NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2020, 11 (4), P. 373-378

Positive fixed points of Lyapunov operator

R. N. Ganikhodjaev, R. R. Kucharov, K. A. Aralova National University of Uzbekistan, 100174, Tashkent, Uzbekistan ramz3364647@yahoo.com

DOI 10.17586/2220-8054-2020-11-4-373-378

In this paper, fixed points of Lyapunov integral equation are found and considered the connections between Gibbs measures for four competing interactions of models with uncountable (i.e. [0, 1]) set of spin values on the Cayley tree of order two.

Keywords: Lyapunov integral operator, fixed points, Cayley tree, Gibbs measure.

Received: 13 January 2020

Revised: 9 August 2020

1. Introduction

Spin models on a graph or in continuous spaces form a large class of systems considered in mechanics, biology, nanoscience, etc. Some of them have a real physical meaning, others have been proposed as suitably simplified models of more complicated systems. The geometric structure of the graph or a physical space plays an important role in such investigations. For example, in order to study the phase transition problem on a cubic lattice Z^d or in space one uses, essentially, the Pirogov-Sinai theory; see [1–3]. A general methodology of phase transitions in \mathbb{Z}^d or \mathbb{R}^d was developed in [4]; some recent results in this direction have been established in [5,6] (see also the bibliography therein).

During last years, an increasing attention was given to models with a *uncountable* many spin values on a Cayley tree. Until now, one considered nearest-neighbor interactions $(J_3 = J = \alpha = 0, J_1 \neq 0)$ with the set of spin values [0, 1] (for example, [7–12]).

In [13] it is described that splitting Gibbs measures on Γ_2 by solutions to a nonlinear integral equation for the case $J_3^2 + J_1^2 + J^2 + \alpha^2 \neq 0$ which a generalization of the case $J_3 = J = \alpha = 0$, $J_1 \neq 0$. Also, it is proven that periodic Gibbs measure for Hamiltonian (1) with four competing interactions is either *translation-invariant* or $G_k^{(2)}$ – *periodic*.

In this paper, we consider Lyapunov's operator with degenerate kernel. In [11], Fixed points of Lyapunov's operator with special degenerate kernel are studied. The present paper is a continuation of the paper [11], i.e., we give full description of fixed points of Lyapunov's operator with another special degenerate kernel.

A Cayley tree $\Gamma^k = (V, L)$ of order $k \in \mathbb{N}$ is an infinite homogeneous tree, i.e., a graph without cycles, with exactly k + 1 edges incident to each vertices. Here V is the set of vertices and L that of edges (arcs). The distance $d(x, y), x, y \in V$ is the number of edges of the path from x to y. Let $x^0 \in V$ be a fixed and we set

$$W_n = \{ x \in V \mid d(x, x^0) = n \}, \quad V_n = \{ x \in V \mid d(x, x^0) \le n \},$$
$$L_n = \{ l = < x, y > \in L \mid x, y \in V_n \},$$

If the distance from x to y equals one then we say x and y are nearest neighbors and use the notation $l = \langle x, y \rangle$. The set of the direct successors of x is denoted by S(x), i.e.

$$S(x) = \{ y \in W_{n+1} | d(x, y) = 1 \}, \ x \in W_n.$$

We observe that for any vertex $x \neq x^0$, x has k direct successors and x^0 has k + 1. The vertices x and y are called second neighbor which is denoted by > x, y <, if there exist a vertex $z \in V$ such that x, z and y, z are nearest neighbors. We will consider only second neighbors > x, y <, for which there exist n such that $x, y \in W_n$. Three vertices x, y and z are called a triplet of neighbors and they are denoted by < x, y, z >, if < x, y >, < y, z > are nearest nearest neighbors and x, $z \in W_n$, $y \in W_{n-1}$, for some $n \in \mathbb{N}$.

Now, we consider models with four competing interactions where the spin takes values in the set [0,1]. For some set $A \subset V$ an arbitrary function $\sigma_A : A \to [0,1]$ is called a configuration and the set of all configurations on A we denote by $\Omega_A = [0,1]^A$. Let $\sigma(\cdot)$ belong to $\Omega_V = \Omega$ and $\xi_1 : (t,u,v) \in [0,1]^3 \to \xi_1(t,u,v) \in R$, $\xi_i : (u,v) \in [0,1]^2 \to \xi_i(u,v) \in R$, $i \in \{2,3\}$ are given bounded, measurable functions.

