate formulas for the first eigenvalues near zero causes difficulties.
Estimates of the accuracy of approximate formulas for eigenvalues near zero are not usually considered. The proposed
method of solving the characteristic equation allows for solve these problems.

5.1. Finding dependencies of eigen frequency λ on Sturm-Liouville problem parameters γ1 and γ2 in
tabular and graphical view

Let’s take advantage of the fact that the characteristic equation (17) cannot be solved in elementary functions
relative to the eigen frequency λ, but can be resolved relative to the parameters γ1 or γ2.

Consider the values λ and γ2 in the characteristic equation as independent variables (0 < λ < +∞, γ2 ≥ 0),
and consider the parameter γ1 > 0 as dependent variable. The left hand side of equation (17) is a quadratic function
relative to the γ1 variable. We find the dependence of the value γ1 on the variables λ and γ2 , if we calculate the roots
of quadratic equation (17):

γ±1 = γ±1 (λ, γ2) =
1

2γ2λ2

(
W (λ, γ2)±

√
W 2(λ, γ2) + 4γ2λ2

)
, (18)
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where the function W (λ, γ2) = (1 + γ2)λ cot 2λ is used. In formula (18), either the upper or lower signs are taken at
the same time.

Denote the functions γ±1 = γ±1 (λ, γ2) by γ±1n = γ±1n(λ, γ2) if argument λ belongs to the interval (νn−1, νn] with
the number n:

γ±1 (λ, γ2) = γ±1n(λ, γ2) at λ ∈ (νn−1, νn].

5.2. Properties of γ±
1 (λ, γ2) functions

1. Functions γ±1 (λ, γ2) are defined for all λ > 0 but values νn = ±πn/2 at n = 1, 2, . . .. Direct substitution of
values λ 6= νn into equation (17) proves that relations (17) and (18) are equivalent.

2. Functions γ±1 (λ, γ2) are even relative to the λ variable, since the function W (λ, γ2) in equality (18) is even,
and the degrees of λ are even.

3. Functions γ±1n(λ, γ2) are continuous on each (νn−1, νn] interval.
4. Functions γ±1n(λ, γ2) are of constant signs: γ+1n(λ, γ2) ≥ 0, γ−1n(λ, γ2) ≤ 0. Taking into account the positivity

of possible parameter γ1 values we will study further only the functions γ+1n(λ, γ2).
5. We have the equality γ+1n(νn+1, γ2) = 0 and the limit value γ+1n(λ, γ2)→ +∞ as λ→ νn + 0.
6. The graphs of functions γ+1 (λ) = γ+1n(λ, γ

)
2 at n = 1, 2, 3 are shown in Fig. 2(a) for three fixed values of the

γ2 parameter. One can see that functions γ+1n(λ, γ2) decrease monotonically. Function graphs with different values
of the parameter γ2 do not intersect. A function graph with a larger parameter γ2 value is below a function graph with
a smaller parameter γ2 value. This follows from the comparison of function values γ+1n = γ+1n(λ, γ2) in the middle
of the n interval at λ∗n = νn−1 + π/4. We have according to formula (18) W (λ∗n, γ2) = 0, and we get the value of
the function γ+1n(λ∗n, γ2) = 1/(λ∗n

√
γ2). Comparing two such values for two curves with different parameter values

γ
(1)
2 > γ

(2)
2 gives

γ+1n(λ∗n, γ
(1)
2 )

γ+1n(λ∗n, γ
(2)
2 )

=

√√√√γ
(2)
2

γ
(1)
2

< 1. (19)

7. Functions γ+1n = γ+1n(λ, γ2) are monotonic and continuous in the domain of their definition λ ∈ (νn−1, νn] at
n = 1, 2, . . ., and have inverse functions for a fixed parameter value γ2 = γ

(0)
2 . We denote these inverse functions by

λn = λ+n (γ1, γ2). Functions λn = λ+n (γ1, γ2) are monotonic, continuous in the domain of their γ1 > 0 definition.
The inverse function graphs λn = λ+n (γ1, γ2) are shown in Fig. 2(b) for the same values of the γ2 parameter. The
graphs of these functions are symmetrical to the graphs of the functions γ+1n = γ+1n(λ, γ2) with respect to the bisector
of the first quadrant.

Function graphs λn = λ+n (γ1, γ2) for n = 1, 2, 3 are graphs of the exact solution of the problem at fixed values
of the γ2 parameter. We find the sought values λn of the Sturm-Liouville problem at the value of the parameter
γ1 = γ

(0)
1 as ordinates of intersection points of the straight line (vertical straight line in Fig. 2(b)) with function graphs

λ = λ+n (γ1, γ2) at n = 1, 2, ....

