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Positive fixed points of Lyapunov operator

R. N. Ganikhodjaev, R. R. Kucharov, K. A. Aralova

National University of Uzbekistan, 100174, Tashkent, Uzbekistan

ramz3364647@yahoo.com

DOI 10.17586/2220-8054-2020-11-4-373-378

In this paper, fixed points of Lyapunov integral equation are found and considered the connections between Gibbs measures for four competing
interactions of models with uncountable (i.e. [0, 1]) set of spin values on the Cayley tree of order two.
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1. Introduction

Spin models on a graph or in continuous spaces form a large class of systems considered in mechanics, biology,
nanoscience, etc. Some of them have a real physical meaning, others have been proposed as suitably simplified models
of more complicated systems. The geometric structure of the graph or a physical space plays an important role in such
investigations. For example, in order to study the phase transition problem on a cubic lattice Zd or in space one
uses, essentially, the Pirogov-Sinai theory; see [1–3]. A general methodology of phase transitions in Zd or Rd was
developed in [4]; some recent results in this direction have been established in [5,6] (see also the bibliography therein).

During last years, an increasing attention was given to models with a uncountable many spin values on a Cayley
tree. Until now, one considered nearest-neighbor interactions (J3 = J = α = 0, J1 6= 0) with the set of spin values
[0, 1] (for example, [7–12]).

In [13] it is described that splitting Gibbs measures on Γ2 by solutions to a nonlinear integral equation for the
case J2

3 + J2
1 + J2 + α2 6= 0 which a generalization of the case J3 = J = α = 0, J1 6= 0. Also, it is proven

that periodic Gibbs measure for Hamiltonian (1) with four competing interactions is either translation-invariant or
G

(2)
k − periodic.

In this paper, we consider Lyapunov’s operator with degenerate kernel. In [11], Fixed points of Lyapunov’s
operator with special degenerate kernel are studied. The present paper is a continuation of the paper [11], i.e., we give
full description of fixed points of Lyapunov’s operator with another special degenerate kernel.

A Cayley tree Γk = (V,L) of order k ∈ N is an infinite homogeneous tree, i.e., a graph without cycles, with
exactly k + 1 edges incident to each vertices. Here V is the set of vertices and L that of edges (arcs). The distance
d(x, y), x, y ∈ V is the number of edges of the path from x to y. Let x0 ∈ V be a fixed and we set

Wn = {x ∈ V | d(x, x0) = n}, Vn = {x ∈ V | d(x, x0) ≤ n},

Ln = {l =< x, y >∈ L | x, y ∈ Vn},
If the distance from x to y equals one then we say x and y are nearest neighbors and use the notation l = 〈x, y〉. The
set of the direct successors of x is denoted by S(x), i.e.

S(x) = {y ∈Wn+1| d(x, y) = 1}, x ∈Wn.

We observe that for any vertex x 6= x0, x has k direct successors and x0 has k + 1. The vertices x and y are
called second neighbor which is denoted by > x, y <, if there exist a vertex z ∈ V such that x, z and y, z are nearest
neighbors. We will consider only second neighbors > x, y <, for which there exist n such that x, y ∈ Wn. Three
vertices x, y and z are called a triplet of neighbors and they are denoted by < x, y, z >, if < x, y >, < y, z > are
nearest neighbors and x, z ∈Wn, y ∈Wn−1, for some n ∈ N.

Now, we consider models with four competing interactions where the spin takes values in the set [0, 1]. For
some set A ⊂ V an arbitrary function σA : A → [0, 1] is called a configuration and the set of all configurations
on A we denote by ΩA = [0, 1]A. Let σ(·) belong to ΩV = Ω and ξ1 : (t, u, v) ∈ [0, 1]3 → ξ1(t, u, v) ∈ R,
ξi : (u, v) ∈ [0, 1]2 → ξi(u, v) ∈ R, i ∈ {2, 3} are given bounded, measurable functions.

We consider models with four competing interactions where the spin takes values in the unit interval [0, 1]. Given
a set Λ ⊂ V a configuration on Λ is an arbitrary function σΛ : Λ → [0, 1], with values σ(x), x ∈ Λ. The set of all
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configurations on Λ is denoted by ΩΛ = [0, 1]Λ = Ω and denote by B the sigma-algebra generated by measurable
cylinder subsets of Ω.