We consider models with four competing interactions where the spin takes values in the unit interval [0, 1]. Given a set $\Lambda \subset V$ a configuration on Λ is an arbitrary function $\sigma_{\Lambda} : \Lambda \to [0, 1]$, with values $\sigma(x), x \in \Lambda$. The set of all configurations on Λ is denoted by $\Omega_{\Lambda} = [0, 1]^{\Lambda} = \Omega$ and denote by \mathcal{B} the sigma-algebra generated by measurable cylinder subsets of Ω .

Fix bounded, measurable functions $\xi_1 : (t, u, v) \in [0, 1]^3 \rightarrow \xi_1(t, u, v) \in R$ and $\xi_i : (u, v) \in [0, 1]^2 \rightarrow \xi_i(u, v) \in R$, i = 2, 3. We consider a model with four competing interactions on the Cayley tree which is defined by a formal Hamiltonian

$$H(\sigma) = -J_3 \sum_{\langle x,y,z \rangle} \xi_1(\sigma(x), \sigma(y), \sigma(z)) - J \sum_{\langle x,y \rangle} \xi_2(\sigma(x), \sigma(z)) -J_1 \sum_{\langle x,y \rangle} \xi_3(\sigma(x), \sigma(y)) - \alpha \sum_x \sigma(x),$$
(1)

where the sum in the first term ranges all triples of neighbors, the second sum ranges all second neighbors, the third sum ranges all nearest neighbors, and $J, J_1, J_3, \alpha \in \mathbb{R} \setminus \{0\}$.

Let $h : [0,1] \times V \setminus \{x^0\} \to \mathbb{R}$ and $|h(t,x)| = |h_{t,x}| < C$ where x_0 is a root of Cayley tree and C is a constant which does not depend on t. For some $n \in \mathbb{N}$, $\sigma_n : x \in V_n \mapsto \sigma(x)$ and Z_n is the corresponding partition function we consider the probability distribution $\mu^{(n)}$ on Ω_{V_n} defined by:

$$\mu^{(n)}(\sigma_n) = Z_n^{-1} \exp\left(-\beta H(\sigma_n) + \sum_{x \in W_n} h_{\sigma(x),x}\right),\tag{2}$$

$$Z_n = \int_{\substack{\Omega_{V_{n-1}}^{(p)}}} \exp\left(-\beta H(\widetilde{\sigma}_n) + \sum_{x \in W_n} h_{\widetilde{\sigma}(x),x}\right) \lambda_{V_{n-1}}^{(p)}(d\widetilde{\sigma}_n),$$
(3)

where

$$\underbrace{\Omega_{W_n} \times \Omega_{W_n} \times \ldots \times \Omega_{W_n}}_{3 \cdot 2^{p-1}} = \Omega_{W_n}^{(p)}, \quad \underbrace{\lambda_{W_n} \times \lambda_{W_n} \times \ldots \times \lambda_{W_n}}_{3 \cdot 2^{p-1}} = \lambda_{W_n}^{(p)}, \ n, p \in \mathbb{N},$$

Let $\sigma_{n-1} \in \Omega_{V_{n-1}}$ and $\sigma_{n-1} \vee \omega_n \in \Omega_{V_n}$ is the concatenation of σ_{n-1} and ω_n . For $n \in \mathbb{N}$ we say that the probability distributions $\mu^{(n)}$ are compatible if $\mu^{(n)}$ satisfies the following condition:

$$\int_{\Omega_{W_n} \times \Omega_{W_n}} \int \mu^{(n)}(\sigma_{n-1} \vee \omega_n)(\lambda_{W_n} \times \lambda_{W_n})(d\omega_n) = \mu^{(n-1)}(\sigma_{n-1}).$$
(4)

By Kolmogorov's extension theorem, there exists a unique measure μ on Ω_V such that, for any n and $\sigma_n \in \Omega_{V_n}$, $\mu(\{\sigma|_{V_n} = \sigma_n\}) = \mu^{(n)}(\sigma_n)$. The measure μ is called *splitting Gibbs measure* corresponding to Hamiltonian (1) and function $x \mapsto h_x$, $x \neq x^0$ (see [7, 8, 14, 15]).

We denote:

$$K(u,t,v) = \exp\{J_3\beta\xi_1(t,u,v) + J\beta\xi_2(u,v) + J_1\beta(\xi_3(t,u) + \xi_3(t,v)) + \alpha\beta(u+v)\},$$
(5)

and

$$f(t,x) = \exp(h_{t,x} - h_{0,x}), \ (t,u,v) \in [0,1]^3, \ x \in V \setminus \{x^0\}.$$

The following statement describes conditions on h_x guaranteeing the compatibility of the corresponding distributions $\mu^{(n)}(\sigma_n)$.

