Positive fixed points of Lyapunov operator

R. N. Ganikhodjaev, R. R. Kucharov, K. A. Aralova
National University of Uzbekistan, 100174, Tashkent, Uzbekistan
ramz3364647@yahoo.com

DOI 10.17586/2220-8054-2020-11-4-373-378

Abstract

In this paper, fixed points of Lyapunov integral equation are found and considered the connections between Gibbs measures for four competing interactions of models with uncountable (i.e. $[0,1]$) set of spin values on the Cayley tree of order two.

Keywords: Lyapunov integral operator, fixed points, Cayley tree, Gibbs measure.
Received: 13 January 2020
Revised: 9 August 2020

1. Introduction

Spin models on a graph or in continuous spaces form a large class of systems considered in mechanics, biology, nanoscience, etc. Some of them have a real physical meaning, others have been proposed as suitably simplified models of more complicated systems. The geometric structure of the graph or a physical space plays an important role in such investigations. For example, in order to study the phase transition problem on a cubic lattice Z^{d} or in space one uses, essentially, the Pirogov-Sinai theory; see [1-3]. A general methodology of phase transitions in \mathbb{Z}^{d} or \mathbb{R}^{d} was developed in [4]; some recent results in this direction have been established in [5,6] (see also the bibliography therein).

During last years, an increasing attention was given to models with a uncountable many spin values on a Cayley tree. Until now, one considered nearest-neighbor interactions $\left(J_{3}=J=\alpha=0, J_{1} \neq 0\right)$ with the set of spin values $[0,1]$ (for example, [7-12]).

In [13] it is described that splitting Gibbs measures on Γ_{2} by solutions to a nonlinear integral equation for the case $J_{3}^{2}+J_{1}^{2}+J^{2}+\alpha^{2} \neq 0$ which a generalization of the case $J_{3}=J=\alpha=0, J_{1} \neq 0$. Also, it is proven that periodic Gibbs measure for Hamiltonian (1) with four competing interactions is either translation-invariant or $G_{k}^{(2)}-$ periodic.

In this paper, we consider Lyapunov's operator with degenerate kernel. In [11], Fixed points of Lyapunov's operator with special degenerate kernel are studied. The present paper is a continuation of the paper [11], i.e., we give full description of fixed points of Lyapunov's operator with another special degenerate kernel.

A Cayley tree $\Gamma^{k}=(V, L)$ of order $k \in \mathbb{N}$ is an infinite homogeneous tree, i.e., a graph without cycles, with exactly $k+1$ edges incident to each vertices. Here V is the set of vertices and L that of edges (arcs). The distance $d(x, y), x, y \in V$ is the number of edges of the path from x to y. Let $x^{0} \in V$ be a fixed and we set

$$
\begin{gathered}
W_{n}=\left\{x \in V \mid d\left(x, x^{0}\right)=n\right\}, \quad V_{n}=\left\{x \in V \mid d\left(x, x^{0}\right) \leq n\right\}, \\
L_{n}=\left\{l=<x, y>\in L \mid x, y \in V_{n}\right\},
\end{gathered}
$$

If the distance from x to y equals one then we say x and y are nearest neighbors and use the notation $l=\langle x, y\rangle$. The set of the direct successors of x is denoted by $S(x)$, i.e.

$$
S(x)=\left\{y \in W_{n+1} \mid d(x, y)=1\right\}, x \in W_{n} .
$$

We observe that for any vertex $x \neq x^{0}, x$ has k direct successors and x^{0} has $k+1$. The vertices x and y are called second neighbor which is denoted by $>x, y<$, if there exist a vertex $z \in V$ such that x, z and y, z are nearest neighbors. We will consider only second neighbors $>x, y<$, for which there exist n such that $x, y \in W_{n}$. Three vertices x, y and z are called a triplet of neighbors and they are denoted by $\langle x, y, z\rangle$, if $\langle x, y\rangle,\langle y, z\rangle$ are nearest neighbors and $x, z \in W_{n}, y \in W_{n-1}$, for some $n \in \mathbb{N}$.