Fix bounded, measurable functions ξ1 : (t, u, v) ∈ [0, 1]3 → ξ1(t, u, v) ∈ R and ξi : (u, v) ∈ [0, 1]2 →
ξi(u, v) ∈ R, i = 2, 3. We consider a model with four competing interactions on the Cayley tree which is defined by
a formal Hamiltonian

H(σ) = −J3

∑
〈x,y,z〉

ξ1 (σ(x), σ(y), σ(z))− J
∑
〉x,y〈

ξ2 (σ(x), σ(z))

−J1

∑
〈x,y〉

ξ3 (σ(x), σ(y))− α
∑
x

σ(x), (1)

where the sum in the first term ranges all triples of neighbors, the second sum ranges all second neighbors, the third
sum ranges all nearest neighbors, and J, J1, J3, α ∈ R \ {0}.

Let h : [0, 1] × V \ {x0} → R and |h(t, x)| = |ht,x| < C where x0 is a root of Cayley tree and C is a constant
which does not depend on t. For some n ∈ N, σn : x ∈ Vn 7→ σ(x) and Zn is the corresponding partition function
we consider the probability distribution µ(n) on ΩVn

defined by:

µ(n)(σn) = Z−1
n exp

(
−βH(σn) +

∑
x∈Wn

hσ(x),x

)
, (2)

Zn =

∫
...

∫
Ω

(p)
Vn−1

exp

(
−βH(σ̃n) +

∑
x∈Wn

hσ̃(x),x

)
λ

(p)
Vn−1

(dσ̃n), (3)

where

ΩWn
× ΩWn

× ...× ΩWn︸ ︷︷ ︸
3·2p−1

= Ω
(p)
Wn
, λWn

× λWn
× ...× λWn︸ ︷︷ ︸

3·2p−1

= λ
(p)
Wn
, n, p ∈ N,

Let σn−1 ∈ ΩVn−1 and σn−1 ∨ωn ∈ ΩVn is the concatenation of σn−1 and ωn. For n ∈ N we say that the probability
distributions µ(n) are compatible if µ(n) satisfies the following condition:∫ ∫

ΩWn×ΩWn

µ(n)(σn−1 ∨ ωn)(λWn × λWn)(dωn) = µ(n−1)(σn−1). (4)

By Kolmogorov’s extension theorem, there exists a unique measure µ on ΩV such that, for any n and σn ∈ ΩVn
,

µ ({σ|Vn
= σn}) = µ(n)(σn). The measure µ is called splitting Gibbs measure corresponding to Hamiltonian (1) and

function x 7→ hx, x 6= x0 (see [7, 8, 14, 15]).
We denote:

K(u, t, v) = exp {J3βξ1 (t, u, v) + Jβξ2 (u, v) + J1β (ξ3 (t, u) + ξ3 (t, v)) + αβ(u+ v)} , (5)

and

f(t, x) = exp(ht,x − h0,x), (t, u, v) ∈ [0, 1]3, x ∈ V \ {x0}.

The following statement describes conditions on hx guaranteeing the compatibility of the corresponding distribu-
tions µ(n)(σn).

Proposition 1 [16] The measure µ(n)(σn), n = 1, 2, . . . satisfies the consistency condition (4) iff for any x ∈
V \ {x0} the following equation holds:

f(t, x) =
∏

>y,z<∈S(x)

∫ 1

0

∫ 1

0
K(t, u, v)f(u, y)f(v, z)dudv∫ 1

0

∫ 1

0
K(0, u, v)f(u, y)f(v, z)dudv

, (6)

where S(x) = {y, z}, < y, x, z > is a ternary neighbor.
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2. Lyapunov operator with degenerate kernel

Let ϕ1(t), ϕ2(s) and ϕ3(u) are positive functions fromC+
0 [0, 1]. We consider Lyapunov’s operatorA (see [9,17]):

(Af)(t) =

∫ 1

0

∫ 1

0

(ϕ1(t) + ϕ2(s) + ϕ3(u)) f(s)f(u)dsdu.

and quadratic operator P on R3 by the rule

P (x, y, z) = (α11x
2 + xy + xz, α21x

2 + α22xy + α22xz, α31x
2 + α33xy + α33xz).

Here,

α11 =

∫ 1

0

ϕ1(s)ds > 0;

α22 =

∫ 1

0

ϕ2(s)ds > 0, α21 =

∫ 1

0

ϕ1(s)ϕ2(s)ds > 0;

α33 =

∫ 1

0

ϕ3(s)ds > 0, α31 =

∫ 1

0

ϕ1(s)ϕ3(s)ds > 0.