Proposition 1 [16] The measure $\mu^{(n)}(\sigma_n)$, n = 1, 2, ... satisfies the consistency condition (4) iff for any $x \in V \setminus \{x^0\}$ the following equation holds:

$$f(t,x) = \prod_{y,z < \in S(x)} \frac{\int_0^1 \int_0^1 K(t,u,v) f(u,y) f(v,z) du dv}{\int_0^1 \int_0^1 K(0,u,v) f(u,y) f(v,z) du dv},$$
(6)

where $S(x) = \{y, z\}, \langle y, x, z \rangle$ is a ternary neighbor.

2. Lyapunov operator with degenerate kernel

Let $\varphi_1(t)$, $\varphi_2(s)$ and $\varphi_3(u)$ are positive functions from $C_0^+[0, 1]$. We consider Lyapunov's operator A (see [9,17]):

$$(Af)(t) = \int_0^1 \int_0^1 (\varphi_1(t) + \varphi_2(s) + \varphi_3(u)) f(s)f(u) ds du.$$

and quadratic operator P on \mathbb{R}^3 by the rule

$$P(x, y, z) = (\alpha_{11}x^2 + xy + xz, \ \alpha_{21}x^2 + \alpha_{22}xy + \alpha_{22}xz, \ \alpha_{31}x^2 + \alpha_{33}xy + \alpha_{33}xz)$$

Here,

$$\alpha_{11} = \int_0^1 \varphi_1(s) ds > 0;$$

$$\alpha_{22} = \int_0^1 \varphi_2(s) ds > 0, \ \alpha_{21} = \int_0^1 \varphi_1(s) \varphi_2(s) ds > 0;$$

$$\alpha_{33} = \int_0^1 \varphi_3(s) ds > 0, \ \alpha_{31} = \int_0^1 \varphi_1(s) \varphi_3(s) ds > 0.$$

The existence of fixed points of Lyapunov's operator A is proved in [16]. A sufficient condition of uniqueness of fixed points of Lyapunov operator A s given (see [8]).

Lemma 2.1 Lyapunov's operator A has a nontrivial positive fixed point iff the quadratic operator P has a nontrivial positive fixed point, moreover, $N_{fix}^+(A) = N_{fix}^+(P)$.

Proof (a) Put

$$\begin{split} \mathbb{R}_3^+ &= \left\{ (x,y,z) \in \mathbb{R}^3 : x \ge 0, y \ge 0, z \ge 0 \right\}, \\ \mathbb{R}_3^> &= \left\{ (x,y,z) \in \mathbb{R}^3 : x > 0, y > 0, z > 0 \right\}. \end{split}$$

Let Lyapunov's operator A has a nontrivial positive fixed point $f(t) \in C_0^+[0,1]$. Let

$$x_1 = \int_0^1 f(u) du,$$
 (7)

$$x_{2} = \int_{0}^{1} \varphi_{2}(u) f(u) du,$$
(8)

and

$$x_3 = \int_0^1 \varphi_3(u) f(u) du, \tag{9}$$

Clearly, $x_1 > 0$, $x_2 > 0$, $x_3 > 0$, i.e. $(x_1, x_2, x_3) \in \mathbb{R}^{>}_3$. Then, for the function f(t), the equality

$$f(t) = \varphi_1(t)x_1^2 + x_1x_2 + x_1x_3 \tag{10}$$

holds.

Consequently, for parameters c_1 , c_2 , c_3 from the equality (7), (8) and (9), we have the three identities:

$$x_1 = x_1(\alpha_{11}x_1 + x_2 + x_3),$$

$$x_2 = x_1(\alpha_{21}x_1 + \alpha_{22}x_2 + \alpha_{22}x_3),$$

$$x_3 = x_1(\alpha_{31}x_1 + \alpha_{33}x_2 + \alpha_{33}x_3).$$

Therefore, the point (c_1, c_2) is fixed point of the quadratic operator P.