Now, we consider models with four competing interactions where the spin takes values in the set $[0,1]$. For some set $A \subset V$ an arbitrary function $\sigma_{A}: A \rightarrow[0,1]$ is called a configuration and the set of all configurations on A we denote by $\Omega_{A}=[0,1]^{A}$. Let $\sigma(\cdot)$ belong to $\Omega_{V}=\Omega$ and $\xi_{1}:(t, u, v) \in[0,1]^{3} \rightarrow \xi_{1}(t, u, v) \in R$, $\xi_{i}:(u, v) \in[0,1]^{2} \rightarrow \xi_{i}(u, v) \in R, i \in\{2,3\}$ are given bounded, measurable functions.

We consider models with four competing interactions where the spin takes values in the unit interval $[0,1]$. Given a set $\Lambda \subset V$ a configuration on Λ is an arbitrary function $\sigma_{\Lambda}: \Lambda \rightarrow[0,1]$, with values $\sigma(x), x \in \Lambda$. The set of all
configurations on Λ is denoted by $\Omega_{\Lambda}=[0,1]^{\Lambda}=\Omega$ and denote by \mathcal{B} the sigma-algebra generated by measurable cylinder subsets of Ω.

Fix bounded, measurable functions $\xi_{1}:(t, u, v) \in[0,1]^{3} \rightarrow \xi_{1}(t, u, v) \in R$ and $\xi_{i}:(u, v) \in[0,1]^{2} \rightarrow$ $\xi_{i}(u, v) \in R, i=2,3$. We consider a model with four competing interactions on the Cayley tree which is defined by a formal Hamiltonian

$$
\begin{align*}
H(\sigma)=-J_{3} & \sum_{\langle x, y, z\rangle} \xi_{1}(\sigma(x), \sigma(y), \sigma(z))-J \sum_{\rangle x, y\langle } \xi_{2}(\sigma(x), \sigma(z)) \\
& -J_{1} \sum_{\langle x, y\rangle} \xi_{3}(\sigma(x), \sigma(y))-\alpha \sum_{x} \sigma(x) \tag{1}
\end{align*}
$$

where the sum in the first term ranges all triples of neighbors, the second sum ranges all second neighbors, the third sum ranges all nearest neighbors, and $J, J_{1}, J_{3}, \alpha \in R \backslash\{0\}$.

Let $h:[0,1] \times V \backslash\left\{x^{0}\right\} \rightarrow \mathbb{R}$ and $|h(t, x)|=\left|h_{t, x}\right|<C$ where x_{0} is a root of Cayley tree and C is a constant which does not depend on t. For some $n \in \mathbb{N}, \sigma_{n}: x \in V_{n} \mapsto \sigma(x)$ and Z_{n} is the corresponding partition function we consider the probability distribution $\mu^{(n)}$ on $\Omega_{V_{n}}$ defined by:

$$
\begin{gather*}
\mu^{(n)}\left(\sigma_{n}\right)=Z_{n}^{-1} \exp \left(-\beta H\left(\sigma_{n}\right)+\sum_{x \in W_{n}} h_{\sigma(x), x}\right), \tag{2}\\
Z_{n}=\int \underset{\Omega_{V_{n-1}}^{(p)}}{\int} \exp \left(-\beta H\left(\widetilde{\sigma}_{n}\right)+\sum_{x \in W_{n}} h_{\widetilde{\sigma}(x), x}\right) \lambda_{V_{n-1}}^{(p)}\left(d \widetilde{\sigma}_{n}\right), \tag{3}
\end{gather*}
$$

where

$$
\underbrace{\Omega_{W_{n}} \times \Omega_{W_{n}} \times \ldots \times \Omega_{W_{n}}}_{3 \cdot 2^{p-1}}=\Omega_{W_{n}}^{(p)}, \quad \underbrace{\lambda_{W_{n}} \times \lambda_{W_{n}} \times \ldots \times \lambda_{W_{n}}}_{3 \cdot 2^{p-1}}=\lambda_{W_{n}}^{(p)}, n, p \in \mathbb{N}
$$