5.3. Approximation functional dependencies between eigenvalues and parameters of the Sturm-Liouville
problem

The result of the first step of the proposed method was obtaining functional dependencies γ+1 = γ+1n(λ, γ2)
and graphs of the exact λn = λ+n (γ1, γ2) solution. The disadvantage of the graphical solution of the characteristic
equation is the difficulty of using its results in computer modeling of a physical problem.

In the second step, we approximate the functions γ+1 = γ+1n(λ, γ2) with elementary functions Γ1n = Γ1n(λ, γ2),
where the first index 1 coincides with the index of the parameter γ1, and the second index n is the number of interval
(νn−1, νn] at which the functions are defined.

Let’s choose functions Γ1n(λ, γ2) so that they have the properties 1–7 of the γ+1n(λ, γ2) functions. Let interpolation-
approximation functions Γ1n(λ, γ2) interpolate the values of the functions γ+1n = γ+1n(λ, γ2) at λ = νn and provide
their limit values as λ → νn−1 + 0; let Γ1n(λ, γ2) approximate the values of the functions γ+1n = γ+1n(λ, γ2) at
internal points of interval (νn−1, νn) [25].

Taking into account properties 5 and 7 of the γ+1n = γ+1n(λ, γ2) functions, select functions Γ1n = Γ1n(λ, γ2) in
the form of

γ+1n ≈ Γ1n = Γ1n(λ, γ2) = Anγ
sn
2

(
v2n+1 − λ2

λ2 − v2n

)rn
, (20)

where parameters An, sn and rn are introduced. The additional condition rn > 0 provides the required function
values at the ends of the (νn−1, νn] interval. By verifying directly, one can find out that the functions selected in the
form (20) satisfy the 1–4 properties. The additional condition sn < 0 ensures that property 6 is met.
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FIG. 2. Mutually inverse functions: γ+1 = γ+1n(λ, γ2) – (a); λ = λ+n (γ1, γ2) – (b). Curves 1, 2, 3
are constructed for functions with indices n = 1, 2, 3 at three values of the γ2 parameter: γ2 = 0.5
– dashed lines; γ2 = 1.0 – solid lines; γ2 = 2.0 – chain-dotted lines

The parameters An, sn and rn introduced in the right side of formula (20) allow one to approximate the functions
γ+1n = γ+1n(λ, γ2) at the internal points of the (νn−1, νn] interval using the least squares method.

After calculating parameters, we get elementary functions Γ1n = Γ1n(λ, γ2).
Further consideration is carried out for an arbitrary fixed number n of the (νn−1, νn] interval.
The function Γ1n = Γ1n(λ, γ2) has the inverse function at interval (νn−1, νn], and the inverse function is also

elementary:

λn ≈ λ̂n =

√
vn+1(Anγ

sn
2 )qn + vn+1(Γ1n)qn+1

(Anγ
sn
2 )qn + (Γ1n)qn

, (21)

where qn = 1/rn.
Note that when solving the single-parameter problem in [22], when choosing the form of approximation Γ =

Γn(λ) function, evenness of the function γ+n (λ) relative to variable λ was not taken into account. Accounting for the
evenness of the function γ+1n(λ, γ2) relative to variable λ in formula (20) increases the approximation’s accuracy.

We find the approximation parameters rn, sn and An by the least squares method, which provides the best ap-
proximation of the γ+1n = γ+1n(λ, γ2) function.

After calculating approximation parameters, the values for λn are obtained using formula (21) at the given values
of the problem parameters γ1 and γ2. Then, we find the eigenvalue µn = λ2n of the Sturm-Liouville problem.

5.4. Finding of approximation parameters

To find approximation parameters An, sn and rn we set J of values for the problem parameter γ2: γ(j)2 , where
j = 1, 2, . . . , J . We will also select Mn of values for the argument λnm, where m = 1, 2, . . . , Mn on each interval
(νn−1, νn). The values of the arguments γ(j)2 ∈ (0, T ) and λnm ∈ (νn−1, νn] must cover uniformly the domain of
the function γ+1n = γ+1n(λ, γ2) definition, the quantity T being determined by the largest value the parameter γ2 can
take.

Let’s calculate M J of values of the γ+1n = γ+1n(λ, γ2) function: γ1nmj = γ+1n(λnm, γ
(j)
2 ).