The existence of fixed points of Lyapunov’s operator A is proved in [16]. A sufficient condition of uniqueness of
fixed points of Lyapunov operator A s given (see [8]).

Lemma 2.1 Lyapunov’s operator A has a nontrivial positive fixed point iff the quadratic operator P has a non-
trivial positive fixed point, moreover, N+

fix(A) = N+
fix(P ).

Proof (a) Put
R+

3 =
{

(x, y, z) ∈ R3 : x ≥ 0, y ≥ 0, z ≥ 0
}
,

R>3 =
{

(x, y, z) ∈ R3 : x > 0, y > 0, z > 0
}
.

Let Lyapunov’s operator A has a nontrivial positive fixed point f(t) ∈ C+
0 [0, 1]. Let

x1 =

∫ 1

0

f(u)du, (7)

x2 =

∫ 1

0

ϕ2(u)f(u)du, (8)

and

x3 =

∫ 1

0

ϕ3(u)f(u)du, (9)

Clearly, x1 > 0, x2 > 0,x3 > 0, i.e. (x1, x2, x3) ∈ R>3 . Then, for the function f(t), the equality

f(t) = ϕ1(t)x2
1 + x1x2 + x1x3 (10)

holds.
Consequently, for parametrs c1, c2, c3 from the equality (7), (8) and (9), we have the three identities:

x1 = x1(α11x1 + x2 + x3),

x2 = x1(α21x1 + α22x2 + α22x3),

x3 = x1(α31x1 + α33x2 + α33x3).

Therefore, the point (c1, c2) is fixed point of the quadratic operator P .
(b) Assume, that the fixed point x0, y0, z0 is a nontrivial positive fixed point of the quadratic operator P , i.e.

(x0, y0, z0) ∈ R>3 and number x0, y0, z0 satisfies the following equalities

x0(α11x0 + y0 + z0) = x0,

x0(α21x0 + α22y0 + α22z0) = y0,

x0(α31x0 + α33y0 + α33z0) = z0.

Similary, we can prove that the function f0(t) = ϕ1(t)x2
0 + x0y0 + x0z0 is fixed point of Lyapunov’s operator A

and f0(t) ∈ C+
0 [0, 1]. This completes the proof.
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3. Positive fixed points of the quadratic operators in cone R+
3

We define quadratic operator (QO) Q in cone R3 by the rule

Q(x, y, z) = (a11x
2 + xy + xz, a21x

2 + a22xy + a22xz, a31x
2 + a33xy + a33xz).

3.1-lemma If the point ω = (x0, y0, z0) ∈ R+
2 is fixed point of QO Q, then x0 is a root of the quadratic algebraic

equation

(a21 + a31 − a11a22 − a11a33)x2 + (a11 + a22 + a33)x− 1 = 0 (11)
Proof Let the point ω = (x0, y0, z0) ∈ R+

3 be a fixed point of QO Q. Then

a11x
2
0 + x0y0 + x0z0, a21x

2
0 + a22x0y0 + a22x0z0,

a31x
2
0 + a33x0y0 + a33x0z0.

Using the bellowing equalities, we obtain:
y0 + z0 = 1− a11x0

y0 = x0(a21x0 + a22(1− a11x0))

z0 = x0(a31x0 + a33(1− a11x0))

y0 + z0 = x0(a21x0 + a22(1− a11x0)) + x0(a31x0 + a33(1− a11x0)) =

= (a21 + a31 − a11a22 − a11a33)x2
0 + (a22 + a33)x0 = a11x0

By the last equality, we get:

(a21 + a31 − a11a22 − a11a33)x2
0 + (a11 + a22 + a33)x0 − 1 = 0.

This completes the proof.
3.2-lemma If the positive number x0 is root of the quadratic algebraic Eq.(11), then the point ω0 = (x0, x0(a21x0 + a22(1− a11x0)), x0(a31x0 + a33(1− a11x0)))

is fixed point of QO Q.
Proof Let x0 be a root of the quadratic Eq.(11), i.e.,

(a21 + a31 − a11a22 − a11a33)x2
0 + (a11 + a22 + a33)x0 − 1 = 0.

x0(a11x0 + y0 + z0) =

= x0(a11x0 + x0(a21x0 + a22(1− a11x0)) + x0(a31x0 + a33(1− a11x0))) =

= x0(a11x0 + (a21 + a31 − a11a22 − a11a33)x2
0 + (a22 + a33)x0) =

= x0((a21 + a31 − a11a22 − a11a33)x2
0 + (a11 + a22 + a33)x0 − 1 + 1) = x0(0 + 1) = x0

Then
y0 + z0 = 1− a11x0.