Let $\sigma_{n-1} \in \Omega_{V_{n-1}}$ and $\sigma_{n-1} \vee \omega_{n} \in \Omega_{V_{n}}$ is the concatenation of σ_{n-1} and ω_{n}. For $n \in \mathbb{N}$ we say that the probability distributions $\mu^{(n)}$ are compatible if $\mu^{(n)}$ satisfies the following condition:

$$
\begin{equation*}
\int_{\Omega_{W_{n}} \times \Omega_{W_{n}}} \mu^{(n)}\left(\sigma_{n-1} \vee \omega_{n}\right)\left(\lambda_{W_{n}} \times \lambda_{W_{n}}\right)\left(d \omega_{n}\right)=\mu^{(n-1)}\left(\sigma_{n-1}\right) \tag{4}
\end{equation*}
$$

By Kolmogorov's extension theorem, there exists a unique measure μ on Ω_{V} such that, for any n and $\sigma_{n} \in \Omega_{V_{n}}$, $\mu\left(\left\{\left.\sigma\right|_{V_{n}}=\sigma_{n}\right\}\right)=\mu^{(n)}\left(\sigma_{n}\right)$. The measure μ is called splitting Gibbs measure corresponding to Hamiltonian (1) and function $x \mapsto h_{x}, x \neq x^{0}$ (see $[7,8,14,15]$).

We denote:

$$
\begin{equation*}
K(u, t, v)=\exp \left\{J_{3} \beta \xi_{1}(t, u, v)+J \beta \xi_{2}(u, v)+J_{1} \beta\left(\xi_{3}(t, u)+\xi_{3}(t, v)\right)+\alpha \beta(u+v)\right\} \tag{5}
\end{equation*}
$$

and

$$
f(t, x)=\exp \left(h_{t, x}-h_{0, x}\right), \quad(t, u, v) \in[0,1]^{3}, x \in V \backslash\left\{x^{0}\right\}
$$

The following statement describes conditions on h_{x} guaranteeing the compatibility of the corresponding distributions $\mu^{(n)}\left(\sigma_{n}\right)$.

Proposition 1 [16] The measure $\mu^{(n)}\left(\sigma_{n}\right), n=1,2, \ldots$ satisfies the consistency condition (4) iff for any $x \in$ $V \backslash\left\{x^{0}\right\}$ the following equation holds:

$$
\begin{equation*}
f(t, x)=\prod_{>y, z<\in S(x)} \frac{\int_{0}^{1} \int_{0}^{1} K(t, u, v) f(u, y) f(v, z) d u d v}{\int_{0}^{1} \int_{0}^{1} K(0, u, v) f(u, y) f(v, z) d u d v} \tag{6}
\end{equation*}
$$

where $S(x)=\{y, z\},\langle y, x, z\rangle$ is a ternary neighbor.

2. Lyapunov operator with degenerate kernel

Let $\varphi_{1}(t), \varphi_{2}(s)$ and $\varphi_{3}(u)$ are positive functions from $C_{0}^{+}[0,1]$. We consider Lyapunov's operator A (see [9,17]):

$$
(A f)(t)=\int_{0}^{1} \int_{0}^{1}\left(\varphi_{1}(t)+\varphi_{2}(s)+\varphi_{3}(u)\right) f(s) f(u) d s d u
$$

and quadratic operator P on \mathbb{R}^{3} by the rule

$$
P(x, y, z)=\left(\alpha_{11} x^{2}+x y+x z, \alpha_{21} x^{2}+\alpha_{22} x y+\alpha_{22} x z, \alpha_{31} x^{2}+\alpha_{33} x y+\alpha_{33} x z\right)
$$