(b) Assume, that the fixed point x_0, y_0, z_0 is a nontrivial positive fixed point of the quadratic operator P, i.e. $(x_0, y_0, z_0) \in \mathbb{R}^>_3$ and number x_0, y_0, z_0 satisfies the following equalities

$$x_0(\alpha_{11}x_0 + y_0 + z_0) = x_0,$$

$$x_0(\alpha_{21}x_0 + \alpha_{22}y_0 + \alpha_{22}z_0) = y_0,$$

$$x_0(\alpha_{31}x_0 + \alpha_{33}y_0 + \alpha_{33}z_0) = z_0.$$

Similarly, we can prove that the function $f_0(t) = \varphi_1(t)x_0^2 + x_0y_0 + x_0z_0$ is fixed point of Lyapunov's operator A and $f_0(t) \in C_0^+[0,1]$. This completes the proof.

3. Positive fixed points of the quadratic operators in cone \mathbb{R}^+_3

We define quadratic operator (QO) \mathcal{Q} in cone \mathbb{R}_3 by the rule

$$\mathcal{Q}(x,y,z) = (a_{11}x^2 + xy + xz, \ a_{21}x^2 + a_{22}xy + a_{22}xz, \ a_{31}x^2 + a_{33}xy + a_{33}xz).$$

3.1-lemma If the point $\omega = (x_0, y_0, z_0) \in \mathbb{R}_2^+$ is fixed point of QO \mathcal{Q} , then x_0 is a root of the quadratic algebraic equation

$$(a_{21} + a_{31} - a_{11}a_{22} - a_{11}a_{33})x^2 + (a_{11} + a_{22} + a_{33})x - 1 = 0$$
(11)
Proof Let the point $\omega = (x_0, y_0, z_0) \in \mathbb{R}^+_3$ be a fixed point of $QO \ Q$. Then

 $a_{11}x_0^2 + x_0y_0 + x_0z_0, \quad a_{21}x_0^2 + a_{22}x_0y_0 + a_{22}x_0y_0$

$$a_{11}x_0^2 + x_0y_0 + x_0z_0, \quad a_{21}x_0^2 + a_{22}x_0y_0 + a_{22}x_0z_0,$$

 $a_{31}x_0^2 + a_{33}x_0y_0 + a_{33}x_0z_0.$

Using the bellowing equalities, we obtain:

$$y_0 + z_0 = 1 - a_{11}x_0$$

$$y_0 = x_0(a_{21}x_0 + a_{22}(1 - a_{11}x_0))$$

$$z_0 = x_0(a_{31}x_0 + a_{33}(1 - a_{11}x_0))$$

$$y_0 + z_0 = x_0(a_{21}x_0 + a_{22}(1 - a_{11}x_0)) + x_0(a_{31}x_0 + a_{33}(1 - a_{11}x_0)) =$$

$$= (a_{21} + a_{31} - a_{11}a_{22} - a_{11}a_{33})x_0^2 + (a_{22} + a_{33})x_0 = a_{11}x_0$$

By the last equality, we get:

$$(a_{21} + a_{31} - a_{11}a_{22} - a_{11}a_{33})x_0^2 + (a_{11} + a_{22} + a_{33})x_0 - 1 = 0.$$

This completes the proof.

3.2-lemma If the positive number x_0 is root of the quadratic algebraic Eq.(11), then the point $\omega_0 = (x_0, x_0(a_{21}x_0 + a_{22}(1 - a_{11}x_0 + a_{22}($

Proof Let x_0 be a root of the quadratic Eq.(11), i.e.,

$$\begin{aligned} (a_{21} + a_{31} - a_{11}a_{22} - a_{11}a_{33})x_0^2 + (a_{11} + a_{22} + a_{33})x_0 - 1 &= 0. \\ x_0(a_{11}x_0 + y_0 + z_0) &= \\ &= x_0(a_{11}x_0 + x_0(a_{21}x_0 + a_{22}(1 - a_{11}x_0)) + x_0(a_{31}x_0 + a_{33}(1 - a_{11}x_0))) = \\ &= x_0(a_{11}x_0 + (a_{21} + a_{31} - a_{11}a_{22} - a_{11}a_{33})x_0^2 + (a_{22} + a_{33})x_0) = \\ &= x_0((a_{21} + a_{31} - a_{11}a_{22} - a_{11}a_{33})x_0^2 + (a_{11} + a_{22} + a_{33})x_0 - 1 + 1) = x_0(0 + 1) = x_0 \end{aligned}$$

Then

$$y_0 + z_0 = 1 - a_{11}x_0$$

~

From the last equality, we get:

$$\begin{aligned} a_{21}x_0^2 + a_{22}x_0y_0 + a_{22}x_0z_0 &= \\ &= x_0(a_{21}x_0 + a_{22}(y_0 + z_0)) = x_0(a_{21}x_0 + a_{22}(1 - a_{11}x_0)), \\ &\quad a_{31}x_0^2 + a_{33}x_0y_0 + a_{33}x_0z_0 &= \\ &= x_0(a_{31}x_0 + a_{33}(y_0 + z_0)) = x_0(a_{31}x_0 + a_{33}(1 - a_{11}x_0)). \end{aligned}$$

This completes the proof.