To apply the least squares method, take the logarithm of both sides of equation (20)

ln (Γ1n(λ, γ2)) = qn + sn ln γ2 + rnRn(λ), (22)

where
qn = ln(An), (23)

Rn(λ) = ln

(
v2n+1 − λ2

λ2 − v2n

)
. (24)
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We will look for the qn, sn and rn values from the condition of ensuring the minimum value of the function
Fn(qn, sn, rn). The function Fn(qn, sn, rn) is the average value of the sum of the difference squares for values
ln(γ+1nmj) and ln(Γ1n(λnm, γ

(j)
2 )):

Fn(qn, sn, rn) =
(

ln γ+1nmj − ln(Γ1n(λnm, γ
(j)
2 ))

)2
=

=
1

Mn J

J∑
j=1

Mn∑
m=1

(
ln γ+1nmj − qn − sn ln γ

(j)
2 − rnRn(λnm)

)2
. (25)

Here and elsewhere, we use the symbol of averaging to calculate the average value of some variable value Z if Z takes
the z11, z12, . . . , zMJ values:

Z =
1

MJ

M∑
m=1

J∑
j=1

zmj .

The condition of the minimum for function Fn(qn, sn, rn) is the equality to zero of its partial derivatives regarding
the arguments qn, sn and rn. This condition results in a system of linear algebraic equations regarding the quantities
qn, rn, and sn

AnXn = Bn, (26)
where the elements of the third order matrix are: A11 = 1, A12 = A21 = ln γ2, A13 = A31 = Rn, A22 = (ln γ2)2,
A23 = A32 = Rn ln γ2, A33 = (Rn)2; Xn = (qn, sn, rn)T is matrix column of the required values, sign T means
transposition of matrix;

Bn = (ln γ+1nmj , ln γ+1nmj ln γ2, ln γ+1nmj Rn)T

is the free member column.
The solution of system (26) gives values

Xn = A−1n Bn. (27)
We find the approximation parameter An from the relation (23)

An = eqn . (28)

5.5. Results of numerical calculations of eigen frequencies

To calculate the values of the function Γ1n = Γ1n(λ, γ2) at each n interval (νn−1, νn], n = 1, 2, . . . , N , we
select the values of the first argument as λnm = λn0 + ∆λ (m− 1), m = 1, 2, . . . , M , where λn0 is the initial value,
and ∆λ is the step of changing the argument λ. We select the values of the second argument γ2j = γ0 + ∆γ (j − 1),
j = 1, 2, . . . , J , where γ0 is the initial value, and ∆γ is the step of changing the argument γ2. It was accepted for
calculations: M = 8, J = 5, λn0 = νn + 0.001, ∆λ = ν1/(M + 1)− 0.01, γ0 = 0.5, ∆γ = 0.5.

The results for calculation of the approximation constants An and rn by formulas (27) and (28) for the first ten
intervals (νn−1, νn], n = 1, 2, . . . , 10 are shown by points in Figs. 3,4.

FIG. 3. Dependencies yn = An
and yn = Ân on interval number
n are shown by points and crosses
respectively

FIG. 4. Dependencies yn = rn
and yn = r̂n on interval number
n are shown by points and crosses
respectively

Calculations showed also that the third approximation constant sn does not depend on the problem parameters γ1
and γ2. The value sn is equal to −0.5 for any n with relative error not more than 0.1%, which is in full compliance
with the property 6 and the relation (19), of item 5.2.
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For numerical calculations of eigen frequency with any number n according to formula (21), we use the found
numerical values for parameters An and rn at n = 1, 2, . . . , N to obtain their interpolation-approximation values Ân
and r̂n [25].

We find dependencies of the parameters Ân and r̂n on interval number n in the form:

Ân = ϕn(pA) = AN + (A1 −AN ) e−pA (n−1); (29)

r̂n = ψn(pr) = rN + (r1 − rN ) e−pr (n−1), (30)

where we distinguish interpolation nodes n = 1, n = N and approximation nodes 2 ≤ n ≤ N − 1. You have
introduced parameters pA and pr to approximate dependencies.

We find the parameter pA so that approximate equalities Ân ≈ An at n = 1, 2, . . . , N are performed in the best
way.

According to equation (29) we have the exact equality Â1 = A1 at n = 1, and we have the approximate equality
ÂN ≈ AN , where N is large enough.

We find values pn providing the equalities An = ϕn(pn) for other values n = 2, . . . , N − 1:

pn = ϕ−1n (An) =
1

n− 1
ln

(
A1 −AN
An −AN

)
.

Using the least squares method, we calculate the optimal value of the parameter pA, which provides the minimum
of the value d. This value is average squared displacement of the value pA from all calculated values pn at n =
2, . . . , N − 1

d = d(pA) =
1

N − 2

N−1∑
n=2

(pn − pA)2.