Here,

$$
\begin{gathered}
\alpha_{11}=\int_{0}^{1} \varphi_{1}(s) d s>0 \\
\alpha_{22}=\int_{0}^{1} \varphi_{2}(s) d s>0, \alpha_{21}=\int_{0}^{1} \varphi_{1}(s) \varphi_{2}(s) d s>0 \\
\alpha_{33}=\int_{0}^{1} \varphi_{3}(s) d s>0, \alpha_{31}=\int_{0}^{1} \varphi_{1}(s) \varphi_{3}(s) d s>0
\end{gathered}
$$

The existence of fixed points of Lyapunov's operator A is proved in [16]. A sufficient condition of uniqueness of fixed points of Lyapunov operator A s given (see [8]).

Lemma 2.1 Lyapunov's operator A has a nontrivial positive fixed point iff the quadratic operator P has a nontrivial positive fixed point, moreover, $N_{\text {fix }}^{+}(A)=N_{\text {fix }}^{+}(P)$.

Proof (a) Put

$$
\begin{aligned}
& \mathbb{R}_{3}^{+}=\left\{(x, y, z) \in \mathbb{R}^{3}: x \geq 0, y \geq 0, z \geq 0\right\} \\
& \mathbb{R}_{3}^{>}=\left\{(x, y, z) \in \mathbb{R}^{3}: x>0, y>0, z>0\right\}
\end{aligned}
$$

Let Lyapunov's operator A has a nontrivial positive fixed point $f(t) \in C_{0}^{+}[0,1]$. Let

$$
\begin{gather*}
x_{1}=\int_{0}^{1} f(u) d u \tag{7}\\
x_{2}=\int_{0}^{1} \varphi_{2}(u) f(u) d u \tag{8}
\end{gather*}
$$

and

$$
\begin{equation*}
x_{3}=\int_{0}^{1} \varphi_{3}(u) f(u) d u \tag{9}
\end{equation*}
$$

Clearly, $x_{1}>0, x_{2}>0, x_{3}>0$, i.e. $\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}_{3}^{>}$. Then, for the function $f(t)$, the equality

$$
\begin{equation*}
f(t)=\varphi_{1}(t) x_{1}^{2}+x_{1} x_{2}+x_{1} x_{3} \tag{10}
\end{equation*}
$$

holds.
Consequently, for parametrs c_{1}, c_{2}, c_{3} from the equality (7), (8) and (9), we have the three identities:

$$
\begin{gathered}
x_{1}=x_{1}\left(\alpha_{11} x_{1}+x_{2}+x_{3}\right), \\
x_{2}=x_{1}\left(\alpha_{21} x_{1}+\alpha_{22} x_{2}+\alpha_{22} x_{3}\right), \\
x_{3}=x_{1}\left(\alpha_{31} x_{1}+\alpha_{33} x_{2}+\alpha_{33} x_{3}\right) .
\end{gathered}
$$

Therefore, the point $\left(c_{1}, c_{2}\right)$ is fixed point of the quadratic operator P.
(b) Assume, that the fixed point x_{0}, y_{0}, z_{0} is a nontrivial positive fixed point of the quadratic operator P, i.e. $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}_{3}^{>}$and number x_{0}, y_{0}, z_{0} satisfies the following equalities

$$
\begin{gathered}
x_{0}\left(\alpha_{11} x_{0}+y_{0}+z_{0}\right)=x_{0}, \\
x_{0}\left(\alpha_{21} x_{0}+\alpha_{22} y_{0}+\alpha_{22} z_{0}\right)=y_{0} \\
x_{0}\left(\alpha_{31} x_{0}+\alpha_{33} y_{0}+\alpha_{33} z_{0}\right)=z_{0} .
\end{gathered}
$$

Similary, we can prove that the function $f_{0}(t)=\varphi_{1}(t) x_{0}^{2}+x_{0} y_{0}+x_{0} z_{0}$ is fixed point of Lyapunov's operator A and $f_{0}(t) \in C_{0}^{+}[0,1]$. This completes the proof.