We put

$$\mu_0 = a_{21} + a_{31} - a_{11}a_{22} - a_{11}a_{33}, \quad \mu_1 = a_{11} + a_{22} + a_{33}$$

and define polynomial $P_2(x)$:

$$P_2(x) = \mu_0 x^2 + \mu_1 x_1 - 1.$$
(12)

Theorem 3.3 $QO \mathcal{Q}$ has a unique nontrivial positive fixed point.

Proof To prove the Theorem, we use properties of the polynomial $P_2(x)$. It is known that there are two roots of the polynomial. They are:

$$x_1 = \frac{-\mu_1 + \sqrt{\mu_1^2 + 4\mu_0}}{2\mu_0}$$
$$x_2 = \frac{-\mu_1 - \sqrt{\mu_1^2 + 4\mu_0}}{2\mu_0}$$

I Let $\mu_0 > 0$. In this case, $x_1 > 0$ and $x_2 < 0$.

376

$$1 - a_{11}x_1 = 1 - \frac{-\mu_1 + \sqrt{\mu_1^2 + 4\mu_0}}{2\mu_0}a_{11} = = \frac{2\mu_0 + a_{11}\mu_1 - \sqrt{(\mu_1^2 + 4\mu_0)a_{11}^2}}{2\mu_0} > > \frac{2\mu_0 + a_{11}\mu_1 - \sqrt{\mu_1^2a_{11}^2 + 4\mu_0\mu_1a_{11}}}{2\mu_0} > > \frac{2\mu_0 + a_{11}\mu_1 - \sqrt{\mu_1^2a_{11}^2 + a\mu_0\mu_1a_{11} + 4\mu_0\mu_1a_{11}}}{2\mu_0} = 0$$

i.e., $1 - a_{11}x_1 > 0$. It means:

$$y_1 = x_1(a_{21}x_1 + a_{22}(1 - a_{11}x_1)) > 0,$$

$$z_1 = x_1(a_{31}x_1 + a_{33}(1 - a_{11}x_1)) > 0.$$

II Let $\mu_0 < 0$. In this case, $x_1 > 0$ and $x_2 > 0$. Clearly,

$$(P_2(x))' = 2\mu_0 x + \mu_1 \tag{13}$$

and $P'_2\left(\frac{-\mu_1}{2\mu_0}\right) = 0$. Moreover, the function $P_2(x)$ is an increasing function on $\left(-\infty, \frac{-\mu_1}{2\mu_0}\right)$ and it is a decreasing function on $\left(\frac{-\mu_1}{2\mu_0}, \infty\right)$. If we put $x' = \frac{-\mu_1}{2\mu_0}$, then $x_1 < x' < x_2$.

II.I Let $x' = \frac{-\mu_1}{2\mu_0} < \frac{1}{a_{11}}.$

 $a_{11}\mu_1 < -2\mu_0 \tag{14}$

Then $x_1 < \frac{1}{a_{11}}$ and from $1 - a_{11}x_1 > 0$. Moreover,

$$(x_1, y_1, z_1) \in \mathbb{R}_3^+$$

By other hand, we have the following identity:

$$1 - a_{11}x_2 = \frac{2\mu_0 + a_{11}\mu_1 + a_{11}\sqrt{\mu_1^2 + 4\mu_0}}{2\mu_0}$$

By (14):

$$2\mu_0 + a_{11}\mu_1 + a_{11}\sqrt{\mu_1^2 + 4\mu_0} >$$

> $2\mu_0 + (-2\mu_0) + a_{11}\sqrt{\mu_1^2 + 4\mu_0} = a_{11}\sqrt{\mu_1^2 + 4\mu_0} > 0$

From the last inequality,

$$1 - a_{11}x_2 < 0$$

and

$$(x_2, y_2, z_2) \notin \mathbb{R}_3^+.$$

II.II Let $x' = \frac{-\mu_1}{2\mu_0} > \frac{1}{a_{11}}$. We have:

$$1 - a_{11}x_1 = \frac{2\mu_0 + a_{11}\mu_1 - a_{11}\sqrt{\mu_1^2 + 4\mu_0}}{2\mu_0}$$