From the minimum condition of the function d = d(pA) we get the optimal value of the approximation parameter as
the average value of all calculated pn

pA =
1

N − 2

N−1∑
n=2

pn, (31)

where averaging is performed without taking into account edge values A1 and AN .
Similar reasoning for parameter pr leads to the formula

pr =
1

N − 2

N−1∑
n=2

1

n− 1
ln

(
r1 − r10
rn − r10

)
. (32)

The calculation of parameters pA and pr by formulas (31) and (32) using the data given in Figs. 3,4 gave values
pA = 0.48 and pr = 0.42. Having obtained the optimal value of approximation parameters pA and pr we calculate
values Ân and r̂n for n = 1, 2, . . . , N by formulas (29) and (30).

The calculation results Ân and r̂n at N = 10 are shown by crosses in Figs. 3,4.
Fig. 5 shows the graphs of the exact dependencies of the first two eigen frequencies λ1 = λ1(γ1, γ2) and λ2 =

λ2(γ1, γ2) on the parameter γ1 for three fixed values of the parameter γ2. These dependencies are represented by
solid lines. The exact frequencies values were plotted using the technique shown in Fig. 2(b). The dependencies of
approximate values of eigen frequencies λ̂1 = λ̂1(γ1, γ2) and λ̂2 = λ̂2(γ1, γ2) on the parameter γ1 are shown in Fig. 5
by dashed lines. Approximate frequencies values were calculated using formulas (21), (31) and (32).

5.6. About error of eigen frequencies calculation

We calculate relative error of found eigen frequency value on n interval for estimation of accuracy of approximate
formula (21)

δn =

∣∣∣∣∣λn − λ̂nλn

∣∣∣∣∣ =

∣∣∣∣∣1− λ̂n
λn

∣∣∣∣∣ . (33)

We have the previously obtained analytical dependence γ+1n = γ+1n(λ, γ2) given by formula (18). Approximation of
this dependence Γ1n = Γ1n(λ, γ2) is introduced by formula (20). The function Γ1n = Γ1n(λ, γ2) has the inverse
function λ̂n = Γ−11n (γ1, γ2).
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FIG. 5. Dependencies of exact eigen frequencies λ1 and λ2 (solid curves 1,2) and approximate
eigen frequencies λ̂1 and λ̂2 (dashed lines 1,2) on parameter γ1 at three fixed values of parameter
γ2: curves (a) – for γ2 = 2, 0; curves (b) – for γ2 = 1, 0; curves (c) – for γ2 = 0, 5

We get a parametric functional dependence δn = δn(γ1, γ2) if we consider the quantity λ as a parameter. In-
deed, if the value λn is set, we have the following values: γ+1n(λn) = γ+1n(λn, γ2) and λ̂n = Γ−11n (γ+1 , γ2) =
Γ−11n (γ+1n(λn, γ2), γ2). Then, taking into account equality (33), we give the function δn = δn(γ1, γ2) parametrically:{

δn(λn) =
∣∣∣1− 1

λn
Γ−11n (γ+1n(λn, γ2), γ2)

∣∣∣ ,
γ+1n(λn) = γ+1n(λn, γ2).

(34)

Relative errors of eigen frequency calculations at the first ten intervals were obtained by formulas (34) for case γ2 = 1.
The table shows estimates ∆n of the largest values of relative errors at the first ten intervals: δn ≤ ∆n at

λ ∈ (νn−1, νn].

TABLE 1. Estimates ∆n of relative error of eigen frequency calculations on intervals with number n

n 1 2 3 4 5 6 7 8 9 10
∆n 0.01% 1.0% 0.9% 0.5% 0.3% 0.2% 0.1% 0.1% 0.05% 0.01%

It can be seen from the table that relative errors of eigen frequency calculations, starting from the third, monoton-
ically decrease.

6. Conclusion

The presence of approximate analytical dependencies for the eigenvalues of the Sturm-Liouville problem on the
problem parameters makes it possible to carry out a comprehensive mathematical study of the physical phenomenon
from which the Sturm-Liouville problem is derived.

For example, it may be recommended to use the proposed method of solving characteristic equations to solve
inverse problems, such as identification of boundary conditions of spectral problems by eigenvalues [26], identification
of local defects in mechanical objects (rods, beams, pipelines) [27].

Use of the proposed method in solving inverse problems of oscillations of micro- and nano-objects, in particular
MEMS and NEMS, will allow expanding the possibilities of nanometrology.