3. Positive fixed points of the quadratic operators in cone \mathbb{R}_{3}^{+}

We define quadratic operator $(\mathrm{QO}) \mathcal{Q}$ in cone \mathbb{R}_{3} by the rule

$$
\mathcal{Q}(x, y, z)=\left(a_{11} x^{2}+x y+x z, a_{21} x^{2}+a_{22} x y+a_{22} x z, a_{31} x^{2}+a_{33} x y+a_{33} x z\right)
$$

3.1-lemma If the point $\omega=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}_{2}^{+}$is fixed point of $Q O \mathcal{Q}$, then x_{0} is a root of the quadratic algebraic equation

$$
\begin{equation*}
\left(a_{21}+a_{31}-a_{11} a_{22}-a_{11} a_{33}\right) x^{2}+\left(a_{11}+a_{22}+a_{33}\right) x-1=0 \tag{11}
\end{equation*}
$$

Proof Let the point $\omega=\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}_{3}^{+}$be a fixed point of $Q O \mathcal{Q}$. Then

$$
\begin{gathered}
a_{11} x_{0}^{2}+x_{0} y_{0}+x_{0} z_{0}, \quad a_{21} x_{0}^{2}+a_{22} x_{0} y_{0}+a_{22} x_{0} z_{0} \\
a_{31} x_{0}^{2}+a_{33} x_{0} y_{0}+a_{33} x_{0} z_{0}
\end{gathered}
$$

Using the bellowing equalities, we obtain:

$$
\begin{gathered}
y_{0}+z_{0}=1-a_{11} x_{0} \\
y_{0}=x_{0}\left(a_{21} x_{0}+a_{22}\left(1-a_{11} x_{0}\right)\right) \\
z_{0}=x_{0}\left(a_{31} x_{0}+a_{33}\left(1-a_{11} x_{0}\right)\right) \\
y_{0}+z_{0}=x_{0}\left(a_{21} x_{0}+a_{22}\left(1-a_{11} x_{0}\right)\right)+x_{0}\left(a_{31} x_{0}+a_{33}\left(1-a_{11} x_{0}\right)\right)= \\
=\left(a_{21}+a_{31}-a_{11} a_{22}-a_{11} a_{33}\right) x_{0}^{2}+\left(a_{22}+a_{33}\right) x_{0}=a_{11} x_{0}
\end{gathered}
$$

By the last equality, we get:

$$
\left(a_{21}+a_{31}-a_{11} a_{22}-a_{11} a_{33}\right) x_{0}^{2}+\left(a_{11}+a_{22}+a_{33}\right) x_{0}-1=0 .
$$

This completes the proof.
3.2-lemma If the positive number x_{0} is root of the quadratic algebraic Eq.(11), then the point $\omega_{0}=\left(x_{0}, x_{0}\left(a_{21} x_{0}+a_{22}\left(1-a_{11}\right.\right.\right.$ x is fixed point of $Q O \mathcal{Q}$.