From the last equality, we get:
a21x

2
0 + a22x0y0 + a22x0z0 =

= x0(a21x0 + a22(y0 + z0)) = x0(a21x0 + a22(1− a11x0)),

a31x
2
0 + a33x0y0 + a33x0z0 =

= x0(a31x0 + a33(y0 + z0)) = x0(a31x0 + a33(1− a11x0)).

This completes the proof.
We put

µ0 = a21 + a31 − a11a22 − a11a33, µ1 = a11 + a22 + a33

and define polynomial P2(x):
P2(x) = µ0x

2 + µ1x1 − 1. (12)
Theorem 3.3 QO Q has a unique nontrivial positive fixed point.
Proof To prove the Theorem, we use properties of the polynomial P2(x). It is known that there are two roots of

the polynomial. They are:

x1 =
−µ1 +

√
µ2

1 + 4µ0

2µ0

x2 =
−µ1 −

√
µ2

1 + 4µ0

2µ0

I Let µ0 > 0. In this case, x1 > 0 and x2 < 0.



Positive fixed points of Lyapunov operator 377

1− a11x1 = 1− −µ1 +
√
µ2

1 + 4µ0

2µ0
a11 =

=
2µ0 + a11µ1 −

√
(µ2

1 + 4µ0)a2
11

2µ0
>

>
2µ0 + a11µ1 −

√
µ2

1a
2
11 + 4µ0µ1a11

2µ0
>

>
2µ0 + a11µ1 −

√
µ2

1a
2
11 + aµ0µ1a11 + 4µ0µ1a11

2µ0
= 0

i.e., 1− a11x1 > 0. It means:
y1 = x1(a21x1 + a22(1− a11x1)) > 0,

z1 = x1(a31x1 + a33(1− a11x1)) > 0.

II Let µ0 < 0. In this case, x1 > 0 and x2 > 0.
Clearly,

(P2(x))′ = 2µ0x+ µ1 (13)

and P ′2

(
−µ1

2µ0

)
= 0. Moreover, the function P2(x) is an increasing function on

(
−∞, −µ1

2µ0

)
and it is a

decreasing function on
(
−µ1

2µ0
,∞
)

.

If we put x′ =
−µ1

2µ0
, then

x1 < x′ < x2.

II.I Let x′ =
−µ1

2µ0
<

1

a11
.

a11µ1 < −2µ0 (14)

Then x1 <
1

a11
and from 1− a11x1 > 0. Moreover,

(x1, y1, z1) ∈ R+
3

By other hand, we have the following identity:

1− a11x2 =
2µ0 + a11µ1 + a11

√
µ2

1 + 4µ0

2µ0

By (14):

2µ0 + a11µ1 + a11

√
µ2

1 + 4µ0 >

> 2µ0 + (−2µ0) + a11

√
µ2

1 + 4µ0 = a11

√
µ2

1 + 4µ0 > 0.

From the last inequality,
1− a11x2 < 0

and
(x2, y2, z2) /∈ R+

3 .

II.II Let x′ =
−µ1

2µ0
>

1

a11
. We have:

1− a11x1 =
2µ0 + a11µ1 − a11

√
µ2

1 + 4µ0

2µ0

Consequently,
a21 + a31 > 0,

a21 + a31 − a11a22 − a11a33 + a2
11 + a11a22 + a11a33 > a11,

µ0 + a11µ1 > a2
11,

4µ0(µ0 + a11µ1) < 4µ0(a2
11),

aµ2
0 + 4a11µ0µ1 + a2

11µ
2
1 < a2

11µ
2
1 + 4µ0a

2
11,

(2µ0 + a11µ1)2 < (a11

√
µ2

1 + 4µ0)2,
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2µ0 + a11µ1 < a11

√
µ2

1 + 4µ0,

2µ0 + a11µ1 − a11

√
µ2

1 + 4µ0 < 0.

From the last identity:
1− a11x1 > 0,

and
(x1, y1, z1) ∈ R+

3 .

By the other hand, x2 > x′ >
1

a11
. So, 1− a11x2 < 0 and (x2, y2, z2) /∈ R+

3 .
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