284 V. D. Lukyanov, D. A. Bulekbaev, A. V. Morozov, L. V. Nosova

References
[1] Margolin V.I. Zhabrev V.A., Lukyanov G.N., Tupik V.A. Introduction to Nanotechnologies. Lan’, Saint Petersburg, 2012, 464 p.
[2] Voitovich I.D., Korsunsky V.M. Intellectual sensors. BINOMIAL. Knowledge Laboratory, M., 2012, 624 p.
[3] Nguyen C.T.-C. MEMS technology for timing and frequency control. IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2007, 54, P. 251–270.
[4] Basu J., Bhattacharyya T.K. Microelectromechanical resonators for radio frequency communication applications. Microsyst. Technol., 2011,

17, P. 1557–1580.
[5] NEMS/MEMS Technology and Devices. Edited by Lynn Khine and Julius M. Tsai. International Conference on Materials for Advanced

Technologies (ICMAT 2011), Symposium G: NEMS/MEMS and microTAS, June 26-July 1, Suntec, Singapore, 2011, 242 p.
[6] Greenberg Y.S., Paskin Yu.A., Ilichev K.V. Nanomechanical resonators. Successes of Physical Sciences, 2012, 4(182), P. 408–436.
[7] Mukhurov N.I., Efremov G.I. Electromechanical micro-devices. Belarusian. Navuka, Minsk, 2012, 257 p.
[8] Van Beek, J.T.M., Puers, R. A review of MEMS oscillators for frequency reference and timing applications. J. Micromech. Microeng., 2012,

22, P. 13001.
[9] Nguyen, C.T.-C. MEMS-based RF channel selection for true software-defined cognitive radio and low-power sensor communications. IEEE

Commun. Mag., 2013, 51, P. 110–119.
[10] Uranga A., Verd J., Barniol N. CMOS–MEMS resonators: From devices to applications. Microelectron. Eng., 2015, 132, P. 58–73.
[11] Abdolvand R., Bahreyni B., Lee J., & Nabki F. Micromachined Resonators: A Review. Micromachines, 2016, 7(9), 2016, P. 160–213.
[12] Ali W.R., Prasad M. Piezoelectric MEMS based acoustic sensors: A review. Sensors and Actuators A: Physical. Sensors and Actuators A.,

2020, 301, P. 2–31.
[13] Lyshevski S.E. MEMS and NEMS Systems, Devices, and Structures. CRC Press, New York, 2002, 461 p.
[14] Kolmakov A.G., Barinov S.M., Alymov M.I. Basis of technologies and application of nanomaterials. Fizmatlitis., M.,2012, 208 p.
[15] Zaytsev V.F., Polyanin A.D. Handbook on Ordinary Differential Equations. Fizmatlit, M., 2001, 576 p.
[16] Collatz L. Tasks for own values (with technical annexes). Science, M., 1968, 504 pp.
[17] Vibrations in engineering: Reference. T. 1. Fluctuations of linear systems. Under Ed. V.V. Bolotina. Mashinostroenie, M., 1978, 352 p.
[18] harles T. Fulton Two-point boundary value problems with eigenvalue parameter contained in the boundary conditions. Proceedings of the

Royal Society of Edinburgh, 1977, 77 A, P. 293–308.
[19] Shkalikov A.A. Boundary problems for ordinary differential equations with parameter under boundary conditions. Works of I.G. Petrovsky

Seminar, 1983, 9, P. 190–229.
[20] Titchmarsh E.C. Eigenfunction expansions associated with second order differential equations. V. 1. Oxford Univ. Press, London, 1962, 203

p.
[21] Naimark M.A. Linear differential operators. Science, M., 1969, 528 p.
[22] Lukyanov V.D., Nosova L.V., Bogorodsky A.V. et al. Approximate solution to the Sturm-Liuville problem with complicated boundary condi-

tions. Sea intellectual technologies, 2019, 1(43), P. 142–146.
[23] Beckman I.N. Mathematics of Diffusion. OntoPrint, M., 2016, 400 p.
[24] Koshlyakov N.S., Gliner E.B., Smyrnov M. M. Differential equations of mathematical physics. Fizmatgiz, M., 1962, 768 p.
[25] Lukyanov V.D. On the construction of an interpolation-approximation polynomial. Nanosystems: physics, chemistry, mathematics. 2012, 3(6),

P. 5–15.
[26] Akhtyamov A.M. Theory of identification of edge conditions and its application. Fizmatlit, M., 2009, 272 p.
[27] Akhtyamov A. M., Ilgamov M. A. Review of research on identification of local defects of rods. Problems of machine building and reliability,

2020, 2, P. 3–15.