Proof Let x_{0} be a root of the quadratic Eq.(11), i.e.,

$$
\begin{gathered}
\left(a_{21}+a_{31}-a_{11} a_{22}-a_{11} a_{33}\right) x_{0}^{2}+\left(a_{11}+a_{22}+a_{33}\right) x_{0}-1=0 . \\
x_{0}\left(a_{11} x_{0}+y_{0}+z_{0}\right)= \\
=x_{0}\left(a_{11} x_{0}+x_{0}\left(a_{21} x_{0}+a_{22}\left(1-a_{11} x_{0}\right)\right)+x_{0}\left(a_{31} x_{0}+a_{33}\left(1-a_{11} x_{0}\right)\right)\right)= \\
=x_{0}\left(a_{11} x_{0}+\left(a_{21}+a_{31}-a_{11} a_{22}-a_{11} a_{33}\right) x_{0}^{2}+\left(a_{22}+a_{33}\right) x_{0}\right)= \\
=x_{0}\left(\left(a_{21}+a_{31}-a_{11} a_{22}-a_{11} a_{33}\right) x_{0}^{2}+\left(a_{11}+a_{22}+a_{33}\right) x_{0}-1+1\right)=x_{0}(0+1)=x_{0}
\end{gathered}
$$

Then

$$
y_{0}+z_{0}=1-a_{11} x_{0} .
$$

From the last equality, we get:

$$
\begin{gathered}
a_{21} x_{0}^{2}+a_{22} x_{0} y_{0}+a_{22} x_{0} z_{0}= \\
=x_{0}\left(a_{21} x_{0}+a_{22}\left(y_{0}+z_{0}\right)\right)=x_{0}\left(a_{21} x_{0}+a_{22}\left(1-a_{11} x_{0}\right)\right) \\
a_{31} x_{0}^{2}+a_{33} x_{0} y_{0}+a_{33} x_{0} z_{0}= \\
=x_{0}\left(a_{31} x_{0}+a_{33}\left(y_{0}+z_{0}\right)\right)=x_{0}\left(a_{31} x_{0}+a_{33}\left(1-a_{11} x_{0}\right)\right)
\end{gathered}
$$

This completes the proof.
We put

$$
\mu_{0}=a_{21}+a_{31}-a_{11} a_{22}-a_{11} a_{33}, \quad \mu_{1}=a_{11}+a_{22}+a_{33}
$$

and define polynomial $P_{2}(x)$:

$$
\begin{equation*}
P_{2}(x)=\mu_{0} x^{2}+\mu_{1} x_{1}-1 . \tag{12}
\end{equation*}
$$

Theorem 3.3 $Q O \mathcal{Q}$ has a unique nontrivial positive fixed point.
Proof To prove the Theorem, we use properties of the polynomial $P_{2}(x)$. It is known that there are two roots of the polynomial. They are:

$$
\begin{aligned}
& x_{1}=\frac{-\mu_{1}+\sqrt{\mu_{1}^{2}+4 \mu_{0}}}{2 \mu_{0}} \\
& x_{2}=\frac{-\mu_{1}-\sqrt{\mu_{1}^{2}+4 \mu_{0}}}{2 \mu_{0}}
\end{aligned}
$$

I Let $\mu_{0}>0$. In this case, $x_{1}>0$ and $x_{2}<0$.

$$
\begin{gathered}
1-a_{11} x_{1}=1-\frac{-\mu_{1}+\sqrt{\mu_{1}^{2}+4 \mu_{0}}}{2 \mu_{0}} a_{11}= \\
=\frac{2 \mu_{0}+a_{11} \mu_{1}-\sqrt{\left(\mu_{1}^{2}+4 \mu_{0}\right) a_{11}^{2}}}{2 \mu_{0}}> \\
>\frac{2 \mu_{0}+a_{11} \mu_{1}-\sqrt{\mu_{1}^{2} a_{11}^{2}+4 \mu_{0} \mu_{1} a_{11}}}{2 \mu_{0}}> \\
>\frac{2 \mu_{0}+a_{11} \mu_{1}-\sqrt{\mu_{1}^{2} a_{11}^{2}+a \mu_{0} \mu_{1} a_{11}+4 \mu_{0} \mu_{1} a_{11}}}{2 \mu_{0}}=0
\end{gathered}
$$

i.e., $1-a_{11} x_{1}>0$. It means:

$$
\begin{aligned}
& y_{1}=x_{1}\left(a_{21} x_{1}+a_{22}\left(1-a_{11} x_{1}\right)\right)>0 \\
& z_{1}=x_{1}\left(a_{31} x_{1}+a_{33}\left(1-a_{11} x_{1}\right)\right)>0
\end{aligned}
$$

