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Positive fixed points of Lyapunov operator
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In this paper, fixed points of Lyapunov integral equation are found and considered the connections between Gibbs measures for four competing

interactions of models with uncountable (i.e. [0, 1]) set of spin values on the Cayley tree of order two.
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1. Introduction

Spin models on a graph or in continuous spaces form a large class of systems considered in mechanics, biology,
nanoscience, etc. Some of them have a real physical meaning, others have been proposed as suitably simplified models
of more complicated systems. The geometric structure of the graph or a physical space plays an important role in such
investigations. For example, in order to study the phase transition problem on a cubic lattice Z¢ or in space one
uses, essentially, the Pirogov-Sinai theory; see [1-3]. A general methodology of phase transitions in Z¢ or R¢ was
developed in [4]; some recent results in this direction have been established in [5,6] (see also the bibliography therein).

During last years, an increasing attention was given to models with a uncountable many spin values on a Cayley
tree. Until now, one considered nearest-neighbor interactions (J3 = J = a = 0, J; # 0) with the set of spin values
[0, 1] (for example, [7-12]).

In [13] it is described that splitting Gibbs measures on I's by solutions to a nonlinear integral equation for the
case J2 + J? + J? + o # 0 which a generalization of the case J3 = J = a = 0, J; # 0. Also, it is proven
that periodic Gibbs measure for Hamiltonian (1) with four competing interactions is either translation-invariant or
G,(f) — periodic.

In this paper, we consider Lyapunov’s operator with degenerate kernel. In [11], Fixed points of Lyapunov’s
operator with special degenerate kernel are studied. The present paper is a continuation of the paper [11], i.e., we give
full description of fixed points of Lyapunov’s operator with another special degenerate kernel.

A Cayley tree T% = (V, L) of order k € N is an infinite homogeneous tree, i.e., a graph without cycles, with
exactly k + 1 edges incident to each vertices. Here V' is the set of vertices and L that of edges (arcs). The distance
d(z,y),z,y € V is the number of edges of the path from z to y. Let 2° € V be a fixed and we set

W, = {”L ev | d(:l},xo) :TL}, Vi = {“L ev | d<x7x0) Sn}a
L,={l=<z,y>e L|xz,yeV,},

If the distance from x to y equals one then we say x and y are nearest neighbors and use the notation I = (x,y). The
set of the direct successors of z is denoted by S(z), i.e.

S(l‘) = {y € Wn+1‘ d(mvy) = 1}7 zeW,.

We observe that for any vertex x # 2, x has k direct successors and z° has k + 1. The vertices = and y are
called second neighbor which is denoted by > x,y <, if there exist a vertex z € V such that x, z and y, z are nearest
neighbors. We will consider only second neighbors > x,y <, for which there exist n such that x,y € W,,. Three
vertices x, y and z are called a triplet of neighbors and they are denoted by < z,y,2z >, if < z,y >, < y,z > are
nearest neighbors and z, z € W,,, y € W,,_1, for some n € N.

Now, we consider models with four competing interactions where the spin takes values in the set [0, 1]. For
some set A C V an arbitrary function o4 : A — [0, 1] is called a configuration and the set of all configurations
on A we denote by Q4 = [0,1]4. Let o(-) belong to Qy = Q and &; : (t,u,v) € [0,1]* — & (t,u,v) € R,
& (u,v) €[0,1)2 = &(u,v) € R, i € {2, 3} are given bounded, measurable functions.

We consider models with four competing interactions where the spin takes values in the unit interval [0, 1]. Given
aset A C V aconfiguration on A is an arbitrary function oy : A — [0, 1], with values o(x), = € A. The set of all
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configurations on A is denoted by Q5 = [0,1]* = Q and denote by B the sigma-algebra generated by measurable
cylinder subsets of €.

Fix bounded, measurable functions & : (t,u,v) € [0,1]> — & (t,u,v) € Rand & : (u,v) € [0,1]* —
& (u,v) € R, i = 2,3. We consider a model with four competing interactions on the Cayley tree which is defined by
a formal Hamiltonian

H(o)=—Js Y & (o(x),0(y),0(2)) =T Y & (o(x),0(2))
(07) ool

T,Y,z

—J1 Y &(o(a),0(y) —ad o), ¢))

(z,y)

where the sum in the first term ranges all triples of neighbors, the second sum ranges all second neighbors, the third
sum ranges all nearest neighbors, and J, J1, J3,« € R\ {0}.