Consequently,

$$a_{21} + a_{31} > 0,$$

$$a_{21} + a_{31} - a_{11}a_{22} - a_{11}a_{33} + a_{11}^2 + a_{11}a_{22} + a_{11}a_{33} > a_{11},$$

$$\mu_0 + a_{11}\mu_1 > a_{11}^2,$$

$$4\mu_0(\mu_0 + a_{11}\mu_1) < 4\mu_0(a_{11}^2),$$

$$a\mu_0^2 + 4a_{11}\mu_0\mu_1 + a_{11}^2\mu_1^2 < a_{11}^2\mu_1^2 + 4\mu_0a_{11}^2,$$

$$(2\mu_0 + a_{11}\mu_1)^2 < (a_{11}\sqrt{\mu_1^2 + 4\mu_0})^2,$$

$$2\mu_0 + a_{11}\mu_1 < a_{11}\sqrt{\mu_1^2 + 4\mu_0},$$

$$2\mu_0 + a_{11}\mu_1 - a_{11}\sqrt{\mu_1^2 + 4\mu_0} < 0.$$

From the last identity:

$$1 - a_{11}x_1 > 0,$$

and

 $(x_1, y_1, z_1) \in \mathbb{R}_3^+.$

By the other hand, $x_2 > x' > \frac{1}{a_{11}}$. So, $1 - a_{11}x_2 < 0$ and $(x_2, y_2, z_2) \notin \mathbb{R}_3^+$.

References

- [1] Pigorov S.A., Sinai Ya.G. Phase diagrams of classical lattice systems (Russian). Theor. and Math. Phys., 1975, 25), P. 358-369.
- [2] Pigorov S.A., Sinai Ya.G. Phase diagrams of classical lattice systems. Continuation (Russian). Theor. and Math. Phys., 1976, 26, P. 61–76.
- [3] Sinai Ya.G. Theory of phase transitions: Rigorous Results, Pergamon, Oxford, 1982.
- [4] Kotecky R., Shlosman S.B. First-order phase transition in large entropy lattice models. Commun. Math. Phys., 1982, 83, P. 493–515.
- [5] Mazel A., Suhov Y., Stuhl I. A classical WR model with q particle types. J.Stat. Phys., 2015, 159, P. 1040–1086.
- [6] Mazel A., Suhov Y., Stuhl I., Zohren S. Dominance of most tolerant species in multi-type lattice Widom-Rowlinson models. *Journ. Stat. Mech.*, 2014, P. 08010.
- [7] Eshkabilov Yu.Kh., Haydarov F.H. On positive solutions of the homogeneous Hammerstein integral equation. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(5), P. 618–627.
- [8] Eshkabilov Yu.Kh., Rozikov U.A,Haydarov F.H. Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley Tree. Journal Statistical Physics, 2012, 147, P. 779–794.
- [9] Eshkabilov Yu.Kh., Rozikov U.A, Haydarov F.H. Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree. *Math.Phys.Anal.Geom.*, 2013, 16, P. 1–17.
- [10] Eshkabilov Yu.K., Haydarov F.H., Nodirov Sh.D. Positive fixed points of quadratic operators and Gibbs measures. *Positivity*, 2016, 20(4), P. 929–943.
- [11] Eshkabilov Yu.Kh., Haydarov F.H. Lyapunov operator L with degenerate kernel and Gibbs measures. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(5), P. 553–558.
- [12] Rozikov U.A. Gibbs measures on a Cayley trees, World Sci. Pub, Singapore, 2013.
- [13] Rozikov U.A., Haydarov F.H. Four competing interactions for models with an uncountable set of spin values on a Cayley tree. *Theor. Math. Phys.*, 2017, **191**(2), P. 748–761.
- [14] Krasnosel'ski M.A. Positive Solutions of Opertor Equations. Gos. Izd. Moscow, 1969, Russian.
- [15] Nirenberg L. Topics in nonlinear functional analysis. AMS, Courant Lec. Notes in Math, 6, N.Y., 2001.
- [16] Haydarov F.H. Fixed points of Lyapunov integral operators and Gibbs measures. Positivity, 2018, 22(4), P. 1165–1172.
- [17] Georgii H.O. Gibbs Measures and Phase Transitions, 2nd edn. de Gruyter Studies in Mathematics, vol. 9. Walter de Gruyter, Berlin, 2011.

378