II Let $\mu_{0}<0$. In this case, $x_{1}>0$ and $x_{2}>0$.
Clearly,

$$
\begin{equation*}
\left(P_{2}(x)\right)^{\prime}=2 \mu_{0} x+\mu_{1} \tag{13}
\end{equation*}
$$

and $P_{2}^{\prime}\left(\frac{-\mu_{1}}{2 \mu_{0}}\right)=0$. Moreover, the function $P_{2}(x)$ is an increasing function on $\left(-\infty, \frac{-\mu_{1}}{2 \mu_{0}}\right)$ and it is a decreasing function on $\left(\frac{-\mu_{1}}{2 \mu_{0}}, \infty\right)$.

If we put $x^{\prime}=\frac{-\mu_{1}}{2 \mu_{0}}$, then

$$
x_{1}<x^{\prime}<x_{2}
$$

II.I Let $x^{\prime}=\frac{-\mu_{1}}{2 \mu_{0}}<\frac{1}{a_{11}}$.

$$
\begin{equation*}
a_{11} \mu_{1}<-2 \mu_{0} \tag{14}
\end{equation*}
$$

Then $x_{1}<\frac{1}{a_{11}}$ and from $1-a_{11} x_{1}>0$. Moreover,

$$
\left(x_{1}, y_{1}, z_{1}\right) \in \mathbb{R}_{3}^{+}
$$

By other hand, we have the following identity:

$$
1-a_{11} x_{2}=\frac{2 \mu_{0}+a_{11} \mu_{1}+a_{11} \sqrt{\mu_{1}^{2}+4 \mu_{0}}}{2 \mu_{0}}
$$

By (14):

$$
\begin{gathered}
2 \mu_{0}+a_{11} \mu_{1}+a_{11} \sqrt{\mu_{1}^{2}+4 \mu_{0}}> \\
>2 \mu_{0}+\left(-2 \mu_{0}\right)+a_{11} \sqrt{\mu_{1}^{2}+4 \mu_{0}}=a_{11} \sqrt{\mu_{1}^{2}+4 \mu_{0}}>0
\end{gathered}
$$

From the last inequality,

$$
1-a_{11} x_{2}<0
$$

and

$$
\left(x_{2}, y_{2}, z_{2}\right) \notin \mathbb{R}_{3}^{+}
$$

II.II Let $x^{\prime}=\frac{-\mu_{1}}{2 \mu_{0}}>\frac{1}{a_{11}}$. We have:

$$
1-a_{11} x_{1}=\frac{2 \mu_{0}+a_{11} \mu_{1}-a_{11} \sqrt{\mu_{1}^{2}+4 \mu_{0}}}{2 \mu_{0}}
$$

Consequently,

$$
\begin{gathered}
a_{21}+a_{31}>0, \\
a_{21}+a_{31}-a_{11} a_{22}-a_{11} a_{33}+a_{11}^{2}+a_{11} a_{22}+a_{11} a_{33}>a_{11}, \\
\mu_{0}+a_{11} \mu_{1}>a_{11}^{2}, \\
4 \mu_{0}\left(\mu_{0}+a_{11} \mu_{1}\right)<4 \mu_{0}\left(a_{11}^{2}\right), \\
a \mu_{0}^{2}+4 a_{11} \mu_{0} \mu_{1}+a_{11}^{2} \mu_{1}^{2}<a_{11}^{2} \mu_{1}^{2}+4 \mu_{0} a_{11}^{2}, \\
\left(2 \mu_{0}+a_{11} \mu_{1}\right)^{2}<\left(a_{11} \sqrt{\mu_{1}^{2}+4 \mu_{0}}\right)^{2},
\end{gathered}
$$

$$
\begin{gathered}
2 \mu_{0}+a_{11} \mu_{1}<a_{11} \sqrt{\mu_{1}^{2}+4 \mu_{0}} \\
2 \mu_{0}+a_{11} \mu_{1}-a_{11} \sqrt{\mu_{1}^{2}+4 \mu_{0}}<0
\end{gathered}
$$