Leth: [0,1] x V\ {2z°} — R and |h(t,z)| = |hs.| < C where z is a root of Cayley tree and C' is a constant
which does not depend on ¢t. For some n € N, 0,, : € V,, — o(z) and Z,, is the corresponding partition function
we consider the probability distribution (™) on Qy;, defined by:

:u’(n)(o-’ﬂ) = Z;1 exXp <_6H(Un) + Z ho’(x),x) ) 2

zeW,

Zn = // exXp <_5H(3n) + Z hE(T)r) A&/@fl(d’&n)v 3

@) zeW,
Qvnf 1
where

Qw, X QX oo X Q= X A,y X A, X o X A, = AP p e N,

3.2p—1 3.2p—1

Leto,—1 € Qy,_, and 0,,—1 V w,, € Qy,, is the concatenation of ¢,,_; and w,,. For n € N we say that the probability
distributions ;™) are compatible if (") satisfies the following condition:

// 'u(n) (On—1Vwn)Aw, X Aw, )(dwy,) = U(nil)(an—l)- @

an XQWTL

By Kolmogorov’s extension theorem, there exists a unique measure £ on €y such that, for any n and o,, € Qy;,
w({olv, = on}) = u™(0,). The measure 1 is called splitting Gibbs measure corresponding to Hamiltonian (1) and
function x + hy, x # x° (see [7,8,14,15]).

We denote:

K(u,t,v) = exp{J38& (t,u,v) + JBE (u,v) + J1 5 (& (t,u) + &3 (8, v)) + af(u+v)}, )
and
f(t,x) = exp(his — hos), (t,u,v)€0,13 zeV\ {2}
Th(e f(()llo;ving statement describes conditions on h, guaranteeing the compatibility of the corresponding distribu-
tions p\"™ (oy,).

Proposition 1 [16] The measure u(")(an), n = 1,2,... satisfies the consistency condition (4) iff for any x €
V '\ {2°} the following equation holds:

1 rl
f(t7g;) — H fo fo K(t,u,v)f(u,y)f(u Z)dudv ©

>y,z<ES(x) fol fol K(Oa u, U)f(uv y)f(vv Z)dudv7

where S(z) = {y, 2z}, <y, =,z > is a ternary neighbor.
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2. Lyapunov operator with degenerate kernel
Let ¢1(t), p2(s) and p3(u) are positive functions from C; [0, 1]. We consider Lyapunov’s operator A (see [9,17]):

(Af)(t) = / / (01(8) + pa(s) + @a(w)) F(s) f (u)dsdu.

and quadratic operator P on R? by the rule
P(z,y,2) = (an12® + 2y + 22, an12® + aooxy + aooxz, 312”4+ azszy + asszz).

Here,
1
o011 :/ v1(s)ds > 0;
0

1 1
= / pa(s)ds >0, as = / p1(8)pa(s)ds > 0;

0 0

1 1
Q33 = / p3(s)ds >0, as; = / v1(s)ps(s)ds > 0.
0 0

The existence of fixed points of Lyapunov’s operator A is proved in [16]. A sufficient condition of uniqueness of

fixed points of Lyapunov operator A s given (see [8]).
Lemma 2.1 Lyapunov’s operator A has a nontrivial positive fixed point iff the quadratic operator P has a non-
trivial positive fixed point, moreover, N7, (A) = NJ}"u (P).
Proof (a) Put
]R; = {(x,y,z) ER3:2>0,y>0,2> O}7
Ry ={(z,y,2) €R*:2 >0,y >0,2>0}.

Let Lyapunov’s operator A has a nontrivial positive fixed point f(t) € C;[0,1]. Let
(7

2 = / ' fu)du,
o = / " () f(u)d, ®)

0
and
1
T3 = / w3(u) f(u)du, 9)
0
Clearly, z1 > 0, 2 > 0,23 > 0, i.e. (1,22, 23) € R3. Then, for the function f(t), the equality
() = p1(t)z? + z120 + 2123 (10)

holds.
Consequently, for parametrs ¢y, ca, c3 from the equality (7), (8) and (9), we have the three identities:
1 = z1(0121 + 22 + 23),
Ty = x1(2121 + Q922 + (2213),

r3 = x1(a3121 + g3 + a3373).

Therefore, the point (c1, ¢2) is fixed point of the quadratic operator P.
(b) Assume, that the fixed point zq, yo, 2o iS a nontrivial positive fixed point of the quadratic operator P, i.e.

(70, Y0, 20) € R3 and number o, yo, 2o satisfies the following equalities
wo(1170 + Yo + 20) = o,

xo (2120 + (22yo + X2220) = Yo,

wo(a3170 + a33Y0 + 3320) = 20-
Similary, we can prove that the function fo(t) = 1 ()22 + xoyo + 020 is fixed point of Lyapunov’s operator A

and fo(t) € C{ [0, 1]. This completes the proof.
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3. Positive fixed points of the quadratic operators in cone R;r
We define quadratic operator (QO) Q in cone R3 by the rule
Q(z,y,2) = (a112° + 2y + 22, a212® + a2y + azexz, az12” + azszy + azzwz).