From the last identity:

$$
1-a_{11} x_{1}>0
$$

and

$$
\left(x_{1}, y_{1}, z_{1}\right) \in \mathbb{R}_{3}^{+}
$$

By the other hand, $x_{2}>x^{\prime}>\frac{1}{a_{11}}$. So, $1-a_{11} x_{2}<0$ and $\left(x_{2}, y_{2}, z_{2}\right) \notin \mathbb{R}_{3}^{+}$.

References

[1] Pigorov S.A., Sinai Ya.G. Phase diagrams of classical lattice systems (Russian). Theor. and Math. Phys., 1975, 25), P. 358-369.
[2] Pigorov S.A., Sinai Ya.G. Phase diagrams of classical lattice systems. Continuation (Russian). Theor. and Math. Phys., 1976, 26, P. 61-76.
[3] Sinai Ya.G. Theory of phase transitions: Rigorous Results, Pergamon, Oxford, 1982.
[4] Kotecky R., Shlosman S.B. First-order phase transition in large entropy lattice models. Commun. Math. Phys., 1982, 83, P. 493-515.
[5] Mazel A., Suhov Y., Stuhl I. A classical WR model with q particle types. J.Stat.Phys., 2015, 159, P. 1040-1086.
[6] Mazel A., Suhov Y., Stuhl I., Zohren S. Dominance of most tolerant species in multi-type lattice Widom-Rowlinson models. Journ. Stat. Mech., 2014, P. 08010.
[7] Eshkabilov Yu.Kh., Haydarov F.H. On positive solutions of the homogeneous Hammerstein integral equation. Nanosystems: Physics, Chemistry, Mathematics, 2015, 6(5), P. 618-627.
[8] Eshkabilov Yu.Kh., Rozikov U.A,Haydarov F.H. Non-uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley Tree. Journal Statistical Physics, 2012, 147, P. 779-794.
[9] Eshkabilov Yu.Kh., Rozikov U.A, Haydarov F.H. Uniqueness of Gibbs measure for models with uncountable set of spin values on a Cayley tree. Math.Phys.Anal.Geom., 2013, 16, P. 1-17.
[10] Eshkabilov Yu.K., Haydarov F.H., Nodirov Sh.D. Positive fixed points of quadratic operators and Gibbs measures. Positivity, 2016, 20(4), P. 929-943.
[11] Eshkabilov Yu.Kh., Haydarov F.H. Lyapunov operator L with degenerate kernel and Gibbs measures. Nanosystems: Physics, Chemistry, Mathematics, 2017, 8(5), P. 553-558.
[12] Rozikov U.A. Gibbs measures on a Cayley trees, World Sci. Pub, Singapore, 2013.
[13] Rozikov U.A., Haydarov F.H. Four competing interactions for models with an uncountable set of spin values on a Cayley tree. Theor. Math. Phys., 2017, 191(2), P. 748-761.
[14] Krasnosel'ski M.A. Positive Solutions of Opertor Equations. Gos. Izd. Moscow, 1969, Russian.
[15] Nirenberg L. Topics in nonlinear functional analysis. AMS, Courant Lec. Notes in Math, 6, N.Y., 2001.
[16] Haydarov F.H. Fixed points of Lyapunov integral operators and Gibbs measures. Positivity, 2018, 22(4), P. 1165-1172.
[17] Georgii H.O. Gibbs Measures and Phase Transitions, 2nd edn. de Gruyter Studies in Mathematics, vol. 9. Walter de Gruyter, Berlin, 2011.