3.1-lemma If the point w = (¢, Yo, 20) € RJ is fixed point of QO Q, then xy is a root of the quadratic algebraic
equation

(@21 + az1 — ar1a22 — Cl11€L33)932 +(a11 +ap +asz)r—1=0 (1D
Proof Let the point w = (o, Yo, 20) € R3 be a fixed point of QO Q. Then
a1133(2) + ZoYo + Zozo, 1121583 + a22ToYo + a2220z0,
az12g + assToyo + a33T020.
Using the bellowing equalities, we obtain:
Yo+ 20 =1—anwo
Yo = To(a2120 + az(l — a1120))
2o = xo(azi1xo + asz(l — a112o))
Yo + 20 = xo(az1@0 + a22(1l — a1120)) + xo(az1zo + assz(l — anzo)) =
= (@21 + as1 — aj1az2 — 011G33)$(2) + (a22 + ass)xo = a11%0
By the last equality, we get:
(a1 + az1 — ajaz — a11a33)938 + (a11 + age + asz)ro — 1 =0.

This completes the proof.

3.2-lemma If the positive number x is root of the quadratic algebraic Eq.(11), then the point wg = (o, xo(a21o + az2(1l — a2
is fixed point of QO Q.

Proof Let x( be a root of the quadratic Eq.(11), i.e.,

(@21 + az1 — ar1a22 — a11a33)9~"g + (@11 + a2 +asz)ro — 1 =0.
wo(anzo +yo + 20) =
= 20(a1170 + zo(az120 + aze(l — a1170)) + wo(az1zo + azz(l — a1170))) =
= 2o(a1120 + (a21 + ag1 — ar1aze — a1ass)zy + (as2 + ass)wo) =
= x0((a21 + as1 — ar1a22 — a11a33)xg + (a11 + azs + asz)wo — 1+ 1) = 29(0+ 1) = o
Then
Yo + 20 =1 — a1 zo.
From the last equality, we get:
a21$(2) + a22T0Yo + a22T020 =
= zo(az212o + a22(yYo + 20)) = Zo(az21zo + az2(1 — a1120)),
as1T4 + a3sToYo + A33Tozo =
= x0(a3170 + a33(yo + 20)) = wo(azizo + azz(1 — a1120)).
This completes the proof.
We put
Mo = a21 + a31 — Q11622 — A11G33, f1 = a11 + 22 + a33
and define polynomial P5(z):
Py(z) = pox® + g — 1. (12)
Theorem 3.3 QO Q has a unique nontrivial positive fixed point.
Proof To prove the Theorem, we use properties of the polynomial P»(z). It is known that there are two roots of

the polynomial. They are:
—p1 4/ 13+ 4po

r1 =
240

b= i = Vi
210

ILet pig > 0. In this case, 1 > 0 and x5 < 0.
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—pun + /it +4po a1 =

17&111’1:17

2410
20 +anm — /(pF +4po)ai, S
B 210
S 2o + ar1py — \/M%a%l + 4popiar S
2p0
S 200 + ar1p1 — \/,u%a%l + apopiar +4popian —0
240
ie., 1 —ajiry > 0. It means:
y1 = z1(ag121 + ag(l — an1z1)) >0,
z1 = z1(az171 + azz(l — apzr)) > 0.
II Let p9 < 0. In this case, 1 > 0 and x5 > 0.
Clearly,
(P2())" = 2407 + 11 (13)
and Py (;501> = 0. Moreover, the function P(z) is an increasing function on <—oo, ;;S) and it is a
decreasing function on _—'ul, oo) .
240
If we put ' = _—m, then
240
1 <2 <z
MILets' = 2 < 1
2p0  an
arpr < —2pg (14)
Then z; < L and from 1 — a1z > 0. Moreover,

a1l
(xla Y1, Zl) € R;_
By other hand, we have the following identity:

2p0 + a11p + a1/ 12 + dpo
240
20 + ar1pn + ariy/pf + 4po >
> 240 + (—2p10) + ariy/ 3 + 4o = ain/ i + 4po > 0.

1—a1122 <0

1-— 11T =

By (14):

From the last inequality,

and
(z2,y2,22) ¢ RY.
/ —H 1
ILII Let 2" = —— > —. We have:
2po a1
1 — giign — 200 + aripn — anny/ p3 + 4po
—apry =
2410
Consequently,
a1 +az1 > 0,

a1 + az1 — a11a22 — a11a33 + a3y + ar1ae + ar1azz > ai,
po + a11pr > afl,
Apo(po + arnpn) < 4po(ay),
apg + daripop + atpf < afypd +4dpoaty,

(20 + a11p1)? < (ar1y/pf + 4po)?,
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200 + ar1p1 < a1/ pi + 4po,
20 + ar1pn — ary/pf + 4po < 0.

1—ay1z1 > 0,

From the last identity:

and
(z1,91,21) € RY.

1
By the other hand, 25 > z’ > — So, 1 —aj1wa < 0and (22,2, 22) & R .
11